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ABSTRACT 

 The targeted goal of the renewable energy penetration level in New York State’s 

electric power generation for 2030 is 50%. New wind farms are being proposed, planned 

and installed in upstate New York. The downstate region of New York (Long Island, New 

York City, and the Hudson Valley) uses 66% of the state’s electric energy. While, its power 

plants generate only 53% of the state’s electricity. There are two essential requirements: 1. 

Enabling upstate resources to better serve downstate consumers, and 2. Local 

consumptions with energy storages such as batteries in distribution network. One can 

envision a resilient power network to resist power outages due to extreme weather and 

other unexpected events. Forming a community power island may be beneficial to use 

some upstate wind power resources. 

Alfred University is exploring the use of wind power generation of upstate New 

York along with photovoltaic and biomass generation to implement a microgrid in Alfred, 

NY. In this regard, the impact of battery electric vehicles is also investigated during normal 

and outage grid operation modes. In this modeling study, the microgrid operates in real 

time (i.e. milliseconds interval) or day-ahead scheduling (i.e. hourly interval). That is, 

renewable energy generation and battery storages are modeled in both time intervals and 

several simulations are conducted. 
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I. INTRODUCTION 

In recent years, number of electric vehicles (EVs) is increasing rapidly. The 

EV batteries may be programmed to have two-way communication with power 

grid. With the development of charging facilities, it is possible to send/receive 

power from electric vehicles. This feature could be utilized to dispatch energy back 

to the grid when there is an outage. The second hand batteries from old electric 

vehicles could also be employed to smooth the intermittent renewable energy 

generation.  

By installing renewable energy units such as wind, solar, biomass in 

distribution network adjacent to consumers, small scale power systems can be 

formed called microgrid. The aim of this study is to examine the correlation 

between electric vehicles and renewable energy generation in a microgrid. 

Generation and load are both exist in micrgrids and this could provide many 

opportunities for grid operators. For instance, during power outage conditions, 

islands can be formed to meet the load with minimum amount of load shedding. 

The main drawback of renewable energy is the intermittent nature of it. The most 

suggested viable practice is energy storage system. The interaction of electric 

vehicles and renewable energy could be a topic that has to be addressed because 

they will help to build the microgrids. 

In the next sections, first, day ahead planning approach is considered to 

manage power grid, renewable energy generation and electric vehicles. We present 

an algorithm to smooth the impact of electric vehicle charging on power grid. In 

addition, the possibility of using the extra energy stored in electric vehicles battery 

is studied. After we propose the possible actions for managing electric vehicle 

charging challenge for current state of the grid operation, then the trend of electric 

vehicle purchases is investigated and the possible correlation between the number 

of electric vehicles being purchased in each year and renewable energy expansion 

plans is examined.  
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After possible corrective actions are determined for microgrid operation, 

the real time operation of the system needs to be studied. For this purpose, all the 

components of microgrid including extra renewable energy units, electric vehicles 

and transmission lines are simulated in real time simulator. 

This study can be regarded as a comprehensive study of microgrid which 

could be used for future planning policies and energy management systems.   
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II. PUBLISHED RESULTS 

The following studies have been carried out in this thesis study and their results 

have been published/submitted in various papers and poster: 

A) B. Azimian, R. F. Fijani, E. Ghotbi and X. Wang, "Stackelberg Game Approach 

on Modeling of Supply Demand Behavior Considering BEV Uncertainty," 2018 IEEE 

International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 

Boise, ID, 2018, pp. 1-6. 

B) X. Li, B. Azimian, P. Chen, X. Wang, "Can renewables stimulate BEV 

demands? Technical principles and cross country empirical studies," 2019 IEEE Industry 

Applications Annual Meeting (IAS), Baltimore, MD, (Submitted) 

C) B. Azimian, D. Lu, X. Wang, “Cloud Computing Based Real-Time Energy 

Management System with RNN-LSTM Wind Forecasting,” 2018 IEEE Power and Energy 

Society General Meeting (PES GM), Portland, Or, 2018. (Poster) 

The contents of these published manuscripts will be found in the following sections 

of this chapter. 
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 Stackelberg Game Approach on Modeling of Supply Demand Behavior 
Considering BEV Uncertainty 

Abstract 

Based on advanced metering infrastructure (AMI), one can use big data to provide 

demand-response (DR) solutions.  There is a need to develop optimized cost structures for 

consumers.  In this paper, Stackelberg game approaches are utilized, and residential loads 

are considered including battery electric vehicles (BEVs) equipped with BEV 

communication controllers and vehicle-to-grid (V2G) technologies. Efficient and effective 

optimized algorithms are developed for users (followers) based on time dependent pricing 

schemes. In the “games,” besides the followers, other participant is an electricity retailer 

company (leader), with a two-way bilateral communication procedure accepted and 

established by all participants. The user side of the games is related to the demand side 

management (DSM). Real-time pricing (RTP) from time-of-use (TOU) companies is used 

to achieve better results.  Monte Carlo simulations (MCS) represent uncertain behaviors of 

BEV drivers. Results indicate that customers’ demands can be met while reaching the best 

efficiency. 

I. Introduction 

In a traditional power grid, proper metering may decrease demand response (DR) 

non-scheduled loads slightly. In a smart grid, several advanced techniques can be 

integrated, including advanced metering infrastructure, energy management systems, 

distributed energy systems, intelligent electronic devices, internet of things (IoTs), and 

battery electric vehicles (BEVs) [1].  When a smart metering infrastructure is combined 

with DR programs, efficiency can be improved [2]. Two types of DR have been discussed 

previously: 1. The retailer has all the power to directly control consumers’ usage which 

decreases the satisfaction of the users; and 2. The retailer reshapes DR programs through 

dynamic pricing such as critical pricing and real time pricing (RTP) [3]. The second type 

is preferred in this study.  

Modern energy managements via smart grids may take advantages of following 

technology developments: bi-directional energy flows, price-responsive loads, intelligent 

electronic devices (IEDs), and phasor measurement units (PMUs).  Thus, sophisticated 



5 

smart metering facilities and advanced two-ways communication technologies enable more 

flexible energy generations, deliveries and consumptions [4-7]. In a self-scheduling model 

simulation, consumers can participate “day-ahead” energy markets in order to minimize 

costs and/or maximize profits [8]. Price uncertainty was studied for generation company 

as a leader in game theory framework [9-10]. Recently, game theories are being considered 

in DR solutions and load peak shavings. In references [11-12], a Stackelberg game 

approach was used to deal with DR scheduling under load uncertainty based on real-time 

pricing in a power grid. In references [13-14], similar approaches were used to stimulate a 

power company and its customers to “play the game” in order to maximize their benefits 

and to eventually flatten aggregated load curves. With bi-level hybrid multi-objective 

evolutionary algorithms, utility companies’ profits may be optimized [15]. Additionally, 

various approaches have been developed to find the clearing price in retail electricity 

markets with high penetrations of renewable energies. Based on a time-of-use (TOU) 

pricing structure, providers or retailers can charge a calculable fee for the fixed price 

depending on an amount of consumption during a specific time interval [16-17].  

Commonly, electric vehicles are connected to grids to receive energy, and limited savings 

can be achieved when charging schedules are adjusted to avoid peak load periods [18]. In 

a case study, benefits of the coordinated EV charging strategy were considered in terms of 

energy cost savings and peak-to average ratio reductions [19]. An autonomous energy 

management system was used to allow residential users selling energy back to the utility 

company by discharging the PEV’s battery [20]. An optimization approach was suggested 

to provide an optimal charging strategy for the EVs to proactively control their charging 

speed to minimize the cost of charging [21]. An online electric vehicle scheme was 

considered to provide electric power to the vehicle wirelessly by a smart grid [22].  With a 

power payment function, the smart grid can maximize the social welfare of the online 

electric vehicle’s needs. 

Using Stackelberg game theory approach, performance can be substantially 

improved with a demand response program [3]. To our best knowledge, there is no 

literature in public domain to systematically consider electric vehicle owner’s driving 

behaviors via the game theory. In this study, a mixed integer nonlinear programming 

scheme is considered to achieve benefits for both “energy providers” and “consumers.”  A 
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new approach is considered here to flatten peak loads by scheduling home appliances and 

BEVs which can be charged and discharged via two-way technologies by combing grid-

to-vehicle (G2V) and vehicle-to-grid (V2G) connectivity.  By using V2G technologies, 

retailers can buy energy from consumers if such practices are mutually beneficial.  Thus, 

the following sections will study advanced two-way communication links and BEVs 

charging/discharging schedules to maximum utility companies’ profits via peak-shaving, 

and to satisfy consumers by elevating their roles to participants and to minimizing costs.   

