
HAND HELD DATA ACQUISITION DEVICE

FOR SOLAR PV VI CHARACTERISTICS UNDER FLASHING LIGHT

BY

STEVEN GRUSPIER

A THESIS
SUBMITTED TO THE FACULTY OF

ALFRED UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

ALFRED, NEW YORK

SEPTEMBER, 2015

Alfred University theses are copyright protected and
may be used for education or personal research only.
Reproduction or distribution in part or whole is
prohibited without written permission from the author.

Signature page may be viewed at Scholes Library,
New York State College of Ceramics, Alfred University,
Alfred, New York.

HAND HELD DATA ACQUISITION DEVICE

FOR SOLAR PV VI CHARACTERISTICS UNDER FLASHING LIGHT

BY

STEVEN GRUSPIER

B.S. ALFRED STATE COLLEGE (2012)

SIGNATURE OF AUTHOR______________________________________

APPROVED BY
XINGWU WANG, ADVISOR

WALLACE LEIGH, ADVISORY COMMITTEE

JOSEPH ROSICZKOWSKI, ADVISORY COMMITTEE

CHAIR, ORAL THESIS DEFENSE

ACCEPTED BY
DOREEN D. EDWARDS, DEAN

KAZUO INAMORI SCHOOL OF ENGINEERING

ACKNOWLEDGEMENTS

I would like to thank my Advisor, Dr. Xingwu Wang, for his constant support, assistance,

advice, and encouragement throughout the process of completing this thesis.

I also would like to thank Dr. Leigh for his assistance and support.

Thanks to other faculty/staff and other students, including Rosalie DiRaimondo, Dr.

Jianxin Tang, John Gallipeau, and Janelle Gallipeau.

Another special thanks to my friends and family for their encouragement through the

entire process.

ii

TABLE OF CONTENTS

Page
Acknowledgments ….. iii
Table of Contents ….. iv
List of Tables …... vi
List of Figures ….. vii
Abstract …... x

I INTRODUCTION ….. 1
A. Hand Held Data Acquisition Device Criteria …... 3
B. Solar Panels ….. 4
C. Microcontroller …... 5
D. Oscilloscope …... 6
F. Solar simulator... 7

II FIRST DESIGN OF ACQUISITION DEVICE …... 8
A. Determining Time Constraints ... 8
B. Controlling The Solar Simulator .. 9
C. Choosing a Load Resistor ..11
D. Main Circuit Design ... 12

III SOFTWARE ….....................................…......................................…................ 13
A. AD9850 Programming …... 13
B. Analog Data ….. 14
C. Serial Programming ….. 15
D. Main Acquisition Program …...….. 15
E. Receiving Serial Data …... 18

IV PRELIMINARY EXPERIMENTATION .. 21
A. Different Intensities ….. 21
B. Amplitude and Offset …... 22
C. Different Waveforms ….. 24
D. Different Frequencies …... 27
E. Different Resistor …... ..30
F. Shielding …………………………………………………………………32

V PROBLEMS ENCOUNTERED & POSSIBLE SOLUTIONS …………...…33
A. Load Resistor …………………………………………………………….33
B. Shielding …………………………………………………………………34
C. Choosing a Transistor ……………………………………………………34
D. Simultaneous Data Acquisition ………………………………………….34
E. Fast Acquisition Code …………………………………………………...37

VI FINAL DESIGN, TESTING, & VERIFICATION ... 39
A. Signal Generator .. 39
B. Batteries …... 41
C. Analog Inputs …...… 42

iii

D. Microcontroller …...….. 42
E. Electrical Circuitry …..…... 43
F. Packaging …...….44
G. Final Testing ……………………………………………………………..45

VII RESULTS AND DISCUSSION …... 48
VIII CONCLUSION …... 50
IX FUTURE WORK …... 51
REFERENCES …... 52
APPENDIX A Solar Simulator Flashing Equipment ….. 54
APPENDIX B Oscilloscope DSO1002A Program …... 57
APPENDIX C Oscilloscope Capturing for Solar Simulator .. 60
APPENDIX D Arduino Program Code (Master)... 63
APPENDIX E Arduino Program Code (Slave)... 69
APPENDIX F Python Program Code …..73
APPENDIX G Analog to Digital Converter (Atmega328p)... 75
.

iv

LIST OF TABLES

Table 1. Input/Output Table……………………………………………………………….5

v

LIST OF FIGURES

Figure 1. Schematic for solar panel acquisition circuit...….2

Figure 2. Extrapolation of an ideal solar cell……………………………………………...3

Figure 3. SX-30U solar panel datasheet..4

Figure 4. Voltage output from 30 watt panel...6

Figure 5. Solar simulator hardware trigger..8

Figure 6. Solar simulator software trigger...…..10

Figure 7. Flowchart for hand held program...17

Figure 8. Flowchart for python serial transfer program................................….................19

Figure 9. Voltage response at 2.5 Vp and 1.25 VDC offset...…..22

Figure 10. Voltage response at 3.0 Vp and 1.50 VDC offset...23

Figure 11. Voltage response at 3.5 Vp and 1.75 VDC offset...23

Figure 12. Voltage response at 4.0 Vp and 2.00 VDC offset...24

Figure 13. Voltage response for a sinusoidal waveform..25

Figure 14. Voltage response for a square waveform..25

Figure 15. Voltage response for a triangular waveform (50% symmetry).........................26

Figure 16. Voltage response for a triangular waveform (100% symmetry).......................26

Figure 17. Voltage output with 1 kHz signal...27

Figure 18. Voltage output with 900 Hz signal...28

Figure 19. Voltage output with 800 Hz signal...28

Figure 20. Voltage output with 700 Hz signal...29

Figure 21. Voltage output with 600 Hz signal...29

vi

Figure 22. Voltage output with 500 Hz signal...30

Figure 23. Voltage output using an IRF530N Transistor...30

Figure 24. Voltage output using an TIP31 Transistor...31

Figure 25. Voltage output using an BS170 Transistor..31

Figure 26. Voltage without a metal enclosure..32

Figure 27. Voltage with a metal enclosure...32

Figure 28. Voltage output with a 2.5 ohm and 1.0 ohm load...33

Figure 29. Schematic using Arduino master-slave config...35

Figure 30. Flowchart for Arduino master-slave config..36

Figure 31. Schematic for signal amplification circuit..40

Figure 32. Completed amplification circuit...41

Figure 33. Final prototype before packaging...45

Figure 34. Data captured from hand held device...46

Figure 35. Voltage output from multisim 11 simulation..46

Figure 36. IV Curve from generated from hand held device...47

Figure 37. Elinchrom Digital 2400RX Power Pack...54

Figure 38. Settings for Elinchrom Digital 2400 RX Power Pack......................................54

Figure 39. Solar Simulator Light Source using Xenon Arc Lamp.....................................55

Figure 40. Overhead view of collimation of light rays..56

Figure 41. Agilent IntuiLink Software Scope Selection..58

Figure 42. Agilent IntuiLink Software Connecting to Oscilloscope.................................59

Figure 43. Agilent 1002A Oscilloscope Representation from Manual..............................60

Figure 44. Agilent 33210A Function Generator Representation from Manual.................62

vii

Figure 45. Analog to Digital Converter (Atmega328p)...75

viii

ABSTRACT

A device was developed that is specifically designed to acquire data from a solar

panel within this short time frame with the use of a microcontroller. The microcontroller

was used to make a portable device that could capture and transfer this data to a computer

for further analysis. Circuitry was developed to connect between a solar panel and a fixed

load resistance. The voltage across the load resistor, and other internal components would

be captured by two microcontrollers to simultaneously acquire data. This data could be

then used to illustrate the IV curve of a solar panel connected to this apparatus. Two

prototype designs were created for acquisition. The first being larger scale, using an

oscilloscope and function generator. The second design eliminated the need for these

larger pieces of equipment by replacing them with microcontrollers, and a direct digital

synthesizer (DDS) respectively. Experiments were performed on two solar panels under

the ideal solar radiation of 1000 w / m2, using different input signals. One prototype using

two different oscilloscopes, and one hand held prototype were designed and compared.

The results proved favorable as the three experiments gathered similar data to the solar

panel manufacturers data.

ix

INTRODUCTION

Hand held devices have recently, become very popular for acquiring data for

analysis of electrical systems. For solar photovoltaic applications, devices have been

designed and created, but have not yet seen wide adoption at the installation level. Due to

the growing concerns of faulty solar panels, it is vital that each panel is well tested to

prevent the installation of such a panel into a solar array. The New York Times suggests

that the solar industry is facing a quality crisis and that this is a more urgent matter than

most realize. It was reported that a solar panels located on the rooftop of a warehouse in

the Inland Empire region east of Los Angeles failed two years into the expected 25 year

life span. Coatings that were designed to protect the solar panels had disintegrated in

addition to other defects, which caused a fire that took the system offline. The article

further explains “There are no industrywide figures about defective solar panels.”, and

furthermore “...when defects are discovered, confidentiality agreements often keep the

manufacturer’s identity secret, making accountability in the industry all the more

difficult”.1

The data acquisition device is intended to be used for a flash based solar simulator

due to the ability to effectively acquire data within a window of time two milliseconds

long. The process between capturing the data, and exporting the data to a computer takes

less than 5 seconds. As a result of this characteristic, a hand held acquisition device is

created that can acquire data instantaneously could potentially eliminate the installation

of faulty panels by indicating significant deviations from a standard solar panel

manufacturer specification during the installation process by allowing installers to

acquire data within a few seconds.

 Existing solutions use a method of capturing IV Curve data that relies on varying

the resistance while taking a voltage and current reading at each resistance, from a high

impedance to a negligible resistance, to create an IV curve. This method is very easy, but

for a flash based solar simulator, is too slow because the resistance can not be

instantaneously varied between a low resistance for determining the short-circuit current

(Isc) and a high resistance to determine the open-circuit voltage (Voc) while capturing

voltage and current data. The method used in this device involves a simplified version of

1

this method, using a resistor in series with a transistor connected to a solar panel. A

sinusoidal waveform is used to vary the voltage applied to the gate of the transistor. A

voltage probe 1 is connected to the positive lead of the solar panel, and voltage probe 2 is

connected to the drain of the transistor. Figure 1 illustrates the basic circuitry for the

device. As the solar simulator flashes, the energy produced by the solar panel (in this

case, a 30 Watt panel with an open-circuit voltage of 21 Volts) would be applied to the 2.5

ohm load. This particular load resistor configuration was chosen due to the low resistance

and power dissipation characteristics. In figure 1, note the node labeled 1 and the node

labeled 2. For future reference node 1 will be referred to as vdrain and node 2 as vsolar.

When the voltage applied to the gate of the transistor is zero, the voltage at volar and

vdrain are equivalent to the open-circuit voltage. As the voltage applied to the gate is

increased, the voltage difference between the vsolar and vdrain increases. This difference

in voltage divided by the resistance in the circuit allows us to find the current through the

circuit. Using the voltage across the resistor and the current through the circuit, an IV-

Curve could be produced.

Figure 1. Schematic for basic solar panel acquisition circuit.

2

The most significant draw back to this method is the inability to reach the short-circuit

current. To remedy this problem, the data at that point will be found by extrapolating the

data up to that point. Figure 2 illustrates the method of how extrapolation will work.

Figure 2. IV Curve with extrapolation performed.

A. Hand Held Data Acquisition Device Criteria

The hand held data acquisition device created in this project needed to meet

specific requirements:

 The device should be fast enough to acquire data from a flash based solar

simulator

 The device should be easy to use

 The hardware should be portable

 The circuitry should be battery powered to allow for mobility

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IV Curve for an ideal solar cell

Captured Data

Extrapolated Data

Current (A)

Vo
lta

g
e

 (
V

)

B. Solar Panels

The SolarexTM SX-30U solar panel was used in this study. To determine if results

were accurate, it was imperative that similar panels could be used, and create similar

results. The characteristics of the SolarexTM SX-30U solar panel is listed in Figure 3.

Figure 3. SX-30U solar panel datasheet2.

These values provided an approximate way to determine if the captured values from the

acquisition device are accurate. These solar panels were used because the power

produced from the 30 watt solar panels were significantly lower than other available solar

panels in the lab. To test the data acquisition device, it was safer to use solar panels that

had a lower chance of damaging components, equipment, and most importantly, injuring

individuals working on this project.

4

C. Microcontroller

A microcontroller is a microprocessor on an integrated circuit, which consists of a

CPU, memory, and a combination of inputs and outputs. For the hand held device, the

Atmega328P microcontroller is the main component used to control, and acquire data

from the solar simulator. The Atmega 328P has 14 digital I/O pins that can be used as

well as 6 analog input pins. For this project only 2 analog inputs are needed for data

acquisition.3 Only 2 digital pins are absolutely needed; one to activate the solar simulator,

and another indicate the status of the acquisition device. More digital pins were used to

indicate non-essential steps of the acquisition process to make it easier for the user. The

inputs and outputs are shown in Table 1. The clock speed of the Arduino Uno is also a

consideration since the device must be fast enough to capture a reasonable amount of data

to create an IV curve. The microcontroller features a 16 MHz ceramic resonator, which

allows the device to operate at the maximum frequency specified by the Atmega 328P

datasheet.3

Table 1. Input/Output Table

Name Type Description

Vdrain Analog Input
Acquires voltage across the IRF530N
transistor's drain

Vsolar Analog Input Acquires voltage across the solar panel

Push Button Digital Input Starts acquisition process

LED
Indicator

Digital Output
Allows a user to see when the solar
simulator is ready to be triggered again

Solar
Simulator

Digital Output
Used for triggering the solar simulator using
the sync port on the Elinchrom Power Pack

LED Power Digital Output Allows a user to see if the device is on

Between the different microcontrollers that were available, it was determined that

the simplest device to use would be the Arduino Uno. The Atmega238P microcontroller

5

was chosen based on criteria including its low power design, availability of analog ports

in addition to digital IO ports, and ease of programming. The simplicity of the Integrated

Development Environment (IDE) used for writing code for the Microcontroller was a

significant factor. Any Arduino microcontroller sold uses the Arduino IDE for writing

code. The Arduino IDE is very mature after years of development. Not only is the

software for writing code simple to use, but the included libraries make it easy to

program by simplifying the uses of the inputs and outputs by using functions. These

functions automate processes such as reading inputs or changing the state of an output

making writing code easier, by allowing a programmer to focus on the end goal rather

than creating functions for themselves to use later. The Arduino IDE is compatible with C

and C++ for writing code.

D. Oscilloscope

To test the basic theory of data acquisition, an oscilloscope was used. Two

different oscilloscopes were compared against one another to determine which one could

acquire the most data points. The AgilentTM DSO1002A oscilloscope and the Agilent

DSO3062A oscilloscope were compared to determine which one could produce the best

results for testing the method of acquisition. These oscilloscopes share similar qualities in

that they both have a 60 MHz bandwidth have a sampling rate of 1 GSa/s per channel.

The DSO1002A was used due to portability and because it seemed to perform better

overall during testing. For a brief period, Test Equity LLC allowed for one demo unit of

their DSO3024A oscilloscope to be used for testing with the solar simulator. The

DSO3024A oscilloscope featured a 200 MHz bandwidth with a sample rate of 4GSa/s per

channel. Both oscilloscopes have a 8-bit digitizer, which divides a 10 Vpp input range

into 28 = 256 levels of 39 mV each. The dynamic range is 49.93 dB for both

oscilloscopes as well.

6

E. Solar Simulator

The solar simulator purchased by Alfred University, was custom built by

SciencetechTM Inc. This simulator uses flash based technology to control the source of

light. This type of solar simulator has the drawback of having a short span of time that

can be used to acquire data. This short time span of time, where the solar simulator light

source is triggered, has the added advantage of minimizing the heating effects of the light

source, because the solar simulator is active for less than a second. Most acquisition

systems use load varying methods as described in the previous section. These systems are

too slow in the case of flash based technology, meaning that using this different

acquisition method would be beneficial for this application.

7

FIRST DESIGN OF ACQUISITION DEVICE

The purpose of the first prototype of the data acquisition device was to test the

acquisition method and determine any factors that needed to be taken into consideration

before creating a hand held prototype. This particular design used the Agilent DSO1002A

to acquire the voltage data, and the Agilent 33210A Function Generator to vary the

voltage in the circuit.

A. Determining Time Constraints

To begin the design of the hand held data acquisition device, it was important to

first understand the voltage transients. Since the voltage signal from the solar panel

would only appear for a short amount of time without repeating, the data needed to be

recorded by the DSO1002A for analysis. The voltage data was recorded successfully, and

yielded the results shown in Figure 4 when the solar simulator was set to an f-stop rating

of 90.

Figure 4. Voltage output from 30 watt solar panel using solar simulator.

8

0

5

10

15

20

25

Voltage Response from Solarex Panel A (11/15/13)

Time (Seconds)

Vo
lta

g
e

 (
Vo

lts
)

By by close observation it was determined that the voltage remained constant for

approximately two milliseconds. This meant that all of the data that needed to be captured

could only be acquired during these two milliseconds. Another interesting observation is

that the voltage curve has two time-constants. One time constant from 0 milliseconds to

11 milliseconds, and from 11 milliseconds to 37 milliseconds. Most likely due to the

effects of the light flashing for only a short amount of time, and the capacitance of the

solar panel.

B. Controlling The Solar Simulator

Between performing experiments with the solar simulator and communicating

with the manufacturer it was determined that the solar simulator should only be triggered

after waiting a minimum of 11 seconds after the solar simulator had previously been

triggered. The reasoning behind this is that the Elinchrom Digital RX 2400 power pack

system contains capacitors that need 11 seconds to charge to a usable voltage before

application to the Xenon Arc Lamp. This would prevent possible damage to the

equipment.5

To safeguard against premature triggering the solar simulator, a circuit was

designed based on an RS flip flop circuit in combination with a 555 timer circuit. The

circuit based on basic components was designed and then tested in Multisim as seen in

Figure 5. The equation τ = 1.1 RC was used to determine the time delay for the circuit.4

In this case, R is noted as R7 and C is noted as C1, within the Multisim circuit design.

From this it was determined that using a 100 kΩ resistor and 100 μF capacitor would

result in a 11 second delay after triggering the solar simulator before it could be triggered

again.

After using this trigger circuit for several weeks and consulting SciencetechTM

Inc., it was determined that for more stable results, a longer delay was needed for the

voltage within the capacitors to stabilize and reach a steady state because even though the

power pack was charged to usable voltage, this voltage was not completely stable, which

produced errors during the acquisition process.6

9

Figure 5. Schematic controlling the solar simulator using basic components.

Due to the static nature of basic circuit components combined with difficulties of finding

specific components, a circuit based on the Arduino Uno microcontroller was created

instead to replace this circuit. The configuration was simplified significantly as seen in

Figure 6. Since time values could easily be altered through software changes rather than

hardware changes, this was considered the best approach. After several tests, it was

determined that a time delay of 30 seconds yielded consistent results.

10

Figure 6. Schematic for Arduino controlled for simplified solar simulator triggering.

C. Choosing a Load Resistor

An IV-Curve begins at the open-circuit voltage and ends at the short-circuit

current. To approach the short-circuit current in a typical load varying circuit, the

resistance within the circuit starts using a high resistance, and decreases to a point of

negligible resistance. Since the method used in this thesis relies on a constant resistance

and a varying voltage, the resistance needed to be small, but big enough to measure a

voltage difference across the resistor. Another consideration were the voltages and

currents that were going to be introduced to this circuit. To make a decision on the

maximum power rating of the resistor, the solar panels in the solar simulator lab were

used. The biggest solar panel within the solar simulator lab has a maximum power rating

of 220 Watts. For added safety, it was determined that using a resistor with a minimum

power rating of 300 Watts would be sufficient. After determining this minimum

requirement, two Ohmite 5Ω resistors with a power rating of 1 kW were used for use in

the solar simulator experimentation. To reduce the resistance, the two resistors were used

in parallel to make a total resistance of 2.5 ohms. This configuration is acceptable to use

since it is a low resistance, and the resistors used exceed the maximum power ratings

11

more than three times the determined minimum power rating.

D. Main Circuit Design

To vary the load, the Agilent 33210A Function Generator was used to vary the

gate voltage while the solar simulator was triggered by the Arduino Uno, and the data

was acquired by the Agilent DSO1002A Oscilloscope. To acquire the data, the

oscilloscope needed to be configured to detect a rising edge, and record when a certain

voltage threshold was reached. In this case, a 1 Volt trigger point was used since the solar

panel voltage would quickly reach 21 volts when the solar simulator was triggered due to

the flash. The 1 volt trigger point would also eliminate possible electrical interference

prematurely triggering the oscilloscope. Due to the lack of light within the solar simulator

operating area because of thick curtains in place to prevent external interference from

objects and light sources in addition to safety concerns regarding the flash emitted from

the Xenon Arc Lamp, the solar panel voltage is zero. The Function Generator needed to

be set with specific settings to allow for the transistor to remain within the active region

and cut-off regions to acquire useful data.

12

SOFTWARE

The final design of the hand held device involved much more thought than the

first prototype. The final prototype features hardware that must either send or receive

signals using the Arduino Uno. Multiple indicator LEDs were used to indicate the status

of the data acquisition device, as well as the state of the device (on or off). A push button

was used to activate the device. These hardware components, among other parts, needed

to be managed by the Arduino Uno microcontroller.

A. AD9850 Programming

The AD9850 circuit board was purchased from Ebay.com, and solved many

prototyping problems with soldering such a small component, and the added benefit of

having many people who had previously made open source libraries to easily use with

this specific chip. In this case, the developer of the libraries used for this project, Radio

Artisan made freely available libraries for using the AD9850 Chip with an Arduino

microcontroller. The libraries are able to be downloaded through the sourceforge website

using the web address: “http://sourceforge.net/projects/k3ngarduinaddds/files/”.

To use the AD9850 library, the dds.h and dds.cpp files need to be moved to the

proper location to be recognized as usable library files. For windows, the proper location

is: My Documents\Arduino\libraries\. For Linux the proper location is /home/

[username]/Sketchbook/. The AD9850 library files need to be moved into this location,

then placed in a new folder, which in this case, was named “dds” to match the name used.

After loading the libraries through the Arduino software, the libraries could be used by

simply adding an include in the header of the data acquisition code.

The functions for configuring the AD9850 are straight forward and simple. First,

the function dds ddschip is used to pass information including, the type of AD98XX

series chip being used, the pins being used for data, load, and clock functions, and the

frequency of the crystal used for the device. In this case, the complete function used was

13

dds ddschip(DDS9850, 8, 6, 7, 120000000LL); The digital IO pin numbers 8, 6, and 7

were used because these were used in the programming example made by the developer

of the library. Due to different pins having dual functionality such as pulse width

modulation (PWM) in addition to being a normal digital IO, it was thought best to keep

this pin configuration the same. The second function used, ddschip.calibrate(-.0418)

adjusted the frequency to be exact. Due to differences in manufacturing, the crystals used

may be slightly different. This difference leads to the output frequency of the AD9850 to

be slightly off. To calibrate this, the Agilent DSO1002A oscilloscope was used to find the

exact frequency before any calibration was made. The raw frequency of the AD9850 was

1.0017090 kHz. After trial and error, the calibration value was found to be -.0418, which

allowed the AD9850 chip to achieve the exact frequency desired. The final function used

in the code is ddschip.setfrequency(1000LL). This function was used in the code to turn

on and off the AD9850 by setting the frequency (in Hertz) between 0 (off) and a non-zero

frequency (on), in this case 1000.8

B. Analog Data

When the device is turned on, all of the digital ports used for the AD9850 circuit

board are set to either send of receive voltage signals, but the analog ports had the special

function of receiving voltage signals from the main solar simulator acquisition circuit. To

capture the voltage readings, arrays were used to store the data in memory. This method

allowed for the voltages for each analog input to be gathered separately, and temporarily

stored.

At this point, the data has been collected, but the data is only useful if it can be

viewed, which is not the case if all of the data is stored on the Arduino. To solve this

problem, serial communication though the built in USB port on the Arduino Uno was

used. By using the built in USB connector, the Arduino Uno was able to be recognized by

any operating system.

14

C. Serial Programming

The benefit of using an Arduino microcontroller, in the programming aspect, is

that many functions of the Arduino are simplified into libraries. These libraries and the

functions contained within are very well documented, and remove a lot of the hassle of

using normal C or C++ code. In the case of serial communication, a readily available

library for sending data could be used. Using the serial.println function, all of the analog

data was pushed through the USB connection. To configure the serial connection, the

command serial.begin(9600); is used. The purpose of this command is to set the baud

rate of the serial connection. It is important to have the same baud rate setting on the

sending and receiving ends, otherwise the connection will either be unsuccessful, or have

unexpected results.

D. Main Acquisition Program

The functioning of the acquisition program is very straight forward. When power

is applied to the circuit, the ports are configured, the AD9850 is configured, the status

LED is turned on, and the program then waits for the user to push the push button to start

the acquisition process. When the push button is pressed, the Status LED is turned off to

indicate that the process has been started, and the AD9850 chip is set to the desired

frequency for the signal applied to the transistor. This is done before the solar simulator is

triggered because of the small amount of time the flash from the solar simulator provides

a stable voltage. After the solar simulator is triggered, the analog ports are read, and the

data acquired is inserted into separate arrays. This process is continued until a set number

of points are acquired from both analog ports. The amount of points able to be gathered

was not made a static number because this device could also be used for solar panel

installations, and so having more data would allow for a more accurate representation of

data. To change the number of data points gathered by each analog input, change the

value of points in the code. After acquiring all the data, the program proceeds to export

the values over serial communication. After completing this, the AD9850 is turned off by

15

setting the frequency to 0 Hz. To meet time delay requirements, the code waits for 30

seconds before allowing the user to trigger the solar simulator again. After waiting 30

seconds, the program turns on the status LED, and waits for the user to press the push

button to re-run the program. To observe the programming logic in the form of a flow

chart, see Figure 7.

16

Figure 7. Hand held acquisition device program flowchart.

17

E. Receiving Serial Data

To receive the serial information from the Arduino Uno, the Python programming

language was used. Python was used rather than C or C++ for a few different reasons.

Python has the advantage of being very easy to program with because it is a high level

language compared to C or C++. Python does not have to deal with special memory

allocation, or the need to make complicated functions to solve simple problems. Python

also has the benefit of being completely platform independent. This program can be ran

on any type of hardware, or operating system, as long as the operating system supports

Python. All of the most common operating systems have support for Python (Windows,

Mac, and Linux).

Since Python programs are compiled each time the program is executed, it is also

easy to change code at any point without having to use special tools. All python files have

the file extension .py. These .py files, which text files that can easily be edited with low

level text editors such as Microsoft Notepad, or Notepad++. The Python tools for creating

and testing programs can be found online at python.org. It is important to note that the

version of Python used to create and run this program is 2.7. The newer 3.4 version of

Python does not have legacy support for code that was built for version 2.7. The decision

to use version 2.7 stemmed from the fact that the majority of information involving

version 2.7 is well established, and still used to program today.9

 To connect to the Arduino specifically, the Python program must be given the

device address of the microcontroller. In Windows, this would be referred to as the com

port and is typically COMX, where X is the number of the communications port. In

Linux, this would be called the device address and is typically /dev/ACMX, where X is the

number of the port. To communicate with the serial port, the command

serial.Serial(“COMX”, 9600); is used to call the serial port within the code. It is

important to note that the baud rate used in this command must be the same as the baud

rate set for the Arduino Uno serial communication, otherwise the Arduino and the Python

program will not communicate with each other.10 The read() function is used read the

serial data as each line is transmitted.

The Python program replaces the internal software functions of the Oscilloscope,

18

which store the data into a text file and plotting the data. The program gnuplot is used to

graph the data collected by the hand held data acquisition device. A flowchart of the logic

behind the device can be seen in Figure 8. After the program is started, the device address

is used along with the baud rate of the Arduino Uno to allow the Python program to

interact with the microcontroller. A text file is generated (or opened), and then all text is

removed from the file. Once this is complete, the program reads the first serial string.

Figure 8. Python serial transfer program flowchart.

19

This is the first voltage read from analog input A0. The Value of A0 is on a scale of 0 to

1024 because this is the analog to digital converter, which is changes the analog signal

into an integer equivalent. For these values to have meaning, these values were converted

into decimal numbers. To accomplish this, the integer number was divided by the value

1024, then multiplied by the maximum voltage input.11 In this case, the data acquisition

was made for voltages up to, but not exceeding, 40 Volts.

The output values of the serial communication between the Arduino and python

are serial strings. Since they were declared strings, many errors were produced in the

Python code when trying to do math with the data from the Arduino because the strings

appeared to be integers at first glance. To remedy this situation, the strings were forced to

be considered decimal numbers using functions that temporarily allowed the strings to be

used in mathematical functions without producing any errors. After the conversion from

an integer to a decimal number, the same process is repeated for the analog input A1.

These two decimal equivalents of the voltages taken from analog inputs A0 and A1 are

then stored in a data file called rawdata.dat. The data file is tab delimited so that the file

can be easily opened in a spreadsheet program such as Microsoft Excel. The process of

receiving and converting the analog inputs repeats until the number of points in the

program is reached. Similar to the Arduino program, the Python program also uses a set

of points for determining how much data needs to be processed. This number is set within

the Python program, and is not taken from the Arduino program. The number of points in

each program needs to match, otherwise the Python program will crash with an error, or

just continue to wait for more values. The data file can still be read if either case occurs,

but this means that the graphing process must be carried out manually.

After all of the data is transferred, the data is plotted using Gnuplot, and the

program closes. Gnuplot is a command line utility that is available for Windows, Linux,

and Mac. The program is open source, and is freely available online.12 For windows,

MATLab was considered for use as it is a standard software package that is used, and can

also be integrated into python.

20

PRELIMINARY EXPERIMENTATION

Experiments were attempted to maximize the data points that could be acquired

while maintaining accurate readings. Each of the following experiments tested different

aspects of the circuit, which furthered this progress. The first few experiments were

performed using the oscilloscope and function generator to capture the data while trying

to determine the best configuration to use for the final hand held device.

A. Different Intensities

Before tests could be performed with certainty, the intensity of the solar simulator

needed to be examined. The intensity of the solar simulator needed to be roughly

equivalent to the sun. This number was not calibrated to the fullest extent due to lacking

equipment such as a calibrated reference cell to exactly determine if the intensity emitted

from the Xenon Arc Lamp is equal to one sun, or 1000 W/m2. A Solarex 30 Watt solar

panel was used for testing. Oscilloscopes were used for all initial experiments leading up

to the results of the hand held device.

To determine which setting on the Elinchrom Digital RX 2400 was closest to the

value of one sun, the open-circuit voltage at each intensity was examined. The intensity

setting was tested using three different settings: 6.5, 7.0, 7.5, and 8.0. The decision to use

these values was derived from the previous experiments done to test the triggering of the

solar simulator because an intensity of 6.0 produced a voltage that was visibly too low to

be accurate. Figure 1 from the Solarex solar panel datasheet shows that the 30 Watt model

of the solar panel produces an open-circuit voltage of 21 Volts, which was visibly much

higher than the value seen on the oscilloscope during initial testing. To determine which

setting was the best, the captured open-circuit voltage values were compared against the

rated open-circuit voltage of the solar panel. To perform the experiment, the negative and

positive leads of the solar panel were connected directly to an Agilent DSO1002A

Oscilloscope. This apparatus ensured that no external factors could change the voltage

21

readings from the solar panel.

B. Amplitude and Offset

The amplitude of the voltage applied to the gate of the transistor, and the DC

offset are vital to obtaining data from a solar panel. A DC offset was needed due to the

transistor threshold voltage of 2 to 4 volts. The amplitude was initially varied from 2.5

Vpp to 4 Vpp using specific DC offsets to vary the voltage starting from zero. The 2.5

Vpp signal with a 1.25 Volt DC offset had well defined peaks (seen in Figure 9), and had

a stable output. This was the standard setting used for amplitude and DC offset for since

the beginning of experimentation. The voltages that were tested were, 2.5 Vpp amplitude

with a 1.25 VDC offset, 3.0 Vpp amplitude with a 1.5 VDC offset, 3.5 Vpp amplitude

with a 1.75 VDC offset, and a 4.0 Vpp amplitude with a 2.0 VDC offset. This experiment

was performed using the first prototype configuration, using the DSO1002A Oscilloscope

with the Agilent 33210A Function Generator.

Figure 9. Voltage response using an amplitude of 2.5 and 1.25 VDC offset.

22

Figure 10 is the result of using 3.0Vp with a DC offset of 1.5 volts. The output

voltage data from this portion of the experiment did not extend as low as the results in

figure 9. In addition to this, the difference in voltage data acquired from probes 1 and 2

did not provide as much as a voltage difference, meaning that the current captured using

these settings did not reach as far towards the short circuit current. Figure 11 reached

deeper, but did not have a large difference in voltage between probes 1 and 2.

Figure 10. Voltage response using an amplitude of 3.0 Vp and 1.5 VDC offset.

Figure 11. Voltage response using an amplitude of 3.5 Vp and 1.75 VDC offset.

23

Using 4 volts peak with a DC offset of 2 volts, the voltage applied to the gate was too

high. This resulted in the voltages dropping too low, and the voltage sampled from across

the solar panel was the same as the voltage across the drain.

Figure 12. Voltage response using an amplitude of 4.0 Vp and 2.0 VDC offset.

C. Different Waveforms

The Agilent 33210A Function Generator has many functions to choose from when

trying to make a voltage signal. The sinusoidal, rectangular and triangular waveforms

were tested to determine which type would produce the most meaningful results. The

triangular waveform was performed twice. Once with the symmetry at 100% symmetry,

and one at 50% symmetry. For each test, the function generator was set to output a 2.5

Vpp signal with a DC offset of 1.25 volts while set at a frequency of 1 kHz.

Using a sinusoidal wave produced results where there was a definite voltage

difference. The width of the voltage spike was also clearly defined. The results are shown

in figure 13.

24

Figure 13. Voltage response for a sinusoidal waveform.

The square waveform in figure 14 produced useless results. There were no voltage

differences captured during this part of the experiment.

Figure 14. Voltage response for a square waveform.

25

The triangular waveform set to 50% symmetry in figure 15 had definite voltage peaks,

had a small width compared to the sinusoidal wave, meaning that the current captured

using a triangular waveform obtains a smaller amount of data and a smaller current than

using a sinusoidal wave. With symmetry set to 100% for a triangular wave, the resulting

voltage spikes were even more thin.

Figure 15. Voltage response for a triangular waveform (50% symmetry).

Figure 16. Voltage response for a triangular waveform (100% symmetry).

26

D. Different Frequencies

When acquiring data for this particular system, it is necessary to collect as many

data points as possible. The reason being that the data acquired by the hand held device

will be much less than can be acquired by an oscilloscope due to the high sample rate of

the oscilloscopes used. Smaller frequencies have a longer period,which allows for more

data to be acquired. When determining the smallest frequency that could be used for

acquisition, the 2 ms time for a stable open-circuit voltage was used, which yielded a

frequency of 500 Hz. For each test, the function generator was set to output a 2.5 Vpp

signal with a DC offset of 1.25 volts using a sinusoidal waveform.

Figure 17. Voltage output with 1 kHz signal.

27

Figure 18. Voltage output with 900 Hz signal.

Figure 19. Voltage output with 800 Hz signal.

28

Figure 20. Voltage output with 700 Hz signal.

Figure 21. Voltage output with 600 Hz signal.

29

Figure 22. Voltage output with 500 Hz signal.

E. Different Transistors

When beginning the data acquisition project, an IRF530N transistor was used.

Multiple transistors were tested to determine if other readily available transistors could

provide a better response in the system. The IRF530N was tested against a TIP31 and

BS170 transistor. For each test, the function generator was set to output a 2.5 Vpp signal

with a DC offset of 1.25 volts using a sinusoidal waveform at a frequency of 1 kHz.

Figure 23. Voltage output using an IRF530N Transistor.

30

Figure 24. Voltage output using a TIP31 Transistor.

Figure 25. Voltage output using a BS170 Transistor.

The IRF530N was the best transistor to use compared to the BS170 and TIP31. The

TIP31 transistor reached saturation very quickly compared to the IRF530N, and did not

have a large active region. The BS170 looked promising when examining the

oscilloscope graph, but after examining the raw voltage data, it was determined that the

resulting current output was significantly lower than with the IRF530N.

31

F. Shielding

After changing the load resistance of the circuit, it was apparent that a large

amount of noise was present in the circuit. To minimize the noise in the circuit, a metal

enclosure was used.

Figure 26. Voltage output without a metal enclosure.

Figure 27. Voltage output with a metal enclosure.

32

PROBLEMS ENCOUNTERED & POSSIBLE SOLUTIONS

A. Load Resistor

To obtain more data closer to the short-circuit current, a new load resistor was

purchased The new resistor met the original power dissipation requirements, dissipating

300 Watts of power with a resistance of 1 ohm. The two 5 ohm resistors were 3” x 3”,

which filled a 6” x 3” space. With the additional 0.3” needed to make connections, this

resistor configuration required a significant amount of space. The new 1 ohm resistor was

a bar cylindrical, 9” long tube with a diameter of 1.2”. Using this new resistor could have

allowed for a smaller form factor to be used. Unfortunately, the change resulted in the

acquisition circuit being more sensitive to noise with almost no gain in additional data

approaching the short circuit current. After proper shielding was provided, there was little

difference between the 2.5 ohm and 1 ohm load results. The results of testing both

resistors can be seen in Figure 29.

Figure 28. Voltage output with a 2.5 ohm load (Left) and 1 ohm load (Right).

33

B. Shielding

During experimentation, a lot of results gathered contained a 0.4 volt noise when

operating at 1 kHz. This noise was a significant factor when using the 1 ohm resistor to

obtain data points closer to the short-circuit current. When the 1 ohm resistor was first

placed into the circuit and tested, strange voltage spikes were very apparent as different

voltages were applied to the transistor gate due to switching such a large capacitance. To

remedy this situation, a metal enclosure was tested around the first prototype. Since the

electrical circuits were exposed without any shielding, the circuit was acting like an

antenna, which allowed many sources of noise to penetrate the circuit and caused

undesired results. For the final prototype, the enclosure was fitted with aluminum

flashing to shield the electrical circuitry from any external electrical interference.

C. Choosing a Transistor

To vary the voltage of the circuit, a transistor needed to be used. The quality of the

IRF530N transistor was very consistent and produced good data, but using a better

transistor could yield better results. After searching for transistors that could potentially

be used for this project, there were several transistors to pick from. After carefully

looking at each transistor, three were used for further testing to see which transistor

produced the best results. Standard MOSFET transistors were compared to determine the

best choice was used for all of the remaining experiments.

D. Simultaneous Data Acquisition

When acquiring data from a solar panel using an Arduino, it is important to

understand that each data point acquired in serial by the Arduino microcontroller. This is

the case even when using multiple analog ports because the ATMEGA328P IC only

contains one analog to digital converter (ADC).3 This hardware limitation creates a need

for another microcontroller; one for acquiring voltage data from the solar panel, and one

acquiring data from the drain pin on the IRF530N transistor. This is due to the fact that

34

data must be gathered at the same time to be useful considering these points are used to

find the current output from the solar panel at a particular instance in time, which means

both sets of data must be acquired in the same time frame.

To accomplish this, a master and slave relationship was established between two

Arduino microcontrollers as seen in figure 29.

Figure 29. Two Arduinos using the I2C protocol for data transmission.

For each microcontroller, two digital pins, and two analog pins were used to

communicate between the master and slave. The digital pins were used to communicate

between the master and slave; indicating each when the other was done with a task. To

start, the master signals the slave, using a digital pin, to trigger the solar simulator and

acquire voltages from the drain of the IRF530N transistor. After the master has signaled

the slave, the master is delayed for a short period, then acquires voltages across the solar

panel. The delay is to synchronize the time that the voltages are both acquired from the

master and slave. The slave then signals the master, using a digital pin, that the voltage

acquisition is done. The master then uses the two analog pins (A4 and A5) to transfer the

drain voltage data from the slave to the master. To transfer the voltage values from the

slave to the master, the I2C communication protocol was used via the provided Wire

library.13 Serial Communication was not used in this case because of the potential

35

interference with the python program, as the python program will accept any serial output

(intended or unintended) from the Arduino.

Figure 30. Flowchart for acquisition with a master-slave configuration with Arduinos.

It is vital that the master and slave be synchronized when acquiring data and

sending data, since issues can arise from an unsynchronized configuration. There were

issues in the development stage where the master was directing the slave to send data

values before the slave was ready, which caused the slave to lock-up and become

unresponsive. In an attempt fix the issue, communication between the master and slave

via the digital pins was used. After merging this code difference, the master would

initially signal the slave to start the solar simulator process. The slave would trigger the

solar simulator, and start collecting data. At the same time, the master would wait 10

36

micro-seconds, then acquire data. A 10 micro-second delay was able to supplement the

time used for the slave to receive the signal from the master, and trigger the solar

simulator. The slave would then use the a digital port to signal to the master that the data

collection as finished. The master would receive this signal from the slave, and request

the data that was acquired from the slave.

This eliminated several problems that were present when using the wire library to

send signals to start processes. Initially when the master would send a signal to start

acquisition, the slave would start the acquisition, then suddenly stop as any request from

the wire library after that point would lock-up the slave. Using digital pins that are

programmed to be exclusively and input or output simplified this process. Unfortunately,

issues were still present when trying to obtain information using the wire library. When

consulting the documentation for the Atmega320P, there was a section under revision D

of the IC which stated there was an issue where using the Atmega328P with a two wire

interface (TWI) slave, using a clock frequency over 2 MHz, the data setup time was too

short resulting in a false start or stop condition.3 This issue was remedied by adding a

time delay between the digital communication between the slave and master, where the

slave was signaling the master that the slave was ready to send the acquired voltage data.

E. Fast Acquisition Coding

Due to various tasks that are ran in the background and default settings built into

the analogRead() function provided by the Arduino software, acquisition time for the

ATmega328P is not optimized for the fastest possible acquisition from analog ports. To

combat this issue, assembly code was embedded into the program code to shorten the

acquisition time. The following code provides the fast acquisition:

37

/*-Fast ADC Code---------------------------------------*/

#define FASTADC 1

// defines for setting and clearing register bits

#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

#endif

/*-Fast ADC settings-----------------------------*/

#if FASTADC

 // set prescale to 16

 sbi(ADCSRA,ADPS2) ;

 cbi(ADCSRA,ADPS1) ;

 cbi(ADCSRA,ADPS0) ;

 #endif

By setting the ADPS2, and clearing the ADPS1 and ADPS0 bits, the amount of

time the ADC takes to approximate the voltage is reduced, and therefore lessens the

amount of time for each conversion. This method of speeding up the acquisition has the

possible drawback of having a slightly less precise reading, but after many tests between

the two methods, there did not appear to be any significant change in precision. A chart

illustrating the internal bits of the ADC within an ATMEGA328P IC can be found in

APPENDIX G.14

38

FINAL DESIGN, TESTING, & VERIFICATION

A. Signal Generator

The first prototype of the data acquisition device had the advantage of using a

Function Generator, which could easily be used to generate a signal with the appropriate

amplitude, frequency and DC offset. Due to the necessity of having the device be

portable, this Function Generator needed to be replaced with a circuit that could generate

a similar signal to the one that was produced by the Function Generator. After searching

through many different options, a circuit board based on the AD9850. The AD9850 is a

chip based on direct digital synthesizer (DDS) technology.

There were numerous reasons that this particular option was selected for use. The

most important reason being that the device was fabricated with the AD9850 installed

with male header pins, which was important because the AD9850 came as a surface

mount device, and would have been nearly impossible to solder due to the fact that the

device pins were microns apart. The device also had freely available libraries available,

which were Arduino compatible, which minimized the amount of time needed to properly

gain an understanding of how the AD9850 functioned, and how to integrate the chip into

the hand held device circuit as well as allow focus to remain on the overall device. Since

the AD9850 chip could be programmed using an Arduino, this allowed for the frequency

to easily be changed as necessary if desired. The cost of purchasing the device, rather

than the chip itself, was much cheaper. By doing a search at mouser.com, the chip costs

about twenty-seven dollars compared to about eight dollars for the fully finished device

on ebay.com. The device also had the advantage of having low power consumption,

which would maximize the life of the batteries in the hand held device.

The only disadvantage to using this device was that the unaltered signal from the

AD9850 circuit board is that the voltage signal output is 1 Volt peak-to-peak. The

transistor used requires a minimum of 2 Volts applied to the gate to allow electron flow.

For the transistor to turn fully on, the voltage needed to be at least 5 Volts to turn the

transistor completely on. To remedy this problem, an amplification circuit needed to be

created to increase the voltage from 1 Volt to 5 Volts. The LM741 op-amp was used due

39

to it being readily available locally in the case of the IC being damaged. An inverting

amplifier configuration was used due to the simplicity of the circuit. Using the equation

AV = -RF / R1, where AV is the gain of the input voltage signal to the inverting input.4

Since readily available resistors were typically within a tolerance of 5%, it was decided

that a resistor and potentiometer would be used together to eliminate this problem with

the additional benefit of being able to increase and decrease the voltage signal easily.

Using a 3.3 kohm resistor with a 10 kohm potentiometer, it was determined that the peak

to peak voltage could be varied from 3.3 Volts to 8.3 Volts, which meets the minimum

voltage requirement for allowing the transistor to operate in the active region, and

saturation region.

Figure 31. Schematic for signal amplification circuit.

Since the voltage signal applied to the transistor gate needed to vary between 0 and 5

Volts to properly capture data points, a DC offset was needed to allow the voltage from

the AD9850 to vary between these voltages. To accomplish this, the voltage supply was

connected to a potentiometer to change the voltage applied to the non-inverting input. By

40

changing the voltage applied to the non-inverting input, the reference point of the output

signal was altered, changing the DC offset. The final constructed form of this circuit can

be seen in Figure 32.

Figure 32. Completed amplification circuit in solderboard.

B. Batteries

Due to the power needs of the Arduino, LM741, and AD9850, it was decided that

the hand held device would use two 9 Volt batteries. In addition to these considerations,

using 9 Volt batteries were the most compact option compared to using AA or AAA

batteries, which would have resulted in the need of a bulky battery pack. The LM741 op-

amp requires a split phase supply, which means that a positive and negative voltage

supply (typically of the same value) was needed to allow the LM741 to operate. To create

a split phase supply, the two 9 Volt batteries were put in series and the center connection

was connected to ground, giving the circuit a + 9 Volt, and a – 9 volt supply.

41

C. Analog Inputs

To replace the use of the oscilloscope, the Arduino Uno was used. The problem

with any microcontroller used for this application is the input voltage being too high for

the IO ports. Depending on the microcontroller, the maximum allowed voltage input

could be as low as 1.7 Volts. In this case, the maximum allowed voltage to be applied to

the analog input for an Arduino Uno is 5 Volts. For this application, the maximum voltage

output from solar panels could be as high as 36 volts for a 250 Watt solar panel. To

remedy this situation, a voltage divider circuit was introduced. Using a maximum value

of 40 Volts output from a solar panel, it was determined that the Voltage applied to the

analog inputs on the data acquisition device needed to be 1/8 of the original Voltage. To

accomplish this, a 51 kohm resistor and a 10 kohm potentiometer were used. To calculate

the exact resistance needed in place of the 10 ohm resistor, the formula,

, was manipulated to become .7 The resistance

was calculated to be 7.29 kohms.4 Using this base resistance value for the 10 kohm

potentiometer, and manually adjusting the circuit until the voltage input to the analog

ports, the circuit was properly calibrated to accurately provide the proper voltage values.

D. Microcontroller

The Arduino Uno microcontroller was used for the second prototype. The Beagle

Bone Black microcontroller was originally going to be used because it has a 1 GHz

processor, multiple Digital IO ports, and built in analog ports, which would be able to

replace the Arduino Uno easily without many modifications to the various circuits within

this project. Unfortunately, the microcontroller never arrived due to a hardware defect,

which caused the shipment to be back-ordered more than six months. If the Beagle Bone

Black would have been used, then all of the data analysis could have been done directly

from the hand held device because the Beagle Bone Black uses the Linux operating

42

system.

Despite the significant drawback of having a lower sample rate, there were some

benefits to using the Arduino Uno. The libraries used for programming the AD9850

circuit board was already written with the intention of being used with Arduino

microcontrollers. This had the benefit of not needing to re-write any code to be retrofitted

to the formats of a different microcontroller. The AD9850 also required a 3.3 Volt or 5

Volt source, which was supplied by the regulated 5 Volt supply from the Arduino Uno.

E. Electrical Circuitry

For the final prototype, all circuitry regarding the main solar simulator acquisition

circuit, and most of the signal generator circuit were soldered to a solder board to

minimize the possible points of failure within the circuit, and minimizing the distance

between connections. The only connections that were not directly soldered were

connections to the Arduino Uno. Besides the analog inputs, all other inputs and outputs

were not directly related to the main data acquisition circuitry.

It is important to note that the AD9850 circuit board is VERY sensitive to heat

when being soldered. When attempting to solder the AD9850 circuit board into the solder

board, it was damaged and was beyond the hope repair. To prevent damage to the

AD9850, two 10 pin female header strips were used to solder into the solder board

instead of directly soldering the AD9850 circuit board. This solution worked perfectly,

and allowed the circuit board to be easily replaced if another hardware failure occurred.

To allow for users to see a visual confirmation that the program had successfully

ran and completed, an LED was installed to display when the device had been triggered,

and when the device is ready to be triggered again. To shrink the amount of space used

for connecting the LED, the 220 ohm resistor used to limit the current flow was soldered

directly to the LED. To prevent a short circuit from occurring within the circuitry, heat

shrink tubing was used. The heat shrink tubing was able to cover the leads of the LED,

the resistor, and all of the exposed wire. A secondary LED was also installed for

indicating the state of the device (on or off).

43

To activate the device, a push button needed to be used. It is important to note that

any digital inputs to the Arduino Uno that are used should be connected to ground when

not in use. The reason behind this is that the state of the input when ungrounded can

possibly be in a state between 5 Volts and ground. This can be problematic since the

Arduino may interpret this non-zero signal as a 5 Volt signal. If this happens, then the

equipment being controlled, in this case the solar simulator, could trigger randomly. To

prevent this from occurring, a 10 kohm pull-down resistor was used to make the voltage

at the digital input pin drop to zero when the push button is not pressed. Using this

method, it is impossible for the voltage applied to the digital input would be between

states.

The ability to adjust the amplitude and DC offset of the sinusoidal signal applied

to the transistor gate, for acquiring the voltages, was added to allow more control over the

acquisition process in addition to precise adjustments to the voltage output. The circuit

depicted in Figure 8 shows the two potentiometers responsible for these settings. The

schematic shown in Figure 8 shows R6 as the potentiometer responsible for the voltage

amplitude, and R7 as the DC offset voltage.

F. Packaging

To select a properly sized enclosure to store the electrical circuits and load

resistor, the dimensions of each circuit needed to be examined. The dimensions of the

main circuitry is 4.5” x 3”. Knowing the circuit board and Arduino Uno dimensions, all

that remained was the space needed to house the resistor. After quickly researching

project boxes, the Radioshack 8” x 6” x 3” project box was selected. After doing simple

math, it was calculated that the resistor would have 10” diagonally within the box. After

placing the resistor within the box, it was determined that the project box was closer to 9”

since the project boxes start from an 8” x 6” base, but narrows as the end of the project

box is reached in addition to different shielding and screw holes within the project box,

which made the usable area smaller. The 1 ohm resistor was attached to the top of the

project box because it was required to be diagonal to allow it to fit in the enclosure. The

44

main circuitry and Arduino Uno were bolted to the bottom of the project enclosure on the

provided piece of sheet metal. The sheet metal was also connected to the aluminum

flashing inside the project box to make a single shielding around the circuitry. The USB

port on the Arduino Uno is exposed through a hole in the enclosure to provide easy

access for programming after assembly. The final product before assembly is shown in

Figure 33.

Figure 33. Final prototype before complete packaging.

Due to the small amount of space used for the circuitry and microcontroller, it is possible

to easily change microcontrollers in the future for further development.

G. Final Testing

The final design features a 8 x 6 x 4 project box to hold all the components

needed for a hand held device. For each test, the DDS chip was set to output a 2 Vpp

signal with a DC offset of 4 volts using a sinusoidal waveform at a frequency of 1 kHz.

The data collected from the solar simulator was then compared to a simulation designed

using Multisim 11. To model the solar panel and flash, a capacitor and pulse input were

45

used.

Figure 34. Data captured from hand held device.

Figure 35. Voltage output from multisim 11 simulation.

The results of the hand held device were then tested against the previous designs

as well as the manufacturers IV curve data. The manufacturers IV curve data was taken

from the SolarexTM manual for the 30 watt solar panel. The DSO1002A and DSOX3024A

data was taken using the first design, but using two different oscilloscopes.

46

Figure 36. IV Curve from generated from data from hand held device.

47

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

IV Curve From Data Acquisition Devices

sub-title

Hand Held Device

DSOX3024A

DSO1002A

Manufacturer IV Curve

Current (A)

Vo
lta

g
e

 (
V

)

RESULTS AND DISCUSSION

The data acquisition device has been designed and optimized. The initial design

tested fundamental characteristics of this approach to data acquisition, namely, the signal

to drive the transistor. It was determined that the maximum voltage that should be used to

drive the IRF530N transistor is 5 volts. This was determined after analyzing the data from

the experiment in Chapter VI – Section B. The results appeared to be sufficient for an

amplitude of 3.5 volts with a DC offset of 1.75 volts, however, there was no great benefit

in using this voltage compared to the results made with an amplitude of 2.5 volts with a

DC offset of 1.25 volts. Due to the limitation of power consumption for the hand held

device, it was determined that the lowest voltage possible without sacrificing any

significant data.

The frequency used to drive the transistor gate was tested to determine the best

frequency to use for acquisition. After carefully examining the data, it was determined

that the frequency did not make a significant difference. The 1 kHz signal was used for

the remainder of the experiments.

It was determined that waveform shape made a significant difference. When using

a square wave, an IV curve could not be created because the only data points that could

be obtained were from the open circuit voltage and the closest point to short circuit

current. With only these two points, it would be impossible to determine the actual curve.

The triangular waveform was much better, but lacked a large range of points along the IV

curve. The sinusoidal waveform allowed for the maximum amount of points to be

extracted from the voltage output data for the IV curve.

The hand held device used all of the results of the previous experiments to create

a hand held device. The final device is able to acquire data from a solar panel using the

solar simulator. The data used to generate the graph in Figure 36 was obtained from the

second time the gate was triggered. This is because the voltage, from the first time the

gate was triggered, was still reaching the steady maximum. The third time the gate was

triggered, the voltage had decayed slightly, and had reached a critical point where the

gate had become saturated, making it difficult to obtain points that would be present on

an IV curve. The transient analysis simulated using Multisim 11 was very accurate. The

48

voltage output from the drain of the transistor closely matches the voltage acquired using

the hand held device. The acquisition tests show that the voltages acquired from the hand

held device are consistent with those of the original circuit using different oscilloscopes.

The hand held device had a contact resistance of .5 ohms, which lowered the output

voltage. This issue was corrected by adding the voltage across the .5 ohm resistor for

each point. The IV curve for each of the three devices also needed to be adjusted for any

data that was captured when the voltage from the panel was decreasing. This was

modeled by the equation 21 – 21*cos(125.6t)*e-t. The resulting voltages were added for

data points captured when .003s < t. The resulting voltage change was a difference of

little more than 100 mV.

49

CONCLUSION

A solar simulator data acquisition device has been thoroughly examined to create an IV

curve as a hand held device. The hardware and software solutions involved in the

research of this device has been discussed. Prototypes were designed, beginning with an

oscilloscope used to capture data, and a function generator to drive the gate of a transistor

to vary the voltage. This method progressed with each test, allowing for the most efficient

design to acquire data. These configurations were then compressed into a small form

factor that allowed for simplicity in transportation and deployment. The acquisition of

data for producing an IV curve has been proven to work effectively using the hand held

device.

50

FUTURE WORK

This hand held acquisition device is many steps ahead of where this project started, but

there are still many things that should be considered:

 Improve the python program so that the voltage data can be easily manipulated

and transformed into a IV-Curve. The current python code allows for the raw data

to be used for calculating the current and generating a new file with voltage and

current information, but the output data is not easily graphed. This most likely can

be done using MATLab.

 Change to a microcontroller with a better sampling rate. The Arduino was very

good for being able to prove that the device works, and was able to make an IV-

curve, but does not have a lot of data points. This can easily be corrected by using

a different microcontroller.

 Add wireless capability. If a microcontroller that contains an OS is used, there is a

possibility that wireless can be used to send data from the hand held device to a

laptop. This would benefit anyone who needs to test multiple solar panels, and

does not have time to continually move the data to a computer using a USB cable.

 Improve battery life to allow for the device to be used for many hours without

needing new batteries.

51

REFERENCES

1. T. Woody, “Solar Industry Anxious Over Defective Panels” (2013). Accessed on:
June 2014. Available at
<http://www.nytimes.com/2013/05/29/business/energy-
environment/solar-powers-dark-side.html?pagewanted=all&_r=0>

2. Solarex, Solarex SX-30U Manual. The Corporation, Fredrick, Maryland, 1999.
Available at <http://www.solarcellsales.com/techinfo/docs/E0503.pdf>

3. Atmel Corporation, Atmega328p datasheet. October, 2013. Accessed on:
November, 2013. Available at <http://www.atmel.com/images/Atmel-
8271-8-bit-AVR-microcontroller-ATmega48A-48PA-88A-88PA-168A-
168PA-328-328P_datasheet_Complete.pdf>

4. D. Bates & A. Malvino, Electronic Principles, 7th ed.; pp. 377-381. McGraw-
Hill, Boston, MA, 2006.

5. Elinchrom LTD, Elinchrom Digital 2400RX User Manual. The Corporation,
Switzerland, 2011. Available at
<http://www.fotoflits.com/files/Handleidingen/elinchrom%20digital
%201200%20%26%202400%20rx%20%28en%29.pdf>

6. S. Walker, Sciencetech inc, London, Ontario, Canada, November 2013, Private
Communication.

7. R. Boylestad, Introductory Circuit Analysis, 11th ed.; pp 149-151. Pearson
Prentice Hall, Columbus, Ohio, 2007.

8. Radio Artisan, “Analog Devices DDS arduino Library” (2012). Accessed on:
May, 2013. Available at
<http://blog.radioartisan.com/analog-devices-dds-arduino-library/>

9. Z. Shaw, Learn Python the Hard Way, 3rd ed., pp. 136-139. Addison-Wesley
Professional, Boston, MA, 2013.

10. C. Liechti, “Pyserial Documentation” (2001). Accessed on: May, 2013. Available
at <http://pyserial.sourceforge.net/>

11. Arduino, “Arduino Uno”. 2014. Accessed on November 2013. Available at
<http://arduino.cc/en/Main/ArduinoBoardUno>

12. C. Kelley & T. Williams, “Gnuplot Homepage” (2013). Accessed on: May 2013.
Available at <http://www.gnuplot.info/>

52

13. N. Gammon, “I2C - Two-Wire Peripheral Interface - for Arduino” (2011).
Accessed on: November 2014. Available at
<http://www.gammon.com.au/i2c>

14. D. Weiman, “ATmega168 Analog to Digital Converter” (2009) Alfred State
College. Accessed on: January 2015. Available at
<http://web.alfredstate.edu/weimandn/miscellaneous/atmega_subsystem/
ATmega168%20Analog-to-Digital%20Converter%20v01b.gif>

15. Agilent Technologies, DSO1000A/B Series Portable Oscilloscopes Datasheet.
The Corporation, USA, 2013. Available at
<http://homes.ieu.edu.tr/maskar/EEE331/General/DSO1002%20
Oscilloscope%20User%20Manual.pdf>

16. Agilent Technologies, Agilent 33210A 10 MHz Function/Arbitrary
 Waveform Generator Datasheet. The Corporation, USA, 2012. Available at

<http://cp.literature.agilent.com/litweb/pdf/5989-8926EN.pdf>

53

APPENDIX A

The Elinchrom Digital RX 2400 power pack is one of the most crucial

components within the solar simulator. This device powers the Xenon Arc Flash lamp

with the amount of power determined by a user. The value on the screen can be used to

determine the power being used in Ws, and the f-stop rating.

Figure 37. Elinchrom Digital 2400 RX Power Pack.

Figure 38. Settings for Elinchrom Digital 2400 RX Power Pack5.

54

A special cable is used to connect the Digital RX 2400 to the triggering circuit. The cable

is plugged into the larger sync port labeled 10 in Figure 40. The end of the cable, which

typically would be placed into camera equipment, was cut in order to use a non-

proprietary method to trigger the circuit. The cable had two leads: a red lead, and a white

lead. The white lead was determined to be a 5 volt signal while the red wire was a lead

that was to receive the 5 volt signal in order to trigger the circuit.

To generate the correct full spectrum wavelengths, an airmass filter must be used.

Airmass filters allow for the spectral output of the arc lamp to match specific natural

solar conditions by filtering the raw light emitted from the xenon arc lamp. Using this

airmass filter, the conditions meet the Reference Spectral Irradiance: Air Mass 1.5

Spectra standard set by The American Society for Testing and Materials (ASTM). Only

one xenon arc lamp is used to reduce maintenance costs further.

A Xenon Arc Lamp is used for the light source. The light source for the solar

simulator is shown in Figure 39. The light source comprised of a xenon arc lamp and an

airmass filter. When the light source is placed a focal length f away from the light source,

the resulting light emitted collimates and is reflected back towards a solar panel as a

uniform plain. For this system the focal length is 5 meters.

Figure 39. Solar Simulator Light Source using Xenon Arc Lamp.

55

In place of additional xenon arc lamps, a spherical mirror is used to collimate the light

emitted from the xenon arc lamp. The initial cost of the mirror is high at $40,000 dollars,

but comes with very little maintenance and will not expire after a limited number of

flashes. A top down view is shown in Figure 40.

Figure 40. Overhead view of collimation of light rays.

At Alfred University with proper calibration the solar simulator can be classified as a

AAA solar simulator in accordance with ASTM (American Society for Testing and

Materials). This rating system uses three criteria to determine the quality of the overall

solar simulator, namely, spectrum match, irradiance uniformity and stability [11001344].

56

APPENDIX B

There are numerous ways to acquire data using an oscilloscope. One way that was

researched was to use an Agilent software named “Intuilink Data Capture”. This software

can be used for capturing data from a source using the oscilloscope, and then transferring

the data back to the computer to be examined later. This method was very convenient in

that a click on a computer could configure the settings automatically by uploading the

correct settings file to the oscilloscope, then capture data from the oscilloscope directly

after. Unfortunately the software could not be easily altered to send a signal to the

Arduino microcontroller to trigger the solar simulator. This drawback is the reason that

the software is not being used anymore.

Acquiring data from the oscilloscope via Agilent software

To manually acquire data from the oscilloscope and transfer it to a PC there are a few

steps:

1. Download the “Agilent IO Control” and “Agilent Intuilink Data Capture”

software packages. The Agilent IO Control and Agilent Intuilink Data Capture

software can be found easily by going to www.agilent.com and using the search

box.

2. Install the packages. The Agilent IO Control software should be installed first to

ensure the computer has the drivers installed to allow the computer to properly

communicate with the oscilloscope. The Agilent Data Capture software can be

installed later.

3. Connect the DSO1002A oscilloscope to your PC using USB and turn the

oscilloscope on.

4. Use the Agilent IO Control program to configure the driver for the DSO1002A.

5. Open the Agilent Intuilink data capture software.

6. Navigate under the “Instrument” tab and select “Agilent 1000 Series”.

57

http://www.agilent.com/

Figure 41. Agilent IntuiLink Software Scope Selection.

7. If the device has not been configured previously, or it needs to be reinitialized,

then the following screen will appear:

58

Figure 42. Agilent IntuiLink Software connecting to Oscilloscope.

8. Click the “Find Instrument” button to search for the device

9. Next click the “Identify Instrument(s)” button to allow for the program to search

for the com port that the oscilloscope is connected to. The oscilloscope should be

detected at this time. After the oscilloscope has been detected, then it can be

highlighted and click the “OK” button.

59

APPENDIX C

A. Setting Up The Oscilloscope

The Figure 42 is a representation of the oscilloscope that will be used.

Figure 43. Agilent 1002A Oscilloscope representation from manual13.

In this case, Alfred University has the DSO1002A oscilloscope, which comes with

2 input channels rather than the 4 channel model shown here. Before acquiring any data,

some settings must be altered in order to properly acquire the data. Press the “Default

Setup” button to restore the factory settings of the oscilloscope to ensure that no one

changed a setting that could alter the results in some way. In this case the Trigger settings

will be changed first. To get to the Trigger settings, press the “Menu” button under

“Trigger controls”, which are labeled in the Figure above. The using the soft keys and

60

entry knob, the “Mode” setting must be set to “Edge”, the “Source” must be changed to

“CH1”, and the “Slope” Must be changed to a rising edge, which looks like an arrow

facing upwards only. The trigger “Sweep” must be changed from “Auto” to “Normal”

because the oscilloscope will automatically trigger each time the user tries to set the

oscilloscope to wait for a rising edge without the signal ever reaching the desired

threshold. The rest of the default settings for the trigger do not need to be changed.

Next Channel 1 and Channel 2 must be set to the proper probe settings. In this

case 1X probes are used. Press the “1” under vertical adjustment knobs to enter the menu.

Change the “Probe” to 1X by pressing the softkey next to “Probe” and change to “1X”

and press in using the entry knob. All other default settings for the first channel are fine

as is. Repeat these steps for the second channel. The vertical adjustment knobs for

channel 1 and 2 need to be set to 10.00V/div in order to view the data from the screen of

the oscilloscope before transferring the data to a USB flash drive to be read by the

computer.

The final oscilloscope setting that needs to be changed is the acquisition settings.

Press the “Acquire” button directly under the horizontal controls. Press the soft key next

to “Sequence”. Change the Mode from “OFF” to “Record”. This is all the initial setup

that needs to be done to the oscilloscope before recording the data from the solar panel.

