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ABSTRACT 
 

 Elastic/plastic behavior of chalcogenide glasses in the Ge-Se and Ge-Sb-Se 

systems was studied using different spherical indenters: 400µm and 2mm.  Static room 

temperature indentations were carried out to determine the trends in hardness, fracture 

toughness and brittleness with respect to the average covalent coordination number, <r>.  

Binary glasses show maximization in fracture toughness and minimization in brittleness 

at the composition Ge20Se80.  No such trends were observed for ternary glasses.  

Indentations were also performed at -80°C to ensure that the trends are due to structural 

considerations of optimized connectivity.  LBH and elastic modulus increase linearly 

with the network connectivity.  Elastically recovered energy increases with indenter 

diameter showing a local maximum at Ge20Se80.  Finite element simulations of binary 

glasses also show similar trends for LBH and DBH.  Increasing elastic moduli cause 

stresses to increase with <r> for a given indenter ball diameter.  Computed yield stresses, 

when plotted against <r>, show small deviations from apparent linearity at <r> = 2.4, 

giving another hand to the theory of rigidity percolation. 
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1  INTRODUCTION 

 

 Chalcogenide glasses are formed by melting one or more of the chalcogen 

elements (S, Se, Te) with more electropositive elements such as As and Ge, P, Sb, Bi, Si, 

Sn, Pb, B, Al, Ga, In, Tl, Ag, lanthanides and Na.1  Some of these glass compositions are 

unique in the sense that they can transmit light in the second atmospheric window, from 8 

to 14µm.2  This makes them potentially available in fiber-form for applications such as 

IR sensors, CO2 laser-assisted microsurgery and optical amplifiers.  They have bandgap 

energies of 1-3eV and behave as amorphous semiconductors. They bear some similarity 

to oxide glasses but there is a marked difference caused by the nature of atomic bonding.3 

 

The chemical bonding of the matrix is directional and covalent.  The atomic 

average covalent coordination number, <r>, obeys the Mott’s 8 – N rule, where N is the 

atom’s valency, and describes the crosslinking between these atoms.  Additionally, 

heteropolar bonds would be favored over homopolar bonds, as is given by the Chemically 

Ordered Covalent Network Model (COCN).4  In general, the bonds formed between the 

individual atoms in these glasses are more rigid than that of in organic polymers and 

more flexible than that of in oxide glasses.  Accordingly, the glass transition temperatures 

and elastic properties lie in between those of these materials.  

 

1.1  PERCOLATION PROCESS 
 

 In 1979, Phillips put forth his constraints hypothesis.5  The gist of his argument is 

that there exists a rigidity percolation threshold at <r> = 2.45, where the number of 

degrees of freedom just exhausts the number of constraints imposed by bond bending and 

bond stretching forces.  This is later modified by Dohler et al. as <r> = 2.4.6  This match 

also minimizes both the strain energy of the network7 and the configurational entropy.  

He commented that there would be ideal glass formation at <r> = 2.4, because glasses of 

that particular coordination number undergo the least number of configurational 

rearrangements in transforming to a glass.  His theory is also called as the Valence Force 

Field Theory.  
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 Phillips and Thorpe, in 1985, expanded the theory of rigidity percolation.8  

Thorpe suggested that below <r> = 2.4, the glass network is composed of floppy or zero-

frequency vibrational modes and is unbraced or underconstrained.9  The converse is true 

above 2.4, where the glass is overbraced or overconstrained.  When <r> reaches the value 

of 2.4, the number of zero-frequency modes should diminish to zero and there should be 

optimum network connectivity.  This is shown in Figure 1.1.  His conclusion is that all 

mechanical properties should maximize at <r> = 2.4. 