Using a price-based model to guarantee an efficient algorithm between an electricity 

retailer and users owning BEVs with the aim of balancing the load. Main contributions of 

this paper include following key points: 

 Using a price-based model to develop an efficient algorithm between retailers and 

users (with BEVs), and aiming for balanced supply-load by shaving peaks; 

 Generating optimized results for both retailers and users with an iterative algorithm, 

and finding Stackelberg equilibrium (SE) to achieve optimal loads for both parties; 

 Formulating 1-N leader-follower Stackelberg relationship between one retailer and 

N users; and adopting the RTP function of the retailer and the utility function of N 

users; and 

 Handling uncertainty of different driving habits of BEV owners by MCS. 

Specifically, the rest of the paper is organized as follows. Section II discusses the 

system model and formulates the Stackelberg game theory. In Section III, we use data to 

generate load profiles of BEVs. Some key aspects of Stackelberg game theory and the logic 

are presented in Section IV.  Results are provided in Section IV, and conclusions are drawn 

in Section V.  

II. SYSTEM MODEL 

 In Fig. II. A. 1, a model is established for one utility company and N  users with 

BEVs. These users will adjust their electricity usages by using advanced metering 

infrastructure and heterogeneous communication technologies, with the ultimate goals to 

reduce overall costs.  The utility company (retailer) can provide hourly price structures to 

these users to encourage peak shaving and ultimately to maximize profits.  
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Advanced communication technologies enable the cloud computing environment 

and real time sensing/controlling including IoTs [23]. In this environment, an entity 

represents an electric load (consumer) or a prosumer such as a BEV. In the cloud 

environment, the real-time access to each entity is guaranteed. The system operator can 

categorize users into different groups. As shown in Fig. II. A. 1, all prosumers can be placed 

in one group, and other conventional loads in other. By utilizing instantaneous two-way 

communication links, real-time electricity prices will be broadcasted, conventional users’ 

consumption behaviors will be adjusted, and BEVs charging/discharging schedules can be 

changed. To maintain system stabilities and guarantee maximum profits, the retailer can 

impose load curtailment during peak hours. 

 

 

Figure II. A. 1. System model of the retailer company and users 

A. Retailer Company Model 

In this model, the cost function for the retailer is labelled as  C gt t , and depends 

on the amount of electricity provided ( tg ) during an interval t ; where ,t T T T  that is a 

strictly convex and monotonically increasing function.    

  2
2
t

ttt ttt
a g gC g cb    (1) 

Where , andt t ta b c are the generating coefficients. During different time intervals, each 

coefficient has a different value.  

Taking a differential operation against (1), one obtains the marginal cost function tC  : 

( )t t t t tC g a g b    (2) 
which is the cost to produce one more unit of electricity. Such marginal cost must be lower 

than the actual cost in order to guarantee profits for the retailer company. So, market price 

equation can be defined: 
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    ( )t t t tt tt t gg g aP bCt       ,   1t    (3) 
 

where tP  is price at each time slot and t is a time-wise profit coefficient. In reference [15], 

a similar profit coefficient was introduced, minimized and validated. In this paper, there 

are 24 time intervals (slots), corresponding to 24 prices in a day. The retailer provides 

electricity and its price to the consumers who will decide how much to use in each time 

interval.  Thus, a user can move his/her electricity usages to off-peak intervals to minimize 

the total costs. The retailer wants the most profit and the least aggregated peak load in order 

to avoid expensive backup generators. Flattening the demand load should be two-ways as 

a user has critical needs for electricity.  To determine the optimal generation vector, one 

should minimize variations in generation, and match supply with demand. Therefore, the 

retailer problem can be formulated as follows: 

 

 
2

min ( ) tRC t
t T

U g g g


    (4) 

  maxs.t. min ,t t t tL g g L
     (5) 

                                                   ,
1

N

t n t
n

L l


   (6) 

                                                   
1

, ,
1

N

t i t n t
i

L l l i n




     (7) 

 

Where RCU is the utility function of the retailer company and g  is an average power 

generation during a day. Lt  is the summation of electricity demands of all N users during 

the time interval t. tg   is the maximum capacity of the retailer company’s generation at the 

interval t, max
tL  is the overall upper bound of the total power demands for slot  t. ,n tl  is the 

power consumed by user n in the interval t One must notice that the above-mentioned 

function is different from profit maximization. In (4), minimizing utility function may lead 

to maximized profits. In (5), the generation should always meet the total demand of all 

users, and be lower than the smallest threshold for generation capacity and upper load 

ranges. In (6) and (7), tL  can be obtained by asynchronous user’s adjustment of 

consumption, reflecting the human nature that no two users will react to real-time pricing 

schemes due to different needs.  In (7), a user adjusts his/her usage, while others don’t. In 
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such non-simultaneous framework, no two users will negate their effects by increasing and 

decreasing their demands at the same time. 

B. User Model 

Each user has its own utility function, shown in (8). According to what has been 

explained in Section II, with the application of IoTs, the user can be an entity representing 

an electric load (consumer) as the first term, or a prosumer such as a BEV as the second 

term. Function , ,( )n t n tx  models the satisfaction of the electricity consumers; in which ,n tx

is the general power consumption variable, ,n tl  being the residential demand and ,n ts  

being BEV demand. The third term is the total amount of money to be paid by the 

consumers, which leads to less satisfaction as represented by a negative sign. With this, the 

demand side problem is formulated as follows: 

 

     

     

24

,,1
24 24

, , , ,
1 1

, arg max ,

. . .

n n n n tn tt

BEV BEV
n t n t n t t n t n t n

t t

l s U l s l

s P P g l s P







 

  

  

 (8) 

  2
, , , , , , ,, 0 0

2
n

n t n t n t n t n t n t n tx x x
         (9) 

, , ,s.t. n t n t n tl l l 
    (10) 

24

,
1

n t n
t

l L


   (11) 
24

,
1

req
n t n

t
s T



   (12) 
24 max

,
1

n t n
t

s T


  (13) 

, dep nn T
SOC BC   (14) 

 

where ,n t  is the preference parameter with indices n (user) and t (time), n is a 

predetermined constant integer, nL is the total daily energy usage, , { 1, 0,1}n ts    is a discrete 

variable which is multiplied by rated battery power BEVP  of electric vehicles and indicates 

BEV charging {1}, discharging {-1} status. If it is charging, it will have a positive effect 

on satisfaction of the utility function, and if it is discharging, it has a negative effect. 

Although discharging has a negative effect on satisfaction, it is losing the power obtained 

in the past charging periods. However, by selling discharged electricity, it has positive 
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effect on the third term of utility function. req
nT is the required time to fully charge the BEV, 

max
nT is the maximum number of hours that the battery is interacting actively with the 

network, , 
, depn T

SOC shows the BEV state of charge, and nBC  is the battery capacity, depT

is the vehicle’s departure time from the house. (9) Denotes the satisfaction function

, ,( )n t n tx of the user n by consuming ,n tl amount of electricity. (10) provides the upper and 

lower boundaries for electricity demand of nth user n for interval t. (11) expresses the 

temporally-coupled constraint which wouldn’t reduce the total daily consumption of the 

user n, so we can apply load shedding only in terms of pick shaving and load shifting. (12) 

states the cumulative charging time in order to fully charge the BEV before leaving one’s 

residence. (13) limits the maximum number of hours for a BEV connected to the grid 

system, either in G2V or V2G mode. Therefore, by limiting the hours that the battery is 

being charged or discharged, we reduce the detrimental effect of constant battery usage. In 

(14) the sequence of charging/discharging should be in a way that by the time that the BEV 

owner decides to leaves the house, the SOC should be 100%. 

   In the Stackelberg equilibrium context and the hierarchical process, our aim is to 

maximize the leader’s (retailer) utility function by having the data of the follower’s (user) 

rational reaction set (RRS).  The existence of the Stackelberg equilibrium has been 

discussed and shown in [4]. In addition, the model in (8) is formulated as a mixed integer 

nonlinear programming problem, and can be solved via MATLAB-GAMS interface. 

III. BEV LOAD PROFILE 

To model BEV load profiles, data from National Household Travel Survey (NHTS) 

for rural New York State were utilized to estimate average driving mileages and optimize 

battery usages. The SOC of the vehicles upon their home arrival time is of crucial 

importance [24]. Table II. A. I shows the data according to different types of cars and 

different characteristics. Also, in Figs. II. A. 2-4, probability distribution functions (PDFs) 

for driving behavior, including arrival time, departure time, and traveled distance in rural 

areas in New York state has been drawn from NHTS data. The reason why we chose rural 

areas in New York State is that Alfred University is located in rural areas. 
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Moreover, configuring the time of fully charged BEV depends on the distance it travels 

daily, and we assume that BEV is a constant power prosumer. From Fig. II. A. 2, we obtain 

the required charging time based on daily driven distance [25-26]. 

 

Figure II. A. 3. Arrival time pdf for BEV owners in rural areas in New York State 

 

Figure II. A. 4. Departure time pdf for BEV owners in rural areas in New York State 

 

Figure II. A. 5. Average travelled distance pdf for BEV owners in rural areas in New 
York State 
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Figure II. A. 6. Required time to fully charge a BEV with respect to distance driven and 
car size 

Table II. A. I. Different Characteristics of BEVs 

Vehicle 
Type 

Commercial 
model 

Expected 
Market 

Share [%] 

Energy 
[kW-hr] 

Rated 
Battery 
Power 
[kW] 

Single Charge 
Drive-

Range [mile] 

Compact 
sedan i3, BMW 51.48 33 7 114 

Mid-size 
sedan 

Model S, 
Tesla 10.35 75 11.5 259 

Mid-size 
SUV 

Model X, 
Tesla 38.17 100 17.2 295 

IV. STACKELBERG GAME THEORY ALGORITHM 

In Fig. II. A. 6, iterative DR algorithm is illustrated via a flow chart. At the 

beginning of the computation, the retailer broadcasts hourly price one hour ahead. 

According to (3), marginal cost function is calculated by power generation requirement 

and initial price broadcasted. As the relationship between the price equation and power is 

linear, the algorithm uses the generation value.  Final prices can be found once the total 

power generation value is known. Afterwards, Monte Carlo simulation emulates driving 

behaviors of BEV owners.  

Users respond to the prices broadcasted, and shift their usages to non-peak time 

slots. BEV discharging features can help the retailer company to offset some loads during 

peak hours. The peak-shaving and the demand aggregation can be accomplished 

continuously instead. 
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Figure II. A. 7. Stackelberg game theory algorithm 
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V. SIMULATION AND RESULTS 

Residential consumers are divided into three groups as tabulated in Table II. A. II.  

Group 1 corresponds to utility function coefficient ,n t of 5.0, with 50 BEVs.  Groups 2 and 

3 do not have BEVs, but have different utility coefficients.  The minimum and the 

maximum values refer to the lower and upper bounds of the targeted power demands.  For 

example, Group 1 consumption varies between 70% and 150% of its nominal load. The 

price coefficient is kept constant, i.e., 1.2t  . In Fig. II. A. 8, load profiles are shown for 

Group 2 and 3; and benefits from the game theory applications can be visualized by 

examining a profile with or without the algorithm. In general, the load profiles are flattened 

due to users’ participations.  In comparison with Group 2, Group 3 shows less eagerness to 

participate as it has larger ,n t . For group 1, as illustrated in Table II. A. II, managing the 

vehicle’s V2G or G2V status is of great importance.  

Table II. A. II. Satisfaction Function and Generation Coefficients 

Group 
Utility function coeff. Generation Coeff. 

Min Demand % Max Demand% 
,n t  n  at  bt  

1 5.0 0.1 0.01 

(00:00-8:00) 

0.02 

(8:00-24:00) 

0.2 

70 150 

2 5.5 0.1 75 140 

3 6.0 0.1 80 120 

 

If a large number of BEV owners begin to charge their vehicles immediately 

returning home, the sudden power load may be undesirable.  By applying the algorithm in 

Fig. II. A. 9, the uncertainty related to random behaviors of BEV owners can be managed 

by optimizing charging and discharging activities. In Fig. II. A. 8, wide bands of load 

profile for BEVs are shown for each time slot in a day. Without game theory applications, 

the users’ peak load can coincide with that of the BEV charging peaks. In Fig. II. A. 9, 

modified BEV load profile is obtained after applying the algorithm.  The negative values 

represent the V2G feature of the BEVs, or discharging. After coming back to home 

(between 17:00 or so and midnight), most vehicles are either sending back power to the 

grid or in standing by mode. The charging period mainly happens between 1:00 and 6:00. 
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Comparing the time interval between 14:00 to 16:00 in Fig. II. A. 7 and Fig. II. A. 10, more 

peak shaving has been achieved for  

Group 1 due to the presence of V2G technology. Fig. II. A. 11 shows the total 

generation over 24 hours for users’ aggregated demand with and without implementing the 

DR program. The expected value at each hour is used to obtain the profiles in Fig. II. A. 

10 and Fig. II. A. 11. From Table II. A. IV, the standard deviation shows that more 

fluctuations will happen mainly from 22:00 to 24:00 and 1:00 to 5:00. Therefore, the power 

system operator should consider more spinning reserve after midnight; this will cause an 

increase in power system operation cost. Finally, the real-time prices over 24 hours that 

has been derived from the algorithm is compared with the conventional price in Fig. II. A. 

12. The performance of the algorithm is evaluated by two scenarios (with and without RTP 

and V2G) from various aspects. 

  

 

Figure II. A. 10. Load profiles for groups 2 and 3 of consumers before and after applying 
optimization algorithm 

 

Figure II. A. 11. Uncertain load profile of 50 BEVs before applying the algorithm 
without V2G technology 
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Figure II. A. 12. Uncertain load profile of 50 BEVs after applying the algorithm with 
V2G technology 

 

Figure II. A. 13. Load profiles for group 1 of consumers before and after implementing 
the DR program 

 

Figure II. A. 14. Aggregated generation profiles before and after applying optimization 
the algorithm 
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Figure II. A. 15. Conventional and real-time prices broadcasted by retailer 

The numerical results are shown in Table II. A. III. The peak demand is 

significantly decreased by almost 1 MW. Total energy usage has not been changed, which 

proves that the retailer cannot reduce the whole amount of energy that a user expects to 

consume per day. This reality is shown in (11). Using algorithm in Fig. II. A. 6, the total 

user payments decreased about 16%, which demonstrates the efficiency of game theory 

application. Additionally, the generation costs of both scenarios can be less than the total 

payments, i.e., making profits for the retailer. 

Table II. A. III. Numerical Performance Evaluation 

Scenario Peak 
demand [kw] 

Total 
Energy 
Usage 
[kwh] 

Total Payments 
[$] 

Generation Cost 
[$] 

Without RTP 
and Without 

V2G 
3841 59092 36135 15115 

RTP and V2G 2755 59092 30244 12661 
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Table II. A. IV. Statistical Results for Generation Values in [kw] 

Time [hour] 1 2 3 4 5 15 16 17 
gt Expected value 2412 2060 2255 2256 2659 2694 2732 2571 

gt Standard deviation 66 76 26 28 42 29 49 12 
Time [hour] 18 19 20 21 22 23 24 

 gt Expected value 2573 2556 2524 2561 2283 1976 2163 

gt Standard deviation 14 14 8 16 130 66 197 
 

CONCLUSION 

Using game theory algorithm, one can reduce costs to consumers and potentially 

reshape generating profiles. In this paper, a model included one retailer and N users (with 

some of them owning BEVs).  In particular, an optimized approach can shave peaks with 

DR managements. The game theory and Stackelberg equilibrium have been utilized to 

illustrate an algorithm for three different user groups. By comparing the results with and 

without DR managements, the efficiency of the algorithm can be shown.  Using MCS in 

MATLAB-GAMS, the stochastic behavior of BEVs are simulated. According to the 

statistical analysis, such algorithm based on the game theory can reduce the peak loads.  

We are currently investigating possibilities to include more leaders and followers as well 

as incorporating solar and wind energy. 
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 Can Renewables Stimulate BEV Demands? - Technical Principles  

Abstract 

Renewables and BEVs may potentially reduce environmental pollutions and 

traditional energy consumptions. However, existing literature does not study them 

holistically, combining technology with economy.  In this paper, we first examine 

complimentary nature of these two technologies in a New York State college.  Then, we 

establish an econometric model to study impacts on BEV demands due to renewables and 

five other socioeconomic factors, using 2010-2016 panel data from eleven countries.  After 

multi-linear regressions, we observe that renewables impact BEV demands positively; i.e., 

one percent increment in renewables would yield 2% increment in BEV demands per 100 

thousand people.  High gasoline prices may lead to high BEV demands.  The number of 

chargers impacts BEV demands positively.  Population density does impact BEV demands 

positively, as well as education levels. The elasticity for GDP per capita is larger than one.  

Finally, we make recommendations to decision makers to synergistically promote 

renewables and BEVs.  Planners should properly select locations encompassing 

renewables, chargers, parking facilities, highway rest areas, shopping centers and 

community activity centers. 

I. INTRODUCTION 

Environmental pollutions and traditional energy consumptions are two critical 

issues facing the entire world.  Transportation consumes approximately twenty five percent 

of the total energy worldwide [27]. Correspondingly, the CO2 emission from transportation 

accounts for nearly twenty three percent of the total emission [28]. To reduce local 

pollutions, many urban areas are considering new plans/policies to replace gasoline/diesel 

vehicles with Electric Vehicles (EVs)  [29], [30]. There are two types of EV technologies: 

Plug-in Hybrid EV (PHEV) and Battery EV (BEV).  The former uses fuels, while the latter 

does not.  Recently, BEV’s developments and deployments become more relevant to urban 

planners [31]. In Fig. II. B. 1, annual BEV sales volume density is illustrated for 2014-

2016 [32]. Among eleven countries, Norway had the largest BEV density, and the highest 

percentage of renewables in electricity productions [33]. 
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Figure II. B. 1. 2014-2016 BEV sales volumes per 100 thousand people in 11 countries 
(Data are derived from Global EV Outlook 2017 and population in each country.) 

Renewables can reduce environmental pollutions and traditional energy 

consumptions.  The percentage of renewables in world electricity production is 

approximately 24.5%, while that of coal is still around 40% [34], [35]. As the fastest 

growing renewable sources in the past decade, solar or wind power suffers from 

intermittent nature, which slows down the further penetration in electricity generations.  

The intermittency problems can be solved with appropriate storage devices such as 

batteries [36]. With BEV batteries, two different approaches have been proposed: 1. 

“spent” batteries retired from BEVs being utilized in a storage bank, and 2. BEVs being 

connected to smart grid systems via “Vehicle-to-Grid (V2G)” or “Grid-to-Vehicle (G2V)” 

schemes [37], [38]. To reduce traditional energy consumptions and pollutions globally, 

renewables and BEVs should be developed together, rather than two different funding 

sources and policy incentives.  Electricity for BEV battery charging should come from 

renewables, and entire life cycles of BEVs can have very small negative impacts on the 

environment [39]–[44]. According to survey studies, BEV consumers want to charge 

batteries with electricity produced by renewables because environment performance is 

more important than price-value and range-confidence [45], [46]. One study predicted 23% 

increase in demands if electricity is from renewables [47]. Furthermore, if battery charging 

and discharging schedules match with electricity cost structures, BEV usage costs can be 

reduced; i.e., BEV owners can charge batteries during grid off-peak hours with cheap 

electricity, and “sell” stored electricity to offset peak loads for the grid.   
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Existing literature does not study renewables and BEVs holistically, combining 

technology with economy.  As stated, previous studies were mainly based on surveys at 

the micro-economy levels.  Using the newest cross-country data, this paper examines 

relationships between BEV demands and renewables, technically and economically.  The 

remainder of the paper is arranged as follows.  In Section II, an example is provided to 

explain such relationships technically.  In Section III, an econometric model is established; 

using the BEV demand as a dependent variable, and renewables/socioeconomic-factors as 

independent variables and in subsection C, regression results are presented and explained.  

In Section IV, conclusions are drawn, along with suggestions to decision makers. 

II. RENEWABLES AND BEVs 

When electrical energy from renewables is stored in batteries, synergetic 

relationships between renewables and BEVs can be shown technically.  For this study, 

we’ll consider eleven countries: Canada, China, France, Germany, Japan, Netherlands, 

Norway, South Korea, Sweden, United Kingdom and United States.  Sample 

college/university campus can be found in each country due to following reasons: 1. 

Electric power grid systems on such campus only have a few feeders from utilities; 2. 

Reducing traditional energy usage is an integral part of education [48]. In this section, 

synergies are illustrated by using an example in New York State. Such principles can be 

utilized in other parts of the world. 

For a rural area college in Western New York, we examined its daily electrical power load 

profile, 𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑(𝑡) in January; and fitted it as follows: 

𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑(𝑡) = 800 + 157sin [(𝑡 − 9)(2𝜋/𝑇)] (1) 

where variable t is the time in hours, and period T is 24 hours. Load profiles were from 

New York State Gas and Electric (NYSEG) on line monitoring data for New York State 

College of Ceramics.  Load profiles for other months are similar in curve fittings.  The 

month of January is selected because it is the most important month for two reasons: 1. 

Cold weather, and 2. Beginning of new semester with students/faculty/staff returning to 

the campus. The average power is 800 kW, with the minimum of 643 kW and maximum 

of 957 kW.  Typically, classes start at 9:00 and end at 21:00.  Daily load profiles between 
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February and December are close to that illustrated in (1).  Thus, this equation can be used 

in a model to represent daily power consumption each year. To accommodate such load 

profile, one can consider renewable energy sources and BEV battery storages.  Using 

historical/local weather data and statistical predictions, hourly renewable power 

generations and battery storages should be able to carry the loads represented in (1).  In 

Fig. II. B. 2, a college power island is illustrated for planned power generations such as 

wind (first generator on the right) solar (second generator on the right), and biomass (third 

generator on the right). Renewable energy models are documented in [49], [50] and 

detailed formulation is presented here because in our work, emphasis is given to BEV 

problem formulation rather than modeling different types of renewable energy units. 

Additionally, two storage systems are also shown including BEVs and Energy Storage 

Systems (ESS). Such island is desirable if there is a regional power outage, or if utility 

rates become extremely high due to peak load surcharges. 

 

 

Figure II. B. 2. Planned renewable power generations and EV battery storages 

There are different types of battery storage calculation models.  In principle, the 

total renewable energy generations should exceed the total load energy demands on the 
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daily basis.  When the renewable power generations are lower than the load power 

demands, the EV battery storage systems should provide the necessary power to the load 

if a power island is needed as shown in Fig. II. B. 2. To find the required ESS capacity, 

deterministic and non-deterministic approaches are utilized. 

A. Deterministic Approach (DA) 

For DA, all expected values for renewable generations, BEVs and loads are 

calculated by their probability distribution functions without considering uncertainties, for 

each given time slot such as one hour.  For batteries, the State of Charge (SOC) is an 

important parameter, which has minimum and maximum values as boundaries as illustrated 

in (2) [51]. 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (2) 

Commonly, 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are equal to 40% and 100%, respectively. To 

estimate the ESS capacities, one examines the difference between power generations and 

demands for a given time slot such as each hour, as illustrated in (3). 

∆𝑃 = 𝑃𝑔𝑒𝑛 − 𝑃𝑑𝑒𝑚 (3) 

Positive  ∆P indicates the generation surplus which can be used to charge the 

batteries, and negative ∆𝑃 indicates generation deficiency which can be compensated by 

battery discharging. To balance generations with the demands for a given time slot, the 

curve of ∆𝑃 versus time must have an average of zero over the same time. The energy 

curve can be obtained by integrating ∆𝑃.  Thus, the difference between daily energy 

generations and demands is shown in (4). 

∆𝑊 = ∫ ∆𝑃 𝑑𝑡 = 𝑊𝑔𝑒𝑛 − 𝑊𝑑𝑒𝑚 (4) 

Therefore, (4) can be used as a guide line to find the required storage capacity for 

the system illustrated in Fig. II. B. 2.  Usually, a storage capacity parameter is defined by 

(5). 

𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑀𝑎𝑥 ∫ ∆𝑃𝑑𝑡 − 𝑀𝑖𝑛 ∫ ∆𝑃𝑑𝑡 (5) 
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If the total efficiency of the batteries and DC-AC inversions is η and batteries are 

limited to cycle between SOC 40% and 100%, the required storage capacity can be found 

by using (5) and η, as shown below. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥
𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

0.6 × η
 (6) 

B. Non-Deterministic Approach (NDA) 

For NDA, to capture the uncertainties of solar/wind power generations and BEV 

owner’s driving habits, a state sampling method is utilized in which every power state is 

selected. (Please note that biomass power generations will meet their expected values due 

to small fluctuations in feedstock such as wood chips.) That is, an available generation 

capacity is determined by its state, and total system generation capacity can be obtained by 

summarizing all generation capacities.  

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝐺𝑗𝑘

𝑚

𝑗=1

 (7) 

where 𝐺𝑗,𝑘 is the available capacity of the 𝑗th renewable generation unit in the 𝑘th 

sampling and 𝑚 is the number of renewable generation units including wind, solar and 

biomass in the system. 

Additionally, the load curve is represented by a multi-level step model as illustrated 

in Fig. II. B. 3.  At each given step, the load value is assumed as an average value and the 

load uncertainty behaves as a normally distributed random variable.  

For a given load level, a quantity called “the Demand Not Supplied” (𝐷𝑁𝑆) in the 

𝑘th sampling is defined in (8). 

𝐷𝑁𝑆𝑘 = 𝑚𝑎𝑥 {0, 𝐿𝑖 − ∑ 𝐺𝑗𝑘

𝑚

𝑗=1

} (8) 

where 𝐿𝑖 is the total load at the 𝑖th level including college and BEV demands.  If 𝐿𝑖  is 

treated as a mean value, a standard deviation 𝜎𝑖 can be introduced and a normal distribution 

random number 𝑋𝑘 can be used [52].  The sampled value of the load in the 𝑘th sampling 

is therefore given by (9). 
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𝐿𝜎𝑖 = (𝑋𝑘𝜎𝑖 + 1)𝐿𝑖 (9) 

To capture load uncertainty, 𝐿𝜎𝑖 in (9) replaces 𝐿𝑖 in (8).  Loss of energy expectation 

(LOEE) can be found by two summations in (10).   

𝐿𝑂𝐸𝐸 = ∑ (
𝑇𝑖

𝑁𝑖
∑ 𝐷𝑁𝑆𝑘

𝑁𝑖

𝑘=1

)

𝑁𝐿

𝑖=1

 (10) 

where 𝑁𝐿 is the number of the load levels in the multiple step load model shown in Fig. 3, 

𝑇𝑖 is the time length of the 𝑖th load level, and 𝑁𝑖 is the number of samples at the 𝑖th load 

level. The unit of LOEE is MWh for a time period (𝑇) such as one day in this study.  

Considering the uncertainties of loads and renewable power generations and the battery 

SOC constraints in (2), the required storage capacity based on the NDA can be found 

below.  

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑏𝑦 𝑁𝐷𝐴 ≥
𝐿𝑂𝐸𝐸

0.6 × η
 (11) 

where η is the total efficiency as described between (5) and (6). 

 

Figure II. B. 3. Load curve and multi-level step model 

C. System Data 

Referring to Fig. II. B. 2 (upper left) and (1), the average load is approximately 800 

kW. Three renewable power generations are illustrated on the right-hand side of the Fig. 
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II. B. 2. There is a considerable difference between the installed (nameplate) capacity and 

the actual output from a renewable energy system.  Usually, the capacity factor is defined 

to illustrate expected output power over a long period, which is the ratio of actual energy 

generated over a time period (typically a year) to the maximum possible energy output over 

the same period. In Western New York, the capacity factor of solar and wind generation is 

10% and 24%, respectively. In this study, the maximum power for wind (or solar) is 2 MW 

due to intermittency, and that for biomass is 400 kW.  There are two types of EV batteries: 

a. BEV batteries with power of 7.4, 11.5 and/or 17.2 kW; and b. Battery ESS.  In Fig. II. 

B. 4, projected hourly renewable power generations are illustrated for solar, wind and 

biomass based on historical data and probability calculations [53]. Please note that the 

projected wind (or solar) power generations in Fig. II. B. 4 are much lower than the planned 

maximum power capacities (2 MW).  

 

 

Figure II. B. 4. Expected hourly renewable power generations for solar (red line), wind 
(blue line) and biomass (green line) 

Using DA, the lowest energy value is approximately 7.4 kWh for 8:00 time slot as 

the renewable generations exceed loads, and the highest value is approximately 1450 kWh 

for 16:00 time slot as the loads exceed the generations. Using (5) and efficiency of 80%, 

the required storage capacity is approximately 3 MWh.  Note that DA is rather idealistic, 

even though we have considered the variations in renewable generations. 

Using NDA, computer simulations yield LOEE value of 5.32 MWh, and minimum storage 

capacity of 11 MWh.  Thus, this approach is more conservative than DA.  Daily renewable 

energy productions will be approximately 25 MWh, exceeding the college energy 
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consumptions of nearly 20 MWh.  BEV battery storages will be utilized to smooth 

solar/wind intermittency, and shift power generation/load profiles. For BEV drivers in rural 

areas of New York State, probability distribution functions (PDFs) of arrival times and 

travel distance are obtained from National Household Travel Survey (NHTS) database 

[54]. To reflect BEV-Grid connection windows, we divide faculty, staff and students into 

two commuting groups, morning group with 200 BEVs and evening group with 75 BEVs.  

The first group includes teaching faculty, office staff and commuting students, who usually 

come to the campus in the morning, see Fig. II. B. 5(A).  The second group includes 

research faculty, outreach staff and student-teachers who leave the campus after breakfast 

and come back around dinner time (Fig. II. B. 5(B)).  The charging time for these groups 

may be delayed to properly manage the battery energy releases and storages, renewable 

energy productions and regular college energy loads [55]. The travel distance range for 

both groups is shown in Fig. II. B. 5(C).   Please note that the horizontal axis beyond 160 

km becomes non-linear to accommodate the statistical results for distances equal or larger 

than 170 km. 
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Figure II. B. 5. PDF of morning arrival time (A), evening arrival time (B) and travel 
distance (C) 

In Table II. B. I, BEV vehicle types, market shares, drive-ranges and energies can 

be predicted by extrapolate data from NHTS and BEV manufacturers. 

Table II. B. I. Assumed Characteristics of BEV 

Vehicle Type 
Expected Market 

Share (%) 

Rated Power 

(kW) 
Energy (kWh) 

Single Charge 

Drive-Range 

(km) 

Compact sedan 51.48 7.4 33 183 

Mid-size sedan 10.35 11.5 75 417 

Mid-size SUV 38.17 17.2 100 475 

 

Generally, the travel distance range in Fig. II. B. 5(C) is less than the single-charge 

drive-range in Table II. B. I.  College load is approximately 20 MWh and expected BEV 

loads is 5 MWh calculated using Monte Carlo simulation and the data from Fig. II. B. 5 

and Table II. B. I. Additionally, spent BEV batteries will be utilized as a permanent energy 

storage system, with its storage capacity of 11 MWh calculated in previous section.  

According to the power generation/load needs, ESS will store the excess energy or release 

energy.  When regional grids experience outages, an island may be formed to ensure 

balanced power between generations and consumptions. 
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D. Load Balance Equation 

The load balance equation can be written as: 
𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝐸𝑆𝑆(𝑡) + 𝑃𝐵𝐸𝑉(𝑡) = 𝑃𝑆𝑜𝑙𝑎𝑟(𝑡) + 𝑃𝑊𝑖𝑛𝑑(𝑡) +
𝑃𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)       𝑡 = 1, 2, ⋯  24      (12) 

There will be three modes of operations: 

1. If total renewable generation is less than the summation of 𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑 + 𝑃𝐵𝐸𝑉 then 

battery ESS needs to be discharged (i.e. 𝑃𝐸𝑆𝑆 < 0) 

2. If total renewable generation is more than the summation of 𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑 + 𝑃𝐵𝐸𝑉 and 

the uncertainty of the corresponding time slot is less than those of other time slots, 

battery ESS could be charged (i.e. 𝑃𝐸𝑆𝑆 > 0). 

3. If total renewable generation is more than the summation of 𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑 + 𝑃𝐵𝐸𝑉 and 

the uncertainty of the corresponding time slot is more than those of other time slots, 

battery ESS will neither be charged nor discharged (i.e. 𝑃𝐸𝑆𝑆 = 0) and the extra 

renewable energy can be provided to outside via grid (as reserve to offset any 

unpredicted load increments). 

To examine the load uncertainty imposed by random behaviors of BEV drivers, the 

confidence interval of mean for each time slot can be calculated by (13) [52]. 

𝑋̅ − 𝑡𝛼
2

(𝑛 − 1)
𝑠

√𝑛
≤ 𝜇 ≤ 𝑋̅ + 𝑡𝛼

2
(𝑛 − 1)

𝑠

√𝑛
 (13) 

where 𝑋̅ and 𝑠 are the mean and standard deviation of a random sample of size 𝑛 from the 

normal population,  𝑡𝛼

2
(𝑛 − 1) is a t-distribution with 𝑛 −1 degrees of freedom, and α is 

significance level. After simulating the BEV owners’ driving habits, the random BEV load 

variable follows a normal distribution at each time slot.   

Equation (13) is utilized to obtain uncertainty of random BEV load variable at each 

hour.  Assuming that the confidence degree is equal to 95% (1 − 𝛼 = 95%), confidence 

interval of the mean at each hour for one day is calculated using (13), and plotted in Fig. 

II. B. 6.  The battery ESS may be charged during time slots with small confidence interval 

values, such as 8:00 – 9:00, and 17:00 – 23:00. It has to be mentioned that confidence 

interval is reduced from 7:00 to 9:00 due to the demand response program (i.e. load 

shifting) to delay charging time for BEVs. For 10:00 – 14:00 and 2:00 – 6:00, large 
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variations occur because of on campus BEV charging and wind/solar energy intermittency 

receptively. 

 

Figure II. B. 6. Confidence interval of mean for BEV load profile with sample of size 275 
over 24 hours 

E. Simulation Results 

Fig. II. B. 7 illustrates three hourly activities: 1. The left bar shows the renewable 

power generation and battery discharging; 2. The right bar shows the load power and 

battery charging; and 3. The number in the top circle shows the operation mode.  Daily 

energy generations and consumptions are summarized in Table II. B. II, where energy 

balance can be achieved. 

Table II. B. II. Energy Production and Consumption for Each Renewable Source and 
Demand for Expected Values of Random Variables 

Type Generation [MWh] Consumption [MWh] 
Wind 11.52 – 
Solar 4.93 – 

Biomass 8.97 – 
College – 19.14 

Evening commuting BEV – 1.34 
Morning commuting BEV – 3.57 

Total 25.42 24.05 
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Figure II. B. 7. Hourly renewable power generation and battery discharging (left), load 
and battery charging(right), and operation mode for expected values of random variables 

As it was already stated, in order to form an island on campus to meet the load (i.e. 

college and BEV load) 11MWh ESS has to be supplied from spent battery of electric 

vehicles. Also, using NDA, one can see that a total amount of 6.34 MWh is the extra 

amount of renewable generation available after 21:00 in Fig. II. B. 7 during a day. 

Considering the efficiency of the inverters (i.e. 80%) 5.072 MWh of this extra energy can 

be stored in ESS which is less than the calculated 11MWh capacity for ESS. In order to 

have 11MWh ESS capacity from spent battery of electric vehicles considering the market 

share percentage of different BEV models and the degrading effect of spent batteries (i.e. 

total capacity reduces by 85%) 205 spent batteries of electric vehicles is required to meet 

the load including college demand and commuting BEVs. Nevertheless, it is a practical 

assumption to say that BEVs are not allowed to work in charging mode during power 

outage (i.e. BEV demand is non-critical load). In this case we could either use spent 

batteries as ESS to meet the college load (i.e. critical load) or use the extra energy stored 

in BEVs (i.e. V2G operation mode) while there is no ESS available. For the latter solution 

(12) has to be modified as follows: 

𝑃𝐶𝑜𝑙𝑙𝑒𝑔𝑒 𝑙𝑜𝑎𝑑(𝑡) = 𝑃𝑆𝑜𝑙𝑎𝑟(𝑡) + 𝑃𝑊𝑖𝑛𝑑(𝑡) + 𝑃𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡) +
𝑃𝐵𝐸𝑉(𝑡)                      𝑡 = 1, 2, ⋯  24        (14) 

The 𝑃𝐵𝐸𝑉 on the right side of (14) indicates that the BEVs are acting as an energy 

source and sending power back to the grid. 

It can be seen from the Fig. II. B. 7 that if the operator wants to plan based on the 

expected values, the renewable generation can always meet the college load. However, 
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there is no guarantee that renewables can always produce their expected values due to their 

intermittent nature. There are many scenarios that the college load is more than that of 

generation. As a result, the state sampling method has to be used to appropriately determine 

the number of BEVs working in V2G mode or the required ESS capacity from spent 

batteries in order to meet the college load when there is lack of production from renewables. 

Using the calculation explained in this section, the minimum storage capacity to 

meet the college load would be 5.32 MWh. Eighty five BEVs or 100 spent batteries will 

be required to provide this amount of energy. It is noteworthy that by assuming the 

minimum SOC of 40% in V2G operation mode, the BEV owners can be sure that they have 

got enough energy to drive back home. 

In the second scenario we assume that the rated power generation for wind and solar 

are doubled by installing additional 2 megawatt wind turbine and 2 megawatt solar panels. 

In this case, the required storage capacity reduces to 3.74 MWh. Therefore, the number of 

required BEVs working in V2G during islanded operation goes down by 25. Also, the 

number of spent batteries decreases by 30 and becomes 70. 

In the first sight, it seems that by expanding renewable energy generation 

production, the number of required BEVs both in terms of V2G and spent battery goes 

down. One should notice that during the normal operation of the grid (i.e. grid connected) 

a huge amount of wind and solar generation should be provided to the outside via grid if 

there is no ESS. For the second scenario the total available extra renewable generation for 

one day is equal to 16 MWh which is much higher than the required ESS capacity 

determined in both V2G and spent battery scenarios. For instance, 255 BEVs is needed to 

store this much of energy which is more than that of other scenarios. For several different 

scenarios, representative numbers and capacities of batteries are summarized in Table II. 

B. III. 
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Table II. B. III. Summary f Number of BEVs and ESS For Normal and Power Outage 
Condition 

Scenario 

Grid connected Islanding 

Total extra 
renewable 

[MWh] 

No. of BEVs 
for extra 
energy 

Required ESS 
capacity [MWh] 

No. of 
BEVs 

 
(V2G)  

No. of spent 
batteries 

 
(Idle) 

2MW wind & 

2MW solar 
5.07 81 5.32 85 100 

4 MW wind & 

4MW solar 
16 255 3.74 60 70 

 

From the table above, one can realize that resilience improvement during power 

outage and extra energy saving during normal operation may be two chief reasons for 

policy makers and system operators to raise incentives for BEV purchases. for future 

planning horizon if the renewable sources keep increasing, the number of BEVs has to go 

up inevitably in order to store the extra energy and confront the intermittency if renewables. 

For electricity rates between $0.10 and $0.20 per kWh, the daily (annual) budget 

for 25 MWh would be $2.5K-$5K ($912.5K-$1,825K) [56].  In 2015, the average 

construction cost for new power plant was $1 - $3 per watt, with solar PV being $2.921 per 

watt [57].  In the last two years, the cost of solar PV generation construction was reduced 

to $1 per watt [58].  General site maintenance cost is $0.2 - $3 per kilowatt per year [59]. 

For wind, similar trend in cost reduction is observed [60]. Recently, EIA published its cost 

predictions for 2019, 2022 and 2040, respectively [61].  If cost reductions can be realized, 

one can justify future additions for renewable energy in electricity productions.  BEV costs 

are usually in three folds: 1. Batteries, 2. Vehicles and 3. Ownerships.  In 2016, the battery 

cost was nearly $227 per kW-Hr, and the average vehicle cost was approximately $50K 

[62], [63]. For a BEV with 50 kWh battery, the cost of the battery would be $11,350 which 

is a significant portion of the overall vehicle cost. As predicted by US Department of 

Energy, the targeted battery cost will be reduced to $125/kWh in several years [64].  Using 

a consumer centric model, Total Ownership Costs (TOC) for BEV should be cheaper than 

that of PHEV or internal combustion engine vehicle (ICEV) [65]. From the technical point 

of views, more electricity from renewables would lead higher BEV demands.  From 
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economic point of views, one needs to systematically and empirically examine the 

relationships between the demands and renewables, along with other socioeconomic 

factors. 

III. CONCLUSION AND DISCUSSIONS 

Based on technical principles and empirical examinations, renewables impact BEV 

demands positively. Holding other variables constants, one percent increment in 

renewables would yield 2% increment in BEV demands per 100 thousand people.  Since 

BEV may potentially benefit both environment and energy sectors, governments should 

promote renewables and battery storages, which can compensate solar/wind intermittency 

and adjust power grid peak/valley fluctuations.  High gasoline prices would lead to high 

BEV demands.  In terms of BEV demand density, Norway, France and Sweden ranked first 

three places in 2016; which took first, fifth and third places for gasoline prices, 

respectively.  Presumably, gasoline prices can be utilized as a policy tool to stimulate BEV 

demands. The number of chargers impacts BEV demands positively.  

Business/urban/community planners should properly select locations that are close to 

public parking facilities, highway rest areas, shopping centers and community activity 

centers.  Utilities should incorporate power grids (smart grids and micro-grids), renewables 

and charging stations to provide convenience to BEV users.  For example, near the college 

in Western New York, there are several suitable locations: 1. College town with 

solar/wind/biomass sources, parking lots and substations; 2. Wood processing facilities, 

cheese factories, and/or dairy farms near major highways; 3. Major shopping centers with 

factories nearby; and 4. County government buildings.  Population density does impact 

BEV demands positively. BEV marketing/sales should be mainly targeting the large 

population centers.  Since education levels impact BEV demands slightly, one may select 

such centers with high education levels.  The elasticity for GDP per capita is larger than 

one.  If manufacturers can reduce BEV prices, the demands will increase substantially.  

Governments may provide tax incentives to BEV consumers. 
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 Cloud Computing Based Real-Time Energy Management System with RNN-
LSTM Wind Forecasting 

I. INTRODUCTION 

By 2030, the renewable energy penetration level in New York State’s electric 

power generation will be 50%. New wind farms are being proposed, planned and installed 

in upstate New York. 

The downstate region of New York (Long Island, New York City, and the Hudson 

Valley) annually uses 66% of the state’s electric energy. Yet, that region’s power plants 

generate only 53% of the state’s electricity1. Enabling upstate resources to better serve 

downstate consumers [66]. 

Local consumptions with energy storages such as batteries can be formed in 

distribution network; one can envision a resilient power network to resist power outages 

due to extreme weather and other unexpected events. Forming a community power island 

may be beneficial to use the upstate wind power resources 

We propose a method to combine Energy Storage Systems (ESS), loads, and renewable 

sources which can operate as a microgrid during main grid outages. 

With Internet of Things (IoT) and Real-Time Hardware-in-Loop (RT-HIL), one can 

monitor and control power flows. 

Machine learning and cloud computing can be utilized for 10 minutes ahead 

renewable generation prediction. Recurrent Neural Networks (RNN) with Long Short-

Term Memory (LSTM) method is used for wind power production. 

II. METHODOLOGY 

A. OPAL-RT HIL Simulation 

A microgrid testbed is used for simulation which could be considered as a 

representation of Alfred power grid. 

Wind power generation data from a system of 100 kW wind turbine located on 

Alfred State College campus are used. 
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B. RNN-LSTM for Wind Forecasting 

RNN allows to connect previous information to the present state such as wind 

power forecasting. 

In some cases, where the gap between the relevant information and the place that 

it’s needed to be predicted is small, RNNs can learn to use the past information (Fig. II. C. 

1). However, as that gap grows, RNNs become unable to learn to connect the information.  

LSTMs are a special kind of RNN, capable of learning long-term dependencies (Fig. II. C. 

2) [66].  

 

Figure II. C. 1. Standard RNN 

 

Figure II. C. 2. RNN-LSTM 

C. Experimental Design 

The LSTM structure is depicted in Fig. II. C. 3, where Xt is the real time wind 

power generation acquired from IoT data acquisition system, ht is the hidden state which 

can be represented by the previous state ht-1 and the current input Xt under a control of a 

set of weight coefficient (stored as the short-term memory), and Ct is the cell state which 

keeps long short-term memory (seasonal or monthly information of historical data) and Ct-

1 will be trained along with ht-1to the updated Ct. 
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Figure II. C. 3. LSTM structure for wind power forecasting 

The predicted output is sent to simulated renewable energy integrated power system 

(OPAL-RT), and real time response of the entire system is monitored to ensure system 

security constraint compliances by generating correction control signals as shown in Fig. 

II. C. 4. 

 

Figure II. C. 4. Real-time testbed for microgrid studies along with IoT infrastructure for 
wind forecasting. 

III. SIMULATION RESULTS 

A. Wind Forecasting Results 

Fig. II. C. 5 shows the output results of using RNN-LSTM for wind power 

forecasting. After initial “machine learning,” the predication yields close resemblance of 

actual data. It takes 20 seconds to forecast the next 10 minutes’ wind speed, indicating a 

promising methodology for real-time operation. 
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Figure II. C. 5. Wind power prediction along with actual wind power production 

B. Microgrid Testbed 

The microgrid model which is implemented in OPAL-RT is shown in Fig. II. C. 6 

and generation/load capacities are summarized in Table II. C. I [68]. 
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Figure II. C. 6. Microgrid testbed 
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Table II. C. I. Generation/Load Data 

Generation or Storage Capacity 

Wind turbine rated power 1.5MW 

PV system rated power 1.5 MW 

Energy Storage System capacity 300 kWh (625 Ah, 480 V) 

Load 

System total static load 4.07 MW 

Motor rated power 200kW 

C. Real-Time Simulation 

Two scenarios are considered for real-time simulation of the microgrid presented 

in the previous section along with the wind power production forecasting. 

In the first scenario predicted wind power is imported to the system and the 

behavior of the system is studied. Extra wind power generation can be stored in the energy 

storage system and when the storage is fully charged, the extra power goes back to the grid 

as shown in Fig. II. C. 7. 
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Figure II. C. 7. Active power generation of different units. 

The state charge of the battery along with renewable generation is summarized in 

Table II. C. II for before and after of wind power variation. 

Table II. C. II. Generation of Different Components For Different Wind Speeds 

Current State 

SOC 80 % 

Grid 1.33 MW 

Wind 1.57 MW 

Solar 1.17 MW 
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Next Forecasting Time Interval 

SOC 85 % 

Grid 0 

Wind 2.9 MW 

Solar 1.5 MW 

ESS -300 kW (Charging) 

In the second scenario it is assumed that a fault occurs on the main grid and the 

microgrid is disconnected from the main grid (i.e. islanding operation mode). During the 

fault condition, the induction motor is switched off  because it is assumed that it is a non-

critical load. After a few seconds the fault is cleared from the main grid and the microgrid 

gets connected to the main grid (i.e. normal operation mode). The transient response of the 

motor is represented in Fig. II. C. 8. Values of Microgrid variables are shown in Table II. 

C. III. 

 

Figure II. C. 8. Active power generation before and after of fault occurance 
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Table II. C. III. Different Component Generation Status for Different Operation Mode 

Current State 

SOC 85 % 

Grid 1.75 MW 

Wind 1.5 MW 

Solar 1MW 

Motor 200 kW 

Islanding 

Grid 0 

Motor 0 

ESS 1.6 MW (Discharging) 

Post Fault 

SOC 60 % 

Grid 1.75 MW 

Motor 200 kW 

ESS 0 
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IV. CONCLUSION AND FUTURE WORK 

In wind power prediction a latency can be seen in the forecasted wind power. Such 

time delay can be corrected by systematically shifting the time. In first scenario the inverter 

rating should be able to handle 300kW and in the second scenario the inverter rating should 

at least handle 1.6 MW which means that several inverter units need to be used in parallel. 

The future work of this study could be designing a real-time energy management 

system with live data from wind turbines nearby, harvested via IoT data acquisitions 

systems and also implementing a control system to use the ESS in order to compensate for 

the wind power forecast error. 
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III. UNPUBLISHED WORK 

New York Independent System Operator (NYISO) as an independent entity is 

responsible for operating and monitoring New York State bulk power system. Data 

required by the NYISO to carry out technical analysis to support its mission of preserving 

the reliability of the New York State bulk electric systems are used to model and simulate 

power grids. 

Actual and forecast data of all the components, including loads, are required to 

analyze, study, and plan the interconnected electric systems. Detailed data of system 

components must be maintained and updated by the facility owners and load-serving 

entities and provided to the NYISO accurately. Complete, accurate, and timely data are 

needed by the NYISO to prepare system analyses to assess reliability of the New York 

State bulk electric systems. System analyses include steady-state, short circuit, and 

dynamic simulations of the electrical networks. Data requirements for these system 

analyses include information on system components, system configurations, facility 

ratings, customer demands, and electric power transactions. This manual describes specific 

data supplied by the New York Control Area (NYCA) facility owners and collected by the 

NYISO for these purposes [71]. 

Upon receiving and then validating the data, the system modeling group in NYISO 

uses these data to simulate power grid models in a commercial software package called 

“PSS/E” which is a powerful tool developed by Siemens for power system studies. PSS/E 

can handle a model containing thousands of buses and the system modeling group uses it 

for steady state analysis. 

The system modeling group has to work with large data sets. A programming tool 

is required to handle these large data. For example, Python is an increasingly popular tool 

for data analysis, which can be used for manipulating, processing, cleaning, and crunching 

data. 

In PSS/E, each analysis has to be carried out through the Graphical User Interphase 

(GUI) manually. In order to automate the processes of data screening and checking, an 

interface module is developed by PSS/E in order to create a connection between PSSE and 

python. This feature will grant the user to have complete access over the power system 
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parameters. By utilizing the PSS/E-Python interface module, the user would be able to alter 

the existing network parameters, run different studies such as power flow and contingency 

analysis and eventually generate excel file reports. 

In the following subsections, the process of building a power system model in 

PSS/E is first explained and then a python code is presented to show the applications of 

PSS/E-Python interface modules. 

A. PSS/E model 

Each power system model is composed of basic elements including transmission 

lines, generators, loads, transformers and buses. In PSS/E, a separate tab is assigned for 

each of these components. There are other tabs for advanced studies if required. Five (5) 

bus Siemens sample case is used here as an example for implementing python code. In Fig. 

III. 1. different tabs are shown. The five (5) bus case data should be entered accordingly in 

each tab. 

 

Figure III. 1. PSS/E GUI environment for input data 

After building the power system model, power flow should be run to determine 

transmission line flows and voltage magnitudes. Power flow solution can be found under 

power flow menu as shown in Fig. III. 2.  
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Figure III. 2. Running power flow analysis from PSS/E GUI 

After running power flow, network diagram can also be drawn in order to see the 

line active and reactive flows and corresponding direction as well as generation dispatches. 

The percentage on each line above the colored rectangle is showing the loading percentage. 

For each line, three rates are defined. Rate A which refers to normal ratings. Rate B refers 

to long term emergency ratings and rate C refers to short-term emergency ratings. 

Considering these three ratings, corrective measures have to be considered if the limits are 

passed.   

 

 

Figure III. 3. 5 Bus system diagram with line flows 
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B. PSSE/Python Interface 

As it was seen in the previous section, there could be a number of limit violations 

in power systems. For example, a generating unit must be flagged if it is generating more 

than its maximum active generation capacity. Also, the generation unit has to be identified 

if its reactive generation is more/less than its upper/lower reactive limit. This violation 

identification has been implemented in python script which is represented below. In python 

programming language ‘#’ is used for writing comments. At the top of each block of code, 

a ‘#’ symbol is followed by a brief explanation for better understanding.  

 

 

          ### making connection between PSSE and Python 

import os 

import sys 

PSSE_PATH = r'C:\Program Files (x86)\PTI\PSSE33\PSSBIN' 

sys.path.append(PSSE_PATH) 

os.environ['PATH'] += ';' +PSSE_PATH 

#---------------------------------------------------------------- 

            ### importing PSSE module 

import psspy 

psspy.throwPsseExceptions = True            # closing pop up windows 

import redirect                            # closing pop up windows 

redirect.psse2py()                        # closing pop up windows 

#---------------------------------------------------------------- 

        ### importing pandas for excel representation 

import pandas as pd 

 

#---------------------------------------------------------------- 

            ### running the case system (VERY IMPORTANT NOTE: if 

you already run the case and have the power flow results in SAV 

file comment the next section) 
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psspy.psseinit(107000)  

psspy.case(r'C:\Users\azimianb\Desktop\5_BUS_EXAMPLE_PSSE\2_1.sav

') 

#---------------------------------------------------------------- 

        ### running power flow and changing data (comment this 

section if your SAV file already has the power flow results) 

ierr = psspy.load_chng_4(150, '1', realar1 = 6, realar2 = -10)   # 

original values 6 and 1.6 

ierr = psspy.fdns()  

#---------------------------------------------------------------- 

            ### initializing the default values (for more info see 

pages 2213 to 2215 of API) 

cdef = psspy.getdefaultchar() 

idef = psspy.getdefaultint() 

rdef = psspy.getdefaultreal() 

#---------------------------------------------------------------- 

            ### Checking active and reactive power generation 

limits for each generator 

machineVios_P = [[],[],[]] 

noMachineVios_P = True 

machineVios_Q = [[],[],[]] 

noMachineVios_Q = True 

ierr, busses = psspy.abusint(-1, 1, ['NUMBER', 'TYPE']) 

for i in  range(len(busses[0])): 

    bus = busses[0][i] 

    if busses[1][i] == 2 or busses[1][i] == 3: 

        err1 = psspy.inimac(bus)                                     

        while err1 == 0:      #If err1 = 1, no more machines @ bus                       

            err1,wid = psspy.nxtmac(bus) 

            err2,unit_pmin = psspy.macdat(bus,wid,'PMIN')                 

            err3,unit_pmax = psspy.macdat(bus,wid,'PMAX') 
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            err4,unit_pgen = psspy.macdat(bus,wid,'P') 

            err5,unit_qmin = psspy.macdat(bus,wid,'QMIN')                 

            err6,unit_qmax = psspy.macdat(bus,wid,'QMAX') 

            err7,unit_qgen = psspy.macdat(bus,wid,'Q') 

            if unit_pmax < unit_pgen: 

                noMachineVios_P = False                                

                machineVios_P[0].append(bus) 

                machineVios_P[1].append(wid) 

                machineVios_P[2].append(unit_pgen-unit_pmax) 

            if unit_pmin > unit_pgen: 

                noMachineVios_P = False                                

                machineVios_P[0].append(bus) 

                machineVios_P[1].append(wid) 

                machineVios_P[2].append(unit_pgen-unit_pmin) 

            if unit_qmax < unit_qgen: 

                noMachineVios_Q = False                                

                machineVios_Q[0].append(bus) 

                machineVios_Q[1].append(wid) 

                machineVios_Q[2].append(unit_qgen-unit_qmax) 

            if unit_qmin > unit_qgen: 

                noMachineVios_Q = False                                

                machineVios_Q[0].append(bus) 

                machineVios_Q[1].append(wid) 

                machineVios_Q[2].append(unit_qgen-unit_qmax) 

#---------------------------------------------------------------- 

            ### creating excel results  

from win32com.client import Dispatch 

excel = Dispatch("Excel.Application") 

workbook = 

excel.Workbooks.Open(r'C:\Users\azimianb\Desktop\5_BUS_EXAMPLE_PS

SE\Results') 
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map(lambda book: book.Close(False), excel.Workbooks) 

excel.Quit() 

 

P_data = pd.DataFrame({'Bus number':machineVios_P[0][:],'Generator 

ID':machineVios_P[1][:],'Delta_P,+: upper limit passed, -: lower 

limit passed':machineVios_P[2][:]}) 

Q_data = pd.DataFrame({'Bus number':machineVios_Q[0][:],'Generator 

ID':machineVios_Q[1][:],'Delta_Q,+: upper limit passed, -: lower 

limit passed':machineVios_Q[2][:]}) 

writer = pd.ExcelWriter("Results.xlsx",engine = 'xlsxwriter') 

P_data.to_excel(writer, sheet_name='P', startrow=1, header=False) 

Q_data.to_excel(writer, sheet_name='Q', startrow=1, header=False) 

# Get the xlsxwriter workbook and worksheet objects. 

workbook  = writer.book 

# Add a header format for excel file report 

header_format = workbook.add_format({ 

    'bold': True, 

    'text_wrap': True, 

    'valign': 'top', 

    'align': 'center', 

    'fg_color': '#D7E4BC', 

    'border': 1}) 

# Write the column headers with the defined format. 

data_list = [P_data, Q_data] 

data_list1 = ['P', 'Q'] 

# Adjusting column headers length 

for i,j in zip(data_list,data_list1): 

    worksheet = writer.sheets[j] 

    if len(i)!= 0:     # for the case when there is no violation 

otherwise it causes a kernel restating problem 

        for col_num, value in enumerate(i.columns.values): 
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            worksheet.write(0, col_num + 1, value, header_format) 

        for k, col in enumerate(i.columns): 

        # find length of column i 

            column_len = i[col].astype(str).str.len().max() 

        # Setting the length if the column header is larger 

        # than the max column value length 

            column_len = max(column_len, len(col)) + 2 

        # set the column length 

            worksheet.set_column(k+1, k+1, 

column_len,header_format) 

    else: 

        c = 2 

        i = pd.DataFrame({'no violation': ['No '+j+' violation']}) 

        i.to_excel(writer, sheet_name=j, startrow=1, header=False) 

writer.save() 

file = 

r'C:\Users\azimianb\Desktop\5_BUS_EXAMPLE_PSSE\Results.xlsx' 

os.startfile(file) 

 

For the five (5) bus case, the power output of each generator is between its 

maximum (Pmax) and minimum (Pmin) capacity. In order to see the applicability of the code, 

the load at bus 150 is scaled up. After running power flow, it can be seen that generators at 

swing bus have to go above their limits to meet the loads. This will result in limit violation 

which is reported in excel format as shown below. 
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Figure III. 4. Snapshot of excel file output for violation report 

The results above indicate that each of the three generators at bus 100 have to go 

above their active limit by about 4 MW and go below their reactive limit by 5.4 MVAr. 

The results are verified directly by PSSE GUI report shown in Fig. III. 5. 

 

Figure III. 5. PSS/E power flow results for scaled up load at bus 150 

C. Conclusion 

To have a reliable electric grid, power systems have to be modeled accurately to 

ensure reliability. Data collection is the first step on this path. The system modeling group 

in NYISO is responsible for collecting data from Transmission Owners (TOs) and 

Generator Owners (GOs). After the data is pre-screened, they are imported to PSS/E 

software for different studies. To automate the screening and checking process, the PSS/E-

python module needs to be used. 
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It is highly recommended to teach both PSS/E and Python to students in renewable 

energy program at Alfred University as these two softwares are widely used by NYISO 

and it could be a piece of valuable knowledge for their future career life. 
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IV. SUMMARY AND CONCLUSIONS 

This study focuses on the investigation of microgrids with energy storages. Two 

types of energy storage approaches were presented. First the BEVs can be used in V2G 

mode to send power back to the grid during fault condition or peak demand. Second, the 

spent batteries from BEVs can be used as ESS to store the extra energy of renewables 

during high wind and solar radiation.  

The impact of renewable penetration and energy storage systems was studied in 

two time horizons. First day ahead approach was considered and planning and energy 

management practices were presented considering the uncertainty of renewables and BEV 

owners’ driving behavior.  

It was seen that, by implementing demand response program which runs based on 

stackelberg theory it is possible to reduce energy generation cost by almost 20%. In 

addition, the V2G feature of BEVs could help the grid operator to smooth the daily load 

profile. Reduced demand, during peak hours will have many advantageous such as 

alleviating the need for new conventional power plants [69].  

Regarding the required number of BEVs or spent batteries, the grid operator could 

expect to utilize the capacity of 85 BEVs or 100 spent batteries in order to form an island 

with a microgird which accommodates 2 MW wind, 2 MW solar and 400 kW biomass 

generation. By doubling the wind and solar capacity (i.e. 4 MW each) the required number 

of BEVs and spent batteries decreases by 30 and 25 respectively. 

After the day ahead approach, the real-time operation of the microgrid was 

simulated in OPAL-RT. Dynamic response of different components such as ESS and 

induction motor was presented before, during, and post fault condition.  

In the process of day ahead planning of BEVs and renewable energies in microgrid 

it was seen that there is a correlation between renewable energy and BEVs expansion 

planning. 

For the studied microgrid, if renewable energy capacity is expanded by twofold, 

the purchase demand for BEVs will increase by threefold. Consequently, more BEVs could 

help the grid operators to increase the flexibility and resiliency of the power system. 
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V. FUTURE WORK 

In the application of Stackelberg game theory for demand response program 

renewable energy units was not included. The next step in order to improve the model 

could be adding random models of wind and solar in the game theory structure [70]. 

In day ahead planning and energy management of microgrids with BEVs section, 

minimum number of BEVs and spent batteries were found separately to confront the 

uncertainties imposed by renewables. Cost/benefit optimization analysis can be carried out 

to find the optimum number of BEVs and spent batteries together. 

In the area of real time simulation average model of inverter was used for 

renewables units in MATLAB/Simulink. It is suggested to implement detailed model of 

inverter in OPAL-RT. However, high frequency switching puts a huge computing load on 

the processor which may cause some problems for real time operation. 
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