B. Setting up the signal generator

To begin use the On/Off Switch to turn on the Agilent 33210A Function Generator. The

frequency should be by default set to 1 kHz. If the Function Generator is set to anything

other than 1 kHz, use the number pad to press 1 followed by the Menu Operation Softkey

underneath kHz. The amplitude needs to be set to 2.5 Vpp. To switch to setting the

amplitude press the Menu Operation Softkey underneath Ampl. Next press enter 2.5 on

the number pad and press the Menu Operation Softkey underneath Vpp. Next the DC

offset needs to be adjusted. To change the DC offset press the Menu Operation Softkey

underneath Offset and enter 1.25. Finally press the VDC softkey to enter the value. The

Function generator should be set to a sine wave. If not press the sine wave button. Below

61

is a figure of the Function Generator to get a better idea of what needs to be done.14 To

allow the function generator to output the signal to vary the voltage the Output

Enable/Disable Key must be pressed.

Figure 43. Agilent 33210A Function Generator representation from manual14.

62

APPENDIX D

//---

// Hand Held Data Acquisition Device Code

// Created by Steven Gruspier

// Created on May 14th, 2014

// Latest revision on March 12th, 2015

//

// The purpose of this code is to acquire the voltages across the drain and solar panel

//

//---

// format for dds ddschip(chip, data pin, load pin, clock freq)

#include <stdio.h> // needed for dds library

#include <dds.h> // Library specifically for the AD98XX Series DDS chips

#include <Wire.h>

/*-Fast ADC Code---------------------------------------*/

#define FASTADC 1

// defines for setting and clearing register bits

#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

#endif

/*-IO Table--*/

// connection to drain voltage moved to slave

63

const int vsolar = A0; // connection to solar panel

//const int simulator = 9; // connection to solar simulator (on slave now)

const int pushbutton = 3;

const int led_indicator = 10; // indicates if solar simulator is ready to fire

// for sending/receiving data to/from slave Arduino

const int slave_send = 2; // was 9

const int master_receive = 4; // was 10

int data[2];

int parttracker = 0;

int read_tracker = 0;

int receive_state = 0;

/*-Data Capture--*/

const int points = 200; // This value determines how many actual points

 // are captured from each analog output

//const long int capt_freq = 0LL; // for debugging

const long int capt_freq = 800LL;

const long int init_freq = 0LL; // Value for initialization before and after capture

/*-Other important things------------------------------*/

int vdrain_values [points]; // array to store values from the drain of the circuit

int vsolar_values [points]; // array to store values directly from the solar panel

/*-AD9850 Pre-Configuration----------------------------*/

dds ddschip(DDS9850, 8, 6, 7, 120000000LL); // 6,7, and 8 are pin numbers on the

Arduino

// format for dds ddschip(chip, data pin, load pin, clock freq)

void setup()

{

64

 for(int i = 0; i < points; i++){

 vdrain_values[i] = 0;

 vsolar_values[i] = 0;

 }

 for(int i = 0; i < 2; i++)

 data[i] = 0;

 #if FASTADC

 // set prescale to 16

 sbi(ADCSRA,ADPS2) ;

 cbi(ADCSRA,ADPS1) ;

 cbi(ADCSRA,ADPS0) ;

 #endif

 ddschip.calibrate(-.0418); // calibrates frequency to be exact (dependent on physical

chip)

 pinMode(pushbutton, INPUT);

 pinMode(led_indicator, OUTPUT);

 digitalWrite(led_indicator, HIGH);

 ddschip.setfrequency(init_freq); // make 0LL during regular functioning, for testing

other

 //delay(2000);

 pinMode(slave_send, OUTPUT);

 digitalWrite(slave_send, LOW);

 pinMode(master_receive, INPUT);

 Wire.begin();

65

 Serial.begin(9600);

}

void loop()

{

 int state = digitalRead(pushbutton);

 //Serial.println(state);

 if(state == HIGH) {

 ddschip.setfrequency(capt_freq);

 delay(1000);

 digitalWrite(slave_send, HIGH);

 delayMicroseconds(10); // for lag between slave getting signal and starting acq.

 for(int i = 0; i < points; i++)

 vsolar_values[i] = analogRead(vsolar);

 while(receive_state = digitalRead(master_receive) != HIGH)

 {

 //Serial.println("waiting"); // for debugging

 digitalWrite(slave_send, LOW);

 }

 //Serial.println("Done waiting"); // for debugging

 for(int i = 0; i < points; i++)

 {

 Wire.beginTransmission(4);

 int available = Wire.requestFrom(4, 2);

66

 while(Wire.available())

 {

 data[parttracker] = Wire.read(); // beware of > 0 value on exit

 parttracker++;

 if(parttracker == 2)

 {

 vdrain_values[read_tracker] = data[0]+(data[1]*256);

 //Serial.println(vdrain_values[read_tracker]);

 parttracker = 0;

 read_tracker++;

 }

 }

 }

 read_tracker = 0;

 digitalWrite(led_indicator, LOW);

 ddschip.setfrequency(init_freq); // turn off signal generator

 for (int serial_push = 0; serial_push < points; serial_push++) {

 Serial.println(vdrain_values [serial_push]);

 Serial.println(vsolar_values [serial_push]);

 }

 delay(30000); // 30000 for solar simulator only (30 secs)

 digitalWrite(led_indicator, HIGH);

 }

 else

67

 digitalWrite(slave_send, LOW);

}

68

APPENDIX E

/***

Slave Code For sending and receiving

***/

#include <Wire.h>

/*-Fast ADC Code---------------------------------------*/

#define FASTADC 1

// defines for setting and clearing register bits

#ifndef cbi

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif

#ifndef sbi

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

#endif

const int data_points = 200;

const int slave_receive = 2;

const int led_power = 3;

const int master_send = 4;

const int analog_voltage = A0; //vdrain

const int simulator = 5;

int send_number = 0;

int receive_state = 0;

int voltage_reading[data_points];

69

void setup()

{

 for(int i = 0; i < data_points; i++)

 voltage_reading[i] = 0;

 #if FASTADC

 // set prescale to 16

 sbi(ADCSRA,ADPS2) ;

 cbi(ADCSRA,ADPS1) ;

 cbi(ADCSRA,ADPS0) ;

 #endif

 pinMode(simulator, OUTPUT);

 digitalWrite(simulator, LOW); // make sure the simulator is not triggered beforehand

 pinMode(led_power, OUTPUT);

 digitalWrite(led_power, HIGH); // indicate that device is on

 pinMode(slave_receive, INPUT);

 pinMode(master_send, OUTPUT);

 digitalWrite(master_send, LOW);

 Wire.begin(4);

 Serial.begin(9600);

 Wire.onRequest(transfer_data);

}

void loop()

{

 if(receive_state = digitalRead(slave_receive) == HIGH)

70

 {

 digitalWrite(simulator, HIGH); // triggers solar simulator

 //Serial.println("Master told me to do stuff"); // for debugging

 for(int i = 0; i < data_points; i++)

 voltage_reading[i] = analogRead(analog_voltage);

 //Serial.println("I'm telling the master I am done"); // for debugging

 // WARNING DELAY NEEDED TO ALLOW SLAVE TO BECOME READY FOR

TRANSMISSION TO MASTER

 // WILL LOCK UP MICROCONTROLLER IF A DELAY IS NOT PRESENT DUE

TO MASTER REQUESTING

 // INFORMATION EARLY

 delay(1000); // needed to ensure slave is ready

 digitalWrite(master_send, HIGH);

 digitalWrite(simulator, LOW); // disables solar simulator trigger

 delay(100); // makes sure master can set slave_receive signal low

 }

 else

 digitalWrite(master_send, LOW);

}

void transfer_data()

{

 digitalWrite(master_send, LOW);

 //Serial.println(send_number); // for debugging

 //Serial.println(voltage_reading[send_number]); // for debugging

71

 Wire.write((byte *)&voltage_reading[send_number], sizeof(int));

 send_number++;

 if(send_number >= data_points) // think about this logic

 send_number = 0;

}

72

APPENDIX F

import serial

import sys

import time

import os

import shutil

timestr = time.strftime("%Y%m%d-%H%M%S")

rawfile = timestr + '-rawdata.dat'

ser = serial.Serial('/dev/ttyACM0', 9600)

points = 200 # Points in python code should match

 # the points in Arduino code

 # Arduino_pts = Python_pts

count = 0

resistance = 1.15

data = open(rawfile, 'w+')

data.truncate()

data.write('vdrain\tvsolar\n')

ivcurve = open('ivcurve.dat', 'w+')

ivcurve.truncate()

for count in range(0,points):

change the first column created into time column

vdrain = float(ser.readline())

vdrain = float(vdrain/1024*40)

vdrain = "%0.3f" % vdrain

73

vsolar = float(ser.readline())

vsolar = float(vsolar/1024*40)

vsolar = "%0.3f" % vsolar

vsolar2 = vsolar

data.write('{}'.format(vdrain))

data.write('\t')

data.write('{}'.format(vsolar))

data.write('\n')

This section does the calculation for current to make

 #an IV curve (This needs to be tested in the lab)

vsolar2 = float(vsolar2)

vsolar2 = "%0.3f" % vsolar2

ivcurve.write('{}'.format(vsolar2))

ivcurve.write('\t')

current = float((float(vsolar)-float(vdrain))/float(resistance))

current = float(current)

current = "%0.3f" % current

ivcurve.write('{}'.format(current))

ivcurve.write('\n')

count = count + 1

data.close()

os.system('cp '+ rawfile + ' rawdata.dat')

os.system("gnuplot rawplot.p")

os.system('cp rawdata.png '+ rawfile + '.png')

#os.system("gnuplot ivplot.p")

74

APPENDIX G

Figure 44. Analog to Digital Converter (Atmega328p)12.

75