 

Figure 1.1.  The elastic moduli versus percolation probability for a 440 atom triangular 
network.  The insert shows fraction of zero frequency modes for a 168 atom triangular 
network.  (From Thorpe9) 

 Tanaka, in 1988, analyzed medium-range structural orders in chalcogenide 

glasses.10  He showed that there exists a structural phase transition at <r> = 2.67 in 

addition to that at 2.4 predicted by Phillips and others.  He studied the physical properties 

(shown in Figure 1.2) as a function of the coordination number and concluded that 

glasses with <r> ≤ 2.67, may have low-dimensional structures, in which the 

intermolecular force governs the physical properties.  In contrast, covalent glasses of <r> 

> 2.67 seem to be cross-linked three dimensionally.  So, there are two kinds of 

topological thresholds observed in chalcogenide glasses when their properties are studied 
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as a function of coordination number.  One is at <r> = 2.4, the physical threshold, and the 

other is at <r> = 2.67, the chemical threshold. 

      

 
Figure 1.2.  Qualitative features of the atomic volume va, the bulk modulus B and the 
magnitude of the reversible photodarkening ∆E as a function of the average coordination 
number <r>.  (From Tanaka10)  

1.2  SUMMARY OF FINDINGS SO FAR 
 

 Varshneya and others, in 1990, studied the various physical properties as a 

function of <r> to find extrema near <r> = 2.4/2.67.11  Two of their significant findings 

are that the Vickers Hardness Number (VHN) and the glass transition temperature (Tg), 

both increased with the connectivity of the network.12,13   A linear equation is fit to the 

hardness data and a modified Gibbs-DiMarzio equation is fit to Tg data.  The results are 

shown in Figure 1.3 and Figure 1.4.  None of the properties showed extrema at the 

topological thresholds except the molar volume, which showed a minimum.14  Their 

results are summarized in Table 1. 

 

<r> 
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Figure 1.3.  VHN as a function of the average coordination number for Ge-Se and Ge-Sb-
Se systems from static hardness measurements. A linear trend is observed.  (From 
Firstenberg15) 

Figure 1.4.  Glass transition temperature (Tg), determined from DSC measurements, 
plotted versus the average coordination number.  A modified Gibbs-DiMarzio equation is 
fit to the data.  (From Strange16) 
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Table I. Property Trends vs <r> for Glasses in the Ge-Sb-Se System.*   
Property <r> = 2.0 to 

2.4 
<r> = 2.4 <r> = 2.4 to 

tie line 
Tie line Past tie line 

 
Molar Volume 
 

Decreases Minimum Increases Maxima Decreases 

Poisson’s ratio 
 
Decreases 
 

-------------- ------------  Local 
minimum 

Local 
maximum 

 
Elastic Moduli 
 

Generally 
increase 

Some (?) 
steepening 

Generally 
increase 

Shallow local 
extrema 

Generally 
increase 

 
Vickers 
Hardness 
 

Increases ------------- ------------  Shallow local 
extrema Increases 

Indentation 
Toughness 

 
Increases 
 

------------- ------------  Maxima Decreases 

Glass 
Transition 
Temperature 

 
Increases 
 

------------- ------------  Maxima Decreases 

*(From Strange,16 which is in itself adapted from Varshneya and others11) 

 

 Senapati et al. studied the thermodynamic properties, specific heat capacity (Cp), 

coefficient of thermal expansion  (α) and isothermal compressibility (κT), as a function of 

the coordination number <r> and observed a minimum in ∆Cp and ∆α during the glass 

transition as well as in the supercooled liquid state.17  Since the increase in heat capacity 

at around Tg is due to the associated configurational changes, he concluded that the 

glasses of the coordination number 2.4 undergo the minimum configurational changes or 

the least structural relaxation on annealing.18,19  “Least structural relaxation” means that 

the coordination number, <r> = 2.4, forms the “strongest glass” as classified by C. A. 

Angell.20,21,22  Also, recent publications by Boolchand et al. suggest that <r> = 2.4 glasses 

are thermally reversible due to structural self-organization of disordered networks.23,24   

 

 Since no significant physical property showed extrema at <r> = 2.4 in the glassy 

state, later investigators focused their research on the elastic/plastic behavior of 

chalcogenide glasses. 
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1.3  OBSERVATIONS MADE BY FIRSTENBERG, STRANGE AND BOWDEN 
 

 Since dynamic micro-hardness measurements are more sensitive to structural 

changes rather than static hardness measurements, Firstenberg used a recording micro-

indenter to study the mechanical behavior of glasses.15  He observed the Dynamic 

Vickers Hardness (DVH), which is calculated from the final penetration depth, and the 

elastic energy (Ee), which is the area under the unloading curve, to show maxima at 

around <r> = 2.4 for the binary system.  However, the VHN, calculated assuming that the 

indentation retains the shape of the indenter after removal of load, did not show any 

maximum at <r> = 2.4, as we have already seen in Figure 1.3.  So, Firstenberg pointed 

out that the indenter shape is not retained during unloading and has a higher preferential 

elastic recovery in the z-direction when compared to x- and y-directions as shown in 

Figure 1.5.   

  

 
Figure 1.5.  Unloading behavior of the sample during recording micro-hardness test.  
(From Firstenberg15)  

The higher recovery of <r> = 2.4 glasses in the z-direction causes them to have a lower 

final penetration depth and this explains the trends observed in DVH and Ee.  Firstenberg 

attributed the high elastic recovery of <r> = 2.4 glasses to their high plastic yield strength 

values.  He also modeled a basic stress-strain diagram based on the assumption of ideal 

elasticity-plasticity.  The graph is shown in Figure 1.6.  This is of great significance since 

it relates all the observed trends to a basic material property, the yield stress. 
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Figure 1.6.  Stress-strain curve assuming ideal elasticity-plasticity for three glasses in the 
Ge-Se binary system.  (From Firstenberg15) 
  

Strange was originally focused on the elastic threshold behavior of chalcogenide 

glasses.16  He continued his dynamic hardness measurements using the same Vickers 

indenter but was troubled by the observations that the samples exhibited radial cracks 

around indentation corners even at loads as low as 50g.  This provoked him to 

characterize the cracking behavior.  He observed the brittleness, defined as the ratio of 

hardness to fracture toughness, to decrease and reach a minimum at <r> = 2.4 for the 

binary system, as shown in Figure 1.7.  He assumed that the recoverable elastic energy 

would have been lost in the cracking of the more brittle glass and correlated it to the 

DVH and Ee trends observed by Firstenberg. 
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Figure 1.7.  Brittleness vs <r> for glasses in Ge-Se and Ge-Sb-Se systems with data 
broken up into curves of equal Sb content. Minimization in brittleness occurs in the 
binary system at <r> = 2.4.  (From Strange16) 
 
 A square pyramid indenter magnifies the stresses around indentation corners and 

hence radial cracks are observed.  Also, it creates a higher plastic deformation at very 

small loads, which makes the calculation of yield point extremely difficult.  Bowden, in a 

recent Bachelor’s thesis, carried out dynamic micro-hardness measurements using a 1mm 

diameter spherical (also called Hertzian or Brinell) indenter, in an attempt to explain the 

property maxima observed in chalcogenide glasses.25  He observed the shape of 

indentations using a Zygo interferometer.  No cracking was observed, but plastic “pileup” 

was evident around the circumference of indentation, as shown in Figure 1.8.  The strain 

values observed using a 1mm ball indenter are low when compared to a Vickers indenter.  

So, in order to have high strain values, which, in turn, would maximize all the observed 

effects, an indenter of lower diameter should be chosen. 
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Figure 1.8.  Laser interferometer trace of an indentation on selenium glass formed under a 
1375g load using a 1mm diameter spherical indenter (top).  A cross section of the 
indentation is shown at the bottom.  (From Bowden25)      
 
1.4  OBJECTIVE OF THE PRESENT STUDY 
 

 The objective of this study is to carry out dynamic and static micro-hardness 

measurements to confirm the results obtained by prior investigators.  Two spherical 

indenters are used for dynamic analysis; one is of 400µm diameter and the other 2mm.  

Brittleness and fracture toughness calculations were performed using static indentation 

measurements to confirm the results obtained by Strange.  Finally, a finite element 

analysis of the glass, assuming elasticity-plasticity, was done to simulate the dynamic 

indentation behavior.  The computed results are then compared with the experimental 

data in order to calculate the yield stress of glass with respect to the coordination number.    
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1.5 GLASS SAMPLES USED FOR THE ANALYSIS 
 

 The procedures for fabricating chalcogenide glasses from raw materials are given 

elsewhere.26  Numerous glass samples, labeled in reference to the individuals who made 

 

Figure 1.9.  Ge-Sb-Se phase diagram indicating the glass compositions used for the 
analysis.  Glasses made by two prior investigators are separately indicated.   
  

it, were available and stored in airtight containers.  Among them, the binary and ternary 

samples used for this study were selected from a list of glasses melted by two recent prior 

investigators, Strange and Bowden, who worked on the system of interest (Ge-Sb-Se).  

Samples, which were in good condition, were chosen in such a way that they cover the 

entire spectrum of average coordination numbers, from <r> = 2.0 to <r> = 2.8.  The glass 

compositions used for the study are summarized in Table 2 and their locations in the 

phase diagram are shown in Figure 1.9.           

 

 

 

Glasses made by Bowden
Glasses made by Strange

 Se (100%) 

 Sb (50%) Ge (50%) 
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Table II.  Binary and Ternary Chalcogenide Glass Compositions Used for the Analysis 
 

<r> Ge (mol%) Sb (mol%) Se (mol%) 
2.05 
2.1 

2.16 
2.18 
2.2 
2.2 

2.24 
2.26 
2.3 
2.3 

2.32 
2.34 
2.35 
2.4 
2.4 

2.47 
2.5 
2.5 

2.56 
2.56 
2.6 
2.6 
2.7 
2.8 

2.5 
2.5 
8 

6.82 
5 
10 
12 

7.06 
15 
7.5 
16 

7.32 
17.5 
20 

12.5 
17.65 

25 
17.5 
28 

18.3 
30 

22.5 
40 

27.5 

0 
5 
0 

4.55 
10 
0 
0 

11.77 
0 
15 
0 

19.51 
0 
0 
15 

11.77 
0 
15 
0 

19.51 
0 
15 
0 
15 

97.5 
92.5 
92 

88.63 
85 
90 
88 

81.17 
85 

77.5 
84 

73.16 
82.5 
80 

72.5 
70.58 

75 
67.5 
72 

62.19 
70 

62.5 
60 

57.5 
 
 

Disc-shaped samples were used for both static and dynamic hardness 

measurements.  The samples were already ground flat with 600 and 1000 SiC grits and 

well polished with 0.3µm alumina powder with surfaces parallel to within 2°.  The 

diameter and thickness of the samples ranged approximately from 8-15mm and 2-6mm 

respectively.   
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2  DYNAMIC MICRO INDENTATION MEASUREMENTS 

 
2.1  BRINELL HARDNESS NUMBER 
 

The hardness measured by indenting a smooth surface with a rigid sphere is called 

Brinell hardness.  The Brinell Hardness Number (BHN), expressed as the ratio of the load 

P to the curved area of the indentation, is given by, 

  
2P         BHN (kg/mm2) = [πD(D-√(D2-d2))] (2.1)

 
where P is the load in kg, D is the diameter of the ball in mm and d is the chordal 

diameter of the indentation in mm.  In dynamic indentation measurements, in which the 

load is continuously recorded as a function of penetration depth, different Brinell 

hardness values such as Loaded Brinell Hardness (LBH) and Dynamic Brinell Hardness 

(DBH) can be calculated based on the penetration depth as will be seen a little later. 

 

2.2  EXPERIMENTAL PROCEDURE 
 

 Micro-hardness measurements were made using the load and depth sensing 

dynamic micro-indenter (shown in Figure 2.1).  The design, calibration and operating 

procedure of the instrument are given elsewhere.27  The load is measured by a strain 

gauge load cell, which has a sensitivity of 0.0002N, and penetration by a Linear Voltage 

Displacement Transducer (LVDT), the accuracy of which is measured to be ±0.08µm.  

The system is connected to a computer, in which a Labview based program controls and 

records data.  Many micro-mechanical properties can be measured from a single dynamic 

indentation curve. 

 

 The indenter used for the analysis is a Brale diamond ball indenter with a tip 

diameter of 400µm (shown in Figure 2.2).  It is ground, