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Abstract

The goal of this thesis is to demonstrate the relationship between

mathematics and art. To do so, I have explored the work of two artists,

M.C. Escher and Sol LeWitt. Though these artists approached the role

of mathematics in their art in different ways, I have observed that each

has employed mathematical concepts in order to create their rule-based

artworks. The mathematical ideas which serve as the backbone of this

thesis are illustrated by the artists’ works and strengthen the bond be-

tween the two subjects of art and math. My intention is to make these

concepts accessible to all readers, regardless of their mathematical or artis-

tic background, so that they may in turn gain a deeper understanding of

the relationship between mathematics and art. To do so, we begin with a

philosophical discussion of art and mathematics. Next, we will dissect and

analyze various pieces of work by Sol LeWitt and M.C. Escher. As part

of that process, we will also redesign or re-imagine some artistic pieces to

further highlight mathematical concepts at play within the work of these

artists.

1 Introduction

What is art? The Merriam-Webster dictionary provides one definition of art

as being “the conscious use of skill and creative imagination especially in the

production of aesthetic object” ([1]). However, art is not able to be defined

in such a convenient way. Noël Carroll introduces Theories of Art Today by

stating that a definition of art is nearly impossible [2]. Carroll points to several

philosophers who have attempted to create a definition of art by focusing on the

few relevant conditions of art and similarities between works already categorized

as art and works under consideration of being called “art”. However, these

philosophers are unable to reach a consensus of what art truly is. Morris Weitz,
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having attempted the task of creating a working definition of art in 1956, wrote

that “the very expansive, adventurous character of art, its ever-present changes

and novel creations make it logically impossible to ensure any set of defining

properties” ([2], pp. 6).

I believe that the task of defining mathematics falls under the same level

of difficulty as the task of defining art. The Merriam-Webster dictionary gives

mathematics the technical definition of being “the science of numbers and their

operations, interrelations, combinations, generalizations, and abstractions and

of space configurations and their structure, measurement, transformations, and

generalizations” ([3]). However, much like art, mathematics can not truly or

easily be defined due to the fact that it, too, has a “very expansive, adventur-

ous character” with “ever-present changes and novel creations” which “make

it logically impossible to ensure any set of defining properties” ([2], pp. 6).

Mathematics, like art, consists of a vast amount of topics which are constantly

evolving through the discoveries of new connections and completed theorems.

Creating a definition in which every single one of these topics may fit is a near

impossible task.

It is interesting to note that the various definitions provided in [2] draw

parallels to mathematics through the way in which these definitions are con-

structed. Consider the following definition of a work of art, provided by Marcia

Muelder Eaton: “x is a work of art if and only if

1. x is an artifact and

2. x is treated in aesthetically relevant ways; that is, x is treated in such a

way that someone who is fluent in a culture is led to direct attention to

intrinsic properties of x considered worthy of attention (perception and/or

reflection) within that culture and

3. when someone has an aesthetic experience of x, he or she realizes that the
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cause of the experience is an intrinsic property of x considered worthy of

attention within the culture” ([2], pp. 146).

This use of “if and only if” acts as an equality, meaning that if the first part of

the statement is true, then the second part follows and if the second part of the

statement is true, then the first part follows. Mathematically, these statements

are called biconditional statements, since both parts of the “if and only if”

statement must be true in order for the entire claim to be true. A mathematical

example of a biconditional statement is “n is an even integer if and only if n2 is

an even integer”. In order for a mathematician to prove that this statement is

true, they would need to show that “if n is an even integer, then n2 is an even

integer” and “if n2 is an even integer, then n is an even integer.” Thus, Eaton’s

definition of a work of art has mathematical and logical ties in the sense that it

is a biconditional statement and thus, both sides of the statement must be true

in order for a piece to be called a work of art.

Another definition of art presented in [2] is Arthur C. Danto’s definition that

a work of art (1) is always about something, thus having content and meaning

and (2) contains something which embodies that meaning ([2], pp. 132). Danto

goes on to state his response to the question “What about a painting about

nothing?” saying that he “would want to know if it had geometrical forms,

nongeometrical forms, whether it was monochrome or striped or what – from this

information it is a simple matter to imagine what the appropriate art criticism

would be, and to elicit the kind of meaning the work could have” ([2], pp. 132 -

133). Here Danto shows that he would think about pieces mathematically, even

before being able to classify them as art using his definition. By considering

the geometrical forms or nongeometrical forms present in a work of art, Danto

applies a mathematical lens to his viewing of these works, just as I will do

throughout my discussion of the works of M.C. Escher and Sol LeWitt. Another

4



interesting point to come out of Danto’s definition of art is the question he

raises regarding art about nothing. Can works of art truly be about nothing?

Certainly not, as all art has been created with some sort of purpose by the artist.

Though a work may appear to be meaningless to some viewers, at its core, each

piece was built with purpose and at the very least utilizes the basics of the art

form it is considered to fall under. A similar phenomenon occurs in mathematics.

Though some may consider certain topics of math to be about nothing, all of

mathematics are built on axioms at a base level. Thus, these mathematical

concepts come from somewhere, showing that their creation was full of intent

and purpose, just as the “paintings about nothing” which Danto considers.

Therefore, this definition of art provided by Danto has ties to mathematics.

Robert Stecker echoes Noël Carroll’s belief that a definition of art is nearly

impossible. Stecker’s argument branches from the inductive argument, stating

that an inclusive definition of art is not possible because “this attempt to define

art has failed, that attempt has failed, . . ., so the next attempt will probably fail”

([2], pp. 54). Though a fairly pessimistic view, Stecker’s use of induction here is

used frequently in mathematics in order to prove that a statement is true for all

values n = k+1 based on the fact that the statement is true for a starting number

n = k0 up to some n = k. However, unlike mathematical proofs of induction,

Stecker’s use of induction in his definition is flawed. In order to correctly utilize

induction, the k+ 1 case would need to be proved, instead of solely allowing the

assumption that “the next attempt will probably fail.” Because Stecker does

not provide this proof, his definition of art gives hope for a better, inclusive

definition after all. Thus, we are once again provided with a definition of art

related to mathematics. As stated, this definition also appears to come closer

to an inclusive definition of art, at the very least bringing hope that such a

definition may be accomplished. Perhaps considering the relationship between
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mathematics and art provides the key to completing convenient and inclusive

definitions of the two subjects.

The relationship between mathematics and art runs deeper than the simi-

larities in the attempted creation or discovery of their definitions. However, a

more in depth relationship between the two subjects is commonly thought to

be nonexistent, perhaps due to the different functions of the brain. Most people

seem to be aware of the theory that the right side of the brain, which controls

the left side of the body, is the more artistic and creative side of the brain.

The right side of the brain controls functions such as creativity, art and music

awareness, emotions, and imagination. Alternatively, the left side of the brain

controls the right side of the body as well as the linguistic and logical functions

of the brain. The left side includes functions such as analytic thought, logic,

language, math and science, and reasoning ([4], pp. 8 - 10). Because the capa-

bilities of art and math may be physically split into two different hemispheres

of the brain, it follows that many people may believe these two subjects to have

no correlation with one another.

In my own experience, mathematics also tends to be viewed negatively.

When I tell others about my mathematical background, the response tends

to either be “Ew, I hate math” accompanied by an eye roll, or high praise be-

cause “Good for you. I could never do that. I’m terrible at math!” The arts, on

the other hand, receive high praise, as people are drawn to the aesthetics and

beauty of great works. In [5], Michele Emmer quotes François Le Lionnais to

identify the idea that “In mathematics there exists a beauty which must not be

confused with the possible influence of mathematics on the beauty of the works

of art. The aesthetics of mathematics must be clearly distinguished from the

applications of mathematics to aesthetics . . . beauty shows itself in mathematics

just as it shows itself in the other sciences, in the arts, in life and in nature” ([5],
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pp. 353). Though there are many artists who utilize the beauty of mathematics

in their work, the focus of this thesis is to discuss the mathematical concepts

used by both Maurits Cornelis (M.C.) Escher and Sol LeWitt in their respective

rule-based artwork. It is important to note that while Escher and LeWitt both

utilized mathematical concepts throughout their works, they approached these

concepts in different ways. Though lacking a formal mathematical education,

Escher embraced mathematics and overcame his ignorance of the subject by

communicating with mathematicians and other scientists. Meanwhile, LeWitt

denied any relationship between mathematics and his art, despite the incredibly

structured methods with which he created his works.

Born in the Netherlands in 1898, M.C. Escher was a graphic artist who

contributed brilliant images of complex concepts to the field of mathematics.

Though not a gifted student, Escher embraced the rules and ideas of math-

ematical concepts in his work, and even communicated with mathematicians

and scientists about the accuracy of his pieces. In fact, many of these academics

went on to use Escher’s art in their own work to illustrate the concepts he was so

clearly and beautifully communicating. Reflecting on this phenomenon, Escher

once stated,

“I never got a pass mark in math. The funny thing is I seem to

latch on to mathematical theories without realizing what is hap-

pening. No indeed, I was a pretty poor pupil at school. And just

imagine - mathematicians now use my prints to illustrate their

books. Fancy me consorting with all these learned folk, unaware

of the fact that I’m ignorant about the whole thing” ([6], pp. 46).

Today, Escher continues to be well known throughout the mathematics commu-
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nity, embraced for his thorough work in exploring tessellations of the plane and

hyperbolic geometry. In following the rules of these concepts, Escher has been

able to create structured works which stand the test of time.

Unlike Escher, Sol LeWitt viewed his art work as having nothing to do with

mathematics whatsoever. Born in 1928, LeWitt was an American artist who

contributed greatly to the branch of conceptual art. Despite creating written

instructions to construct his structured pieces, LeWitt stated that “Conceptual

art doesn’t really have much to do with mathematics . . . The mathematics used

by most artists is simple arithmetic or simple number systems” ([7], pp. 848).

However, I believe that LeWitt’s work is more related to mathematics than

he thought. LeWitt provided written instructions for each of his works, which

teams of people followed in order to construct wall drawings comprised of lines

and shapes, all aligned in LeWitt’s specific way. This is similar to the way in

which mathematicians work with proofs, following logical methods to construct

their own proofs as well as using proofs written by others to better understand

complex problems. LeWitt’s work with both straight and not straight lines

goes further than “simple arithmetic or simple number systems,” and some of

his pieces may be considered to be tessellations of the plane or geometrical

constructions. LeWitt’s work with color is methodical, as is his work to create

his written instructions and masterpieces.

Throughout this thesis, I will provide background on mathematical concepts

which I will then supplement with examples from the artists’ collection of works.

Using my own mathematical insight, I will provide definitions of the concepts

I will be using in order to show that Escher and LeWitt individually applied

these same concepts to their art. The more complex ideas presented will further

be supplemented with illustrations to fully explain the mathematics within the

pieces. I will also address the ways in which each artist used rules to create their
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structured work, with Escher applying the rules of the mathematical concepts

and LeWitt creating written instructions for the creation of his pieces. By

implementing these steps, I will show that both M.C. Escher and Sol LeWitt

used mathematical concepts to create their rule-based art. Subsequently, I will

be able to show how mathematics and art are more closely connected than they

may appear to be.
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2 More than Visual: Mathematical Concepts

Within the Artwork of LeWitt and Escher

M. C. Escher (1898 – 1972) was a Dutch graphic artist who greatly contributed

to the mathematical world through his many works of art. Though not a success-

ful student during his school days, Escher was able to create brilliant woodcuts,

engravings, mezzotints and lithographs which explored amazing mathematical

concepts such as plane tiling and hyperbolic tessellations. Inspired by the Al-

hambra castle in Granada, Spain, Escher also focused much of his work on

symmetry and greatly studied the principle of the division of the plane. Es-

cher’s frequent communications with mathematicians and scientists introduced

him to the mathematical concepts found in his work, and inspired him to ex-

plore these concepts further. Berend, Escher’s brother, recommended Hungar-

ian mathematician George Pòlya’s 1924 article on the seventeen plane groups of

plane symmetry, thus inspiring Escher’s work with repetitive patterns. Cana-

dian mathematician H.S.M Coxeter introduced Escher to the idea of hyperbolic

tessellations, leading to the artist’s series of circle limit work [8].

While M.C. Escher embraced the relationship between mathematics and his

artwork, Sol LeWitt believed his art was entirely unrelated to mathematics,

stating that “Conceptual art doesn’t really have much to do with mathematics

. . . The mathematics used by most artists is simple arithmetic or simple number

systems” ([7], pp. 848). LeWitt (1928 – 2007) was an American conceptual artist

who contributed to the movement of conceptual art and provided the definition

that “In conceptual art the idea or concept is the most important aspect of

the work . . . all of the planning and decisions are made beforehand and the

execution is a perfunctory affair. The idea becomes a machine that makes

art” ([7], pp. 846). However, based on this definition, it would appear that
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conceptual art does, in fact, have strong ties to mathematics. Just as LeWitt

refers to ideas as being the machine which makes art, the theorems used by a

mathematician act as a machine that makes math. Before providing a written

proof, mathematicians must decide which course of action to take throughout

the process. They must then plan how they will execute the proof, which often

involves several sketches to guide them through the process, allow them to wrap

their heads around the issue at hand, and ensure they will not hit any dead

ends. In both mathematics and conceptual art, the journey to the output is

more important than the solution or art piece itself. One can know the answer

to a mathematical problem, however it is more important to understand the

theory behind the solution and to be able to know what steps are being taken

to reach that answer. In LeWitt’s work, the process of creating the piece is more

important than the drawing itself, supported by the fact that LeWitt provides

written instructions for each wall drawing, which are then executed and put into

spaces by his assistants and other groups of volunteers. LeWitt further pointed

out the importance of the journey in an interview, stating “I think that any

part of the art process, from the inception of the idea in the artist’s mind to

the inception of the idea in the viewer’s mind, all parts are important” ([9], pp.

118).

In embracing the connection between mathematics and art, M.C. Escher

used mathematical concepts to create his rule-based artwork. Exploring the

concepts freely allowed Escher to learn and fully understand the rules behind

them. He was able to create his plane tilings by following the rules outlined by

tessellations. Though his work with circle limits is aesthetically pleasing and

creative, it is important to note that throughout each piece in this series, Es-

cher is adhering to the rules of hyperbolic geometry. The fact that he discussed

these concepts, as well as his art, with mathematicians and scientists further
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supports the idea that Escher wished to stay true to the laws of mathematics at

play in his artwork. Though Sol LeWitt felt differently about the relationship

between mathematics and his work, he too utilized mathematical concepts and

created rule-based artwork. Because he did not explore mathematical concepts

in the same way as Escher, LeWitt’s rules come primarily from his own specific

written instructions for each of his pieces. Teams of people must then follow

these instructions exactly in order to create the vision LeWitt had. This idea

of completing a process through an exact order is very mathematical in and of

itself. Consider a fairly simple example which most people are familiar with-

subtracting two real numbers from one another. Suppose you have the equation

37− 21 = 16

Note that if you were to reverse the order of the numbers and instead subtract

37 from 21, you would have the new equation

21− 37 = −16

It is clear that these are not the same equations, since −16 6= 16. Thus, this is

a basic example of the importance of order in mathematics, which echoes the

importance of order in LeWitt’s instructions. We will argue that mathematical

concepts do, in fact, appear in LeWitt’s work, and these concepts are more

complex than the “simple arithmetic or simple number systems” which he takes

into account. Therefore, both Sol LeWitt and M. C. Escher used mathematical

concepts to create their rule-based art.

The basic knowledge of geometrical concepts stems from Euclidean geometry.

As the most basic geometry, we are very familiar with Euclidean geometry,

though it is worth noting that there are other types of geometries as well. Often

12



taught in high school courses, Euclidean geometry is based on Euclid’s axioms.

As stated in [10], these axioms are:

1. A (unique) straight line may be drawn from any point to any other point.

2. Every limited straight line can be extended indefinitely to a (unique)

straight line.

3. A circle may be drawn with any center and any distance.

4. All right angles are equal.

5. If a straight line intersecting two straight lines makes the interior angles

on the same side less than two right angles, then the two lines (if extended

indefinitely) will meet on that side on which the angles are less than two

right angles.

It should be noted that Euclid’s fifth postulate is also known as the parallel

postulate, which is how it will be referred to here. Unless otherwise noted, the

geometrical concepts discussed will be subjects of Euclidean geometry.

A tessellation is defined to be “the tiling of a plane using one or more geo-

metric shapes, called tiles, with no overlaps and no gaps” [11]. Four geometric

transformations are crucial to creating tessellations, namely reflection, trans-

lation, rotation, and glide reflection. These transformations are also known

to mathematicians as isometries, since they preserve both distances and angle

measures ([10], pp. 15). Defined mathematically,

“A reflection through the line l is an isometry Rl such that it fixes

only these points that lie on l and, for each point P not on l, l is the

perpendicular bisector of the geodesic segment joining P to Rl(P )

. . . A rotation about P through the directed angle θ is an isometry
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Sθ that leaves the point P fixed and is such that, for every Q 6= P ,

Sθ(Q) is on the same circle with center P that Q is on, and the

angle ∠QPSθ(Q) is congruent to θ and in the same direction . . .

A translation of distance d along the line l is an isometry Td that

takes each point on l to a point on l at the distance (along l) of d

and takes each point not on l to another point on the same side of

l and at the same distance from l . . . A glide reflection of distance

d along the line l is an isometry Gd that takes each point on l to a

point on l at the distance (along l) of d and takes each point not on

l to another point on the other side of l and at the same distance

from l.” ([10], pp. 144 – 146).

Note that two plane figures are said to be congruent “if, through a combination

of translations, rotations, and reflections, one of them can be made to coincide

with the other” ([10], pp. 80). A visual representation of these geometric trans-

formations can be seen in figure 1 below.
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(a) Reflection across the
dotted line of point P
along line l, such that P ′

is the reflection of point
P

(b) Rotation of
point P about
angle θ

(c) Translation of point
P along line l.

(d) Glide reflection. Note the translation of F to
F’ in the direction of the arrow, followed by a
reflection of F’ to F” across the dotted line. See
(a) and (c) for a closer view of the two parts of
this transformation.

Figure 1: Geometric transformations, illustrated.

How do these geometric transformations allow us to tessellate the plane?

To understand this process, we will consider the work of mathematical artist

M. C. Escher, who is especially recognized for his work with tessellations. His

recognizable patterns of lizards, birds, and fish appear throughout numerous

works in which he explores tiling the plane. It is important to note that despite

the intricacies and details of Escher’s tessellations, each shape has been formed

out of a basic geometric polygon. Defined mathematically, a polygon is a closed

space made up of n vertices (where n > 2), such that the entire shape contains

n edges and n angles. A polygon is considered to be regular if all angles and
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sides are congruent to one another ([10]). Consider, for example, Escher’s work

Lizard, created in 1942 (figure 2a). Figure 2b shows a close up image of one of

the lizards used to tessellate the plane.

(a) M.C. Escher, Lizard, 1942. India ink,
gold ink, colored pencil, poster paint. [12]

(b) Individual lizard tessellation
piece

Figure 2: Exploration of Escher’s Lizard.

Note that the lizard in figure 2b can be shown to have been derived from

a geometric polygon, specifically a hexagon. This individual lizard tile may be

created through three rotation transformations performed on a regular hexagon.

The process is illustrated in figure 3 and outlined in the following steps ([13]):

1. Begin by labeling three non-adjacent vertices of the hexagon as 1, 2, and

3 (red, green, and blue, respectively).

2. Choose one of these points, and alter the side adjacent to it (in this case,

altering one side adjacent to vertex 1 to form the first leg of the lizard).

Note that it is possible to begin this process with any of the vertices labeled

in step 1, as the outcome will result in the same lizard shaped piece.
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3. Rotate this altered side about the vertex point, such that it reaches the

other adjacent side.

4. Repeat for the other two vertices.

It should be stated that if two figures are adjacent, they are next to each

other. Specifically, we will use the term adjacent to refer to figures which share a

segment of a side. Thus, two figures are not adjacent if they only share a vertex.

Figure 3: Illustration of creating M.C. Escher’s lizard tessellation piece through
the rotation transformation ([13]).

The use of geometric transformations to tessellate the plane goes further

than creating the tessellation piece itself. In Lizard (figure 2a), Escher uses ro-

tation to tessellate the plane with his lizard tiles. Consider a point where the left

leg of six lizards meet (figure 4). By rotating the individual lizard tile around

this point in a counterclockwise direction, Escher is able to obtain the pattern

of six lizards via rotation. It should be noted that while this group of six lizards
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is obtained from the counterclockwise rotation of the individual lizard tile, the

tessellation of the entire plane is obtained by rotating the group of six lizards

in a clockwise direction about the point where lizard tails of the same color meet.

Figure 4: Illustration of six lizards, from Escher’s Lizard, ([12]).

How can we be sure that Lizard will result in a complete tessellation of the

plane? Geometers know that the only regular polygons which can completely

tile a plane are equilateral triangles, squares, and regular hexagons. Recall

that for these polygons to be considered regular, they must have congruent

side lengths and angles. Other shapes may be able to tile the plane in pairs

or groups, however the three polygons mentioned above are the only shapes to

create a tessellation on their own (figure 5). Thus, it makes sense that Escher

was able to tessellate the plane in Lizard, since this piece was constructed by

manipulating regular hexagons.
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Figure 5: Equilateral triangles, squares and regular hexagons make up regular
tessellations. [14]

The process described above of tessellating the plane through rotations is

just one way to use geometric transformations to form a tessellation. Following

a similar process, one may use reflection, translation, or glide reflection to ob-

tain a tessellation of the plane. Consider Escher’s Pegasus (No. 105) in figure

6a. Notice that in this print, Escher uses a series of translations to complete

the tiling. Though figure 6b only illustrates the translation of the Pegasus tile

along the direction of the y-axis, it should be noted that this translation also

occurs along the direction of the x-axis of the plane. The more complex method

of using glide reflection to complete a tiling of the plane can be seen in Escher’s

Swan (No. 96) (figure 7a). A breakdown of the exact process of completing the

glide reflection transformation is outlined in figure 7b. By applying the laws of

rotation, reflection, translation, or glide reflection, Escher is able to create his

various plane tessellation pieces. Had Escher broken the rules governing the use

of these transformations, it is likely he would not have achieved such nice plane

tessellations, or otherwise may have been unable to tessellate the plane at all.
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(a) M.C. Escher, Pegasus (No. 105), 1959.
India ink, pencil, watercolor. [15].

(b) Closeup image of
Escher’s Pegasus
(No. 105)

Figure 6: Exploration of the translation transformation used to tessellate Es-
cher’s Pegasus (No. 105)
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(a) M.C. Escher, Swan (No. 96), 1955.
Ink, watercolor. [16].

(b) Broken down steps of glide reflection used to tessellate Escher’s
Swan (No. 96). The details of these steps are as follows: (i)
Illustrates the final product of the transformation, as appears in the
tessellation; (ii) The glide step- S is moved along the line to S’ ; (iii)
the reflection step- S’ is reflected over the dotted line to S” (Note
that S is shown in this step as a reference point).

Figure 7: Exploration of the glide reflection transformation used to tessellate
Escher’s Swan (No. 96)

Sol LeWitt also used tessellations in his art, though his basic geometric

shaped pieces are not nearly as intricate as Escher’s lizards or swans. Consider

LeWitt’s Complex Forms (figure 8). This work fits into our definition of tessel-

lation, since it is made up of one or more geometric shapes which fill the plane
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without gaps or overlaps. Other works by LeWitt may also be considered as

tessellations, provided the viewer is able to extend what they see as a polygon.

Recall from before that a polygon is a closed space having n vertices, n edges,

and n angles. Consider pieces in which LeWitt covers the plane in bands, for ex-

ample in Wall Drawing 419 (figure 10). Though one may see lines when viewing

this piece, the instructions call for the construction of bands, suggesting that the

piece is made up of two-dimensional quadrilateral shapes (and some five sided

shapes, as in the case of some of the diagonally drawn bands) as opposed to

one-dimensional lines (figure 9). Thus, the bands used to create Wall Drawing

419 are polygons, and so with this perspective, the viewer may see that LeWitt

is again creating a tessellation of the plane. It is also important to note that

the tessellation we are considering in this example is only a snapshot of the

plane, since the bands used in Wall Drawing 419 are truly of infinite length.

This is critical to take into account because if one were to consider the bands

to be of finite length, then a full tessellation would not be accomplished due

to the fact that the plane is infinite. This complicated discussion regarding the

bands of Wall Drawing 419 demonstrates that there are more than just “simple

arithmetic and simple number systems” involved in LeWitt’s work.
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Figure 8: Sol LeWitt, Complex Forms, 1990. Color etching. Artnet. [17]

Figure 9: Left to right: Example of two-dimensional quadrilateral band, example
of two-dimensional five sided band, example of one-dimensional line. Note that
both bands are used in LeWitt’s Wall Drawing 419. The five sided band is
drawn from a top corner to bottom corner of each division in the bottom half
of the drawing.
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Figure 10: Sol LeWitt, Wall Drawing 419, 1984. Color ink wash. Massachusetts
Museum of Contemporary Art. [18]

Recall how Escher used a regular hexagon to create his lizard tile used to

tessellate the plane in Lizard. LeWitt, too, used geometric polygons to derive

some of the more complicated geometric forms found in his wall drawings. Con-

sider Wall Drawing 386 (figure 11). In order to achieve the shape of each star

featured in this piece, “a regular polygon is inscribed in a circle. The number of

sides the polygon has determines the number of points the star will have. The

regularity of the original polygon ensures that the star’s points will be evenly

spaced. In short, these apparently complex forms are iterations of the basic

visual and geometric vocabulary to which LeWitt has committed” ([19]). An

example of this process is illustrated in figure 12. Notice that the creation of the

star with three points is an exception to this process. The method outlined in

figure 12 creates the outline of the full star shape by connecting every individual

vertex to all of its non adjacent vertices. Recall that two vertices are considered

to be non adjacent if they do not share an edge. However, this cannot work

with an equilateral triangle, since each vertex is adjacent to the remaining two.
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Thus, a different method must be followed in order for the three pointed star

to be constructed. This exception is outlined in figure 14.

Figure 11: Sol LeWitt, Wall Drawing 386, 1983. India ink wash. Massachusetts
Museum of Contemporary Art. [20]
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(a) Regular hexagon
inscribed in a circle.

(b) The six points of the
hexagon will become the
six points of the star.
Due to the regularity of
the hexagon, these points
are evenly spaced.

(c) A line is drawn from
each vertex to all of its
non adjacent vertices.
This provides the outline
of the full star shape.

(d) Full six pointed star
inscribed in the hexagon
within the circle.

(e) Six pointed star as
appears in Sol LeWitt’s
wall Drawing 386.

Figure 12: Illustration of creating the six pointed star from LeWitt’s Wall
Drawing 386. With the exception of the three pointed star, all of the other
stars in Wall Drawing 386 are created using this method.
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(a) Equilateral triangle
inscribed in a circle.

(b) By bisecting each
angle, a line is drawn
from the vertex to
opposite side in order to
find the intersection
point (also the center
point), which has been
labeled point D.

(a) This image removes
the lines extended past
D, such that each
segment is only drawn
from a vertex point of
the triangle to the center
point D.

(b) By removing the
bottom triangle (4ADB
in (c)) and coloring the
remaining two triangles,
we obtain the three
pointed star illustrated in
LeWitt’s Wall Drawing
386.

Figure 14: Illustration of creating the three pointed star from LeWitt’s Wall
Drawing 386. Note that the creation of this star is an exception to the creation
of all other stars found in the image.

Pause for a moment to consider the four pointed star in Wall Drawing 386,

which is derived from a square. Note that the creation of this star presents
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another exception to the process outlined in figure 12. Though we are able to

draw lines from each vertex to all non adjacent vertices (as outlined in figure

12(c)), these lines do not provide the outline of the full star shape as they do

for the six pointed star. Instead, the outline produced for the four pointed star

must be thickened in order to achieve the star produced by LeWitt in Wall

Drawing 386. Take some time to consider and explore how this may be done in

order to achieve the final product.

Mathematicians know the difficulties of constructing a regular heptagon

(seven sided polygon). This difficulty is due to the fact that each interior angle

of a heptagon must measure 900
7 degrees, which cannot be constructed using a

compass and straightedge. (A similar difficulty occurs in the construction of

the nine sided regular polygon, which requires the construction of a 20◦ angle,

an impossible task to complete using a straightedge and compass alone.) In

order to create the regular heptagon necessary for Wall Drawing 386, an intern

who studies math was brought in to formulate a new construction method. The

same draftsman talks about his interest in LeWitt’s work as being related to

his interest in pure math:

the same sort of abstract beauty that inspires mathematicians also

inspires Sol’s work. For instance, the idea of laying out your pa-

rameters and exhausting all the possible combinations, and then

making so explicit your process, is something that I just find so in-

spiring and beautiful in the same way that I find pure math ([19]).

This intern’s reflection, along with the geometrical method used by LeWitt to

construct the stars of Wall Drawing 386, demonstrates once again the close

ties Sol LeWitt’s work has to mathematics. The geometrical constructions of
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each star in Wall Drawing 386 proves that LeWitt’s piece applies mathemat-

ical concepts more complex than the ‘simple arithmetic or number systems’

which LeWitt claimed were at work. The connection the intern makes between

LeWitt’s art and pure mathematics further solidifies my belief of a deeper con-

nection between the two subjects. Wall Drawing 386 is a perfect example of

how Sol LeWitt utilizes the beauty of mathematics in his artwork, since he re-

quires the use of complex geometric constructions in order to create the various,

aesthetically pleasing stars of the piece.

Figure 15: Sol LeWitt’s written instructions for Wall Drawing 422. See figure
16 for the corresponding artwork.

Apart from the pieces themselves, there are mathematics at work within

Sol LeWitt’s written instructions. Each list of instructions begins by dividing

the wall into various parts, as in figure 15 which begins “The room (or wall) is

divided vertically into fifteen parts.” Even the colors used in each wall drawing

(if the drawing uses colors and is not in black and white) are outlined in the

instructions through a type of mathematical recipe. For example, the coloring

of Wall Drawing 422 is described to be “All one-, two-, three-, and four-part

combinations of four colors, using color ink washes” (figure 15). Mathemati-

cally, this idea of combinations is denoted by the binomial coefficient,
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(
n
k

)
=


n!

k!(n−k)! when k ≤ n

0 when k > n

Note that
(
n
k

)
is read as “n choose k”, meaning that out of n possibilities, k are

chosen. It should also be noted that n! is read as “n factorial” and refers to the

multiplication of successive factors. For example, 3! = (3)(2)(1) = 6. It is also

important to know that 0! = 1. By applying the binomial coefficient, we are

also ensuring that each partition of the wall will be colored using a unique color

combination, with no repetitions of combinations. Thus, the one-part combina-

tions may be expressed as
(
4
1

)
, where of the four colors we are using one of them

to color a division of the wall. In other words, the first four divisions of the wall

are gray, yellow, red, and blue, respectively. The “two-, three-, and four-part

combinations” of these four colors refers to the specific layers of color used on

each of the remaining eleven partitions of the wall. Thus, the two-part combi-

nations refers to all possible combinations of two different colors (i.e.,
(
4
2

)
), the

three-part combinations refers to all possible combinations of three different col-

ors (i.e.,
(
4
3

)
), and the four-part combinations refers to all possible combinations

of four different colors (i.e.,
(
4
4

)
). Further, expressing each of the combinations

mathematically in this way allows us to calculate how many divisions of the

wall are colored using n-part combinations. Then,

(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 4!

1!(4−1)! + 4!
2!(4−2)! + 4!

3!(4−3)! + 4!
4!(4−4)!

= 4!
1!(3)! + 4!

2!(2)! + 4!
3!(1)! + 4!

4!(0)!

= (4)(3)(2)(1)
(1)(3)(2)(1) + (4)(3)(2)(1)

(2)(1)(2)(1) + (4)(3)(2)(1)
(3)(2)(1)(1) + (4)(3)(2)(1)

(4)(3)(2)(1)(1)

= 4 + 6 + 4 + 1

= 15

This means that the first four partitions of the wall are colored with one-part
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combinations, the next six partitions are colored with two-part combinations,

three-part combinations color the following four partitions and finally the last

partition of the wall is colored by the four-part combination. Thus, the color-

ing combinations of the entire wall in order are: gray, yellow, red, blue, gray-

yellow, gray-red, gray-blue, yellow-red, yellow-blue, red-blue, gray-yellow-red,

gray-yellow-blue, gray-red-blue, yellow-red-blue and gray-red-yellow-blue. The

fact that the coloring of each division of the wall comes explicitly from LeWitt’s

written instructions is evidence that there are mathematical concepts at work

besides the “simple arithmetic” mentioned by the artist. Though the artist does

not state and explain the use of the binomial coefficient as outlined above, math-

ematicians see that this is an intuitive way to come up with the coloring of each

partition of the piece. It should also be noted that the colors could be applied

in any order (for example, the three-part combinations could make up the first

four divisions of the wall instead of coming after the two-part combinations),

however the combinations still come from the binomial coefficient and still de-

termine the number of partitions colored in which combination. For example,(
4
2

)
= 6, thus there are always six partitions colored using a two-part combina-

tion, regardless of which six partitions are used. Therefore, this wall drawing

is constructed clearly just by the seemingly simple, yet mathematical, instruc-

tions provided (figure 16). Further, the mathematics required by both LeWitt,

to determine the total number of divisions needed for Wall Drawing 422, and

the draftsmen, to ensure that all color combinations are achieved, reestablishes

LeWitt’s comments regarding the importance of the process of creating art.
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Figure 16: Sol LeWitt, Wall Drawing 422, 1984. Color ink wash. Massachusetts
Museum of Contemporary Art. [21].

The discussion regarding Sol LeWitt’s Wall Drawing 422 shows that color

follows a specific method in the works of these artists, a method which fits into

our mathematical discussion. LeWitt’s Wall Drawing 422 can be mathemati-

cally dissected using the binomial coefficient to understand the coloring of each

division of the wall. A more in depth discussion on color further supports the

idea that this aesthetic feature has deep ties to mathematics.

First proven by Kenneth Appel and Wolfgang Haken in 1976, the Four Color

Theorem states that given any separation of a plane into regions, where each

region shares a common border with another, no more than four colors are

required to color the regions of the plane in such a way that no two adjacent

regions have the same color ([22]). Recall that we say two regions are adjacent

if they share a segment. Refer back to Escher’s Lizard (figure 2a). Notice

how in this plane tessellation, three colors- red, black, and white- are used for

all lizards. Further, no lizard is adjacent to another of the same color, since

lizards which share only a vertex are non adjacent, according to our definition.

For example, red colored lizards only share full segments with black or white

colored lizards. Therefore Escher appears to utilize the Four Color Theorem

in this work. It should be noted that Escher appears to apply the Four Color

Theorem to most of his works, as may be seen in Pegasus (No. 105) (figure
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6a) and Swan (No. 96) (figure 7a). We will discuss Escher’s use of color again

shortly in our discussion of Circle Limit III (figure 20).

Sol LeWitt uses four colors- notably red, yellow, blue, and gray- again and

again to color his pieces. LeWitt’s repeated use of primary colors is in and of

itself an interesting concept. However, LeWitt does not appear to explicitly

use the Four Color Theorem, since his works tend not to minimize the number

of colors required to color a piece, as the theorem is meant to do. Consider

LeWitt’s Wall Drawing 1112 (figure 17). While LeWitt uses six colors in this

wall drawing, no adjacent region has the same color. Perhaps the artist had

some version of the theorem in mind when creating this work, or at least ap-

pears to have been aware of the ability to color adjacent regions differently with

six colors. Either way, as we know from the Four Color Theorem, only four

colors are required in order to create this same effect. Since LeWitt’s instruc-

tions do not explicitly state how many colors must be used for this piece (or

even what colors must be used), it is possible to recreate Wall Drawing 1112

in such a way that it adheres to the Four Color Theorem. Figure 18 shows a

re-imagined version of this wall drawing, which I created through an exploration

of the Four Color Theorem, using only the colors green, blue, purple, and yellow.
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Figure 17: Sol LeWitt, Wall Drawing 1112, 2003. Acrylic paint. Massachusetts
Museum of Contemporary Art. [23].

Figure 18: Re-imagined version of LeWitt’s Wall Drawing 1112 which illustrates
the Four Color Theorem.

During the exploration of a convenient definition of mathematics, we noted

that mathematics as an expansive and ever-growing character. In the spirit of

considering this concept, recall that Euclidean geometry is not the only geom-

etry. Mathematicians Janos Bolyai and N.I. Lobachevsky founded a branch of

geometry separate from Euclidean geometry, called hyperbolic geometry. Over
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time, other mathematicians contributed greatly to the concepts of hyperbolic

geometry, in both constructing various models and exploring the properties of

this geometry. Today, we know hyperbolic geometry to be a geometry which

satisfies all postulates of Euclidean geometry except for the parallel postulate.

Instead, hyperbolic geometry embraces the concept that there exists more than

one straight line through a point in a plane which does not intersect a given

line in the plane. In hyperbolic geometry, straight lines also have the property

that they may move toward each other without intersecting ([10], pp. 59). In

this way, hyperbolic geometry is asymptotic. The French mathematician, Henri

Poincaré, greatly contributed to hyperbolic geometry, most notably by providing

his Poincaré disk model (figure 19). H.S.M. Coxeter, a Canadian mathemati-

cian, used Poincaré’s ideas and figures in his writings, which in turn inspired

M.C. Escher to create related artwork. In a letter to Coxeter, Escher explains

his interest in these ideas by commenting that he is “interested in patterns with

‘motives’ getting smaller and smaller till they reach the limit of infinite small-

ness” ([6], pp. 47). This inspiration led Escher to complete his work with circle

limits, most notably his piece Circle Limit III (figure 20). One can see the

relation between the Poincaré disk model and Escher’s Circle Limit III in the

following discussion.
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Figure 19: A visual representation of the Poincaré disk model. Because this
model uses Euclidean objects to represent hyperbolic geometry, the lines drawn
appear to be curved, though they are actually straight in terms of hyperbolic
geometry. [24]

Figure 20: M.C. Escher, Circle Limit III, 1959. Prints and multiples, woodcut.
Escher Museum. [25]

Upon inspection, there are aspects of hyperbolic geometry at work in Circle

Limit III. Firstly, the pattern of this image is based on the Poincaré disk model of

hyperbolic geometry (figure 19). This model uses Euclidean objects to represent

objects in hyperbolic geometry ([26], pp. 452). Further, all points in hyperbolic
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geometry are contained within the interior of the disk, which Escher found to

be especially appealing because “an infinitely repeating pattern could be shown

in a bounded area and shapes remained recognizable even for small copies of

the motif” ([26], pp. 452). It is therefore essential to note that in hyperbolic

geometry, distances correspond to ever smaller Euclidean distances toward the

edge of the disk. Thus, in the hyperbolic geometry of Circle Limit III, each fish

in the image is the same size, though they appear to get smaller and smaller

in Escher’s geometric representation. Escher also utilizes the equidistant curves

of hyperbolic geometry, defined to be “curves at a constant hyperbolic distance

from the hyperbolic line with the same endpoints on the bounding circle” ([26],

pp. 452). Notice these equidistant curves, drawn in white, in figure 20. Escher’s

use of color in this piece also helps to clearly illustrate these equidistant curves.

Notice that fish of the same color not only follow along the same equidistant

curve, but follow along the curve in the same direction. Thus, Escher has once

again followed the rules of mathematics to create a work of art.

In order to create his pieces tessellating the plane, Escher needed to take into

account not only the physical geometric transformations he was using but also

the way in which he was allowed to use and create them. As illustrated in figure

3, Escher needed to utilize rotations in a specific way in order to create a lizard

piece which could then be used to properly tessellate the plane. This would

not be achieved simply by constructing a lizard shape at will and hoping for

it to be symmetrical on corresponding sides in order to create the tessellation.

Rather, it was necessary for Escher to abide by the rules of tessellations (and

subsequently the rules of symmetry and geometric transformations) in order to

create these pieces. He would also need to abide by the general rules of Euclidean

geometry so that he would even be able to apply the rules of tessellations in

the first place. It is also clear that Escher was aware of the mathematical rules
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he must follow due to his communications with mathematicians and scientists,

as well as his studies into their ideas. Similarly, before beginning to create his

circle limit prints, Escher needed to be able to follow the laws governing the

hyperbolic geometry of these works. He utilized the same rules of tessellations

as with his plane tilings in order to tessellate the Poincaré disk model as seen

in figure 20. Following the equidistant curves of hyperbolic geometry as well as

illustrating the scaling which occurs as a figure moves toward the edge of the

disk enabled Escher to create this mesmerizing image while also enabling him to

provide a deeper exploration into hyperbolic geometry. In fact, Escher’s work

allowed mathematicians to illustrate complex mathematical concepts which they

otherwise could only imagine. Thus, it is clear that M.C. Escher’s artwork is

rule-based, due to his necessity to follow the mathematical rules governing his

work.

On the other hand, Sol LeWitt created his rule-based artwork by literally

creating the rules of each piece. By providing written instructions for each wall

drawing, LeWitt was able to lead the groups of people working to construct

these pieces in an exact method to create the final product. This is much like

the process mathematicians go through when completing a written proof, as they

must work from axioms, the rules of logic, and mathematical rules established

by others in order to understand the concepts and properly construct their own

argument. The instructions themselves are very structured and mathematical,

as they consist of precise terms identifying what color combinations to use or

exactly what types of lines should be created. Examples of LeWitt’s written

instructions are seen in figure 21.
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(a) Sol LeWitt’s written
instructions for Wall Drawing
340. Corresponding artwork
presented in 21b

(b) Sol LeWitt, Wall Drawing 340, 1980.
Red, yellow, blue crayon on red, yellow
and blue wall. Massachusetts Museum of
Contemporary Art. [27].

(c) Sol LeWitt’s written instructions for
Wall Drawing 419. See figure 10 for the
corresponding artwork.

Figure 21: Examples of the written instructions Sol LeWitt provided in order
to create his wall drawings. Taken from the Massachusetts Museum of Contem-
porary Art.

Although Sol LeWitt’s written instructions provide the main basis for his

rule-based artwork, the artist adheres to the mathematical rules at play in his

pieces as well. Like Escher, Sol LeWitt considers the rules of geometric trans-

formations and symmetry in his pieces which include tessellations. Though not

as structured as Escher’s tessellations, for example Lizard (figure 2a), LeWitt’s

use of polygons to tile the plane without gaps or overlaps adheres to the basic

definition of tessellation, though his initial intended purpose may not have been

to tessellate the plane. It is interesting that Sol LeWitt has stated his belief of
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the disconnection between conceptual art and mathematics, because it appears

to be clear that the artist adheres to the basic rules of Euclidean geometry in

his works, just as M.C. Escher. Therefore, Sol LeWitt’s work does not only fol-

low his own written instructions, but also follows the rules of the mathematical

concepts at work.

In fact, I would argue that the execution of LeWitt’s instructions is also

driven by the rules of mathematics. This claim comes from my experimentation

in following LeWitt’s instructions to create different versions of the same pieces.

Consider the instructions for Wall Drawing 419 (figure 21c). The instructions

for this work specifically dictate which color is to be found in which quadrant

of the wall drawing. However, the types of bands used in the drawing are not

identified in the same explicit way. Rather, the only instruction provided re-

garding the creation of the bands is that “each quarter has alternating parallel

6-inch (15 cm) bands of white and color ink bands” (figure 21c). This does

not indicate which directions the bands should be drawn or in which specific

quadrant of the piece these bands should appear. A sketch of a re-imagined

version of Wall Drawing 419 can be seen in figure 22.

Figure 22: Sketch of re-imagined version of Wall Drawing 419.

Note that this re-imagined image adheres to LeWitt’s written instructions of

the piece, since the coloring and band lengths are as they were meant to be. In
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fact, the directions of the lines in this re-imagined version use the same four di-

rections as the lines in the original Wall Drawing 419. This re-imagined sketch

simply mixes up the quadrants the lines are found in. Figure 23 illustrates a

more drastic re-imagination of Wall Drawing 419, which uses different angles

than those used in the original in order to create all of the bands. It is worth

mentioning that due to LeWitt’s lack of specification regarding the direction of

lines in Wall Drawing 419, figures 22 and 23 are only two ways variations of the

wall drawing. To that regard, there are an infinite number of versions of Wall

Drawing 419, since there are infinite directions possible for the lines found in

the artwork. The wide variety of possibilities of Wall Drawing 419 speaks to

LeWitt’s statement that “the idea becomes a machine that makes art” ([7]). In

this specific case, the idea refers to LeWitt’s Wall Drawing 419 instructions,

which act as the machine to create each and every one of the variations this

work can take on. Though the outcomes are all different, they come from the

same machine and all follow the same instructions set by LeWitt. Once again,

this relates back to mathematics. We discussed earlier how the bands used to

create Wall Drawing 419 are of infinite length. Thus, each part of the piece

created from LeWitt’s instructions for Wall Drawing 419 comes from a tessel-

lation of the plane by infinite bands. Therefore, each of the variations of Wall

Drawing 419 are mathematically related, and overall LeWitt’s instructions may

be captured mathematically. Though there may be one specific way to write a

proof, as with the one specific version of Sol LeWitt’s written instructions, the

idea of the proof may spark different trains of thought with each person who

reads it, creating various outcomes stemming from the same initial instructions.
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Figure 23: A more drastic sketch of re-imagined version of Wall Drawing 419.

Despite M.C. Escher’s lack of formal mathematical education and Sol Le-

Witt’s determination that conceptual art is completely unrelated to mathemat-

ics, there are many mathematical concepts at work within both artists’ cre-

ations. Escher’s fascination with tiling the plane led to his series on “Regular

Divisions of the Plane”, all of which adhere to the rules of tessellations and the

geometric transformations involved. LeWitt, too, utilizes the rules of tessella-

tions in some of his works, in which he divides the space into sections and uses

bands to fill them without overlap or gaps. Escher’s communications with other

mathematicians and scientists allowed him to create pieces which magnificently

illustrated the ideas of hyperbolic geometry - concepts which mathematicians

themselves struggled to illustrate. LeWitt’s main work with bands and geo-

metric shapes is interesting in both an aesthetic and mathematical sense. Both

Sol LeWitt and M.C. Escher have the ability to apply the Four Color Theorem

to their pieces, and LeWitt gives further interest to his techniques of coloring

by demonstrating mathematical knowledge to achieve the color combinations

used to color each division of the wall in his instructions for Wall Drawing 422.

While Escher’s work is fully dictated by the rules of mathematics, LeWitt’s in-

structions provide the specific rules to create each piece. Though these rules do

not explicitly outline the steps of the mathematical concepts at work, upon in-

spection it is clear that there are complex mathematical techniques used by the
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draftsmen to create each geometric shape or color combination used in LeWitt’s

work. Thus, though creating art during different time periods and maintaining

different views regarding mathematics, both M.C. Escher and Sol LeWitt use

mathematical concepts in order to create their rule-based artworks.
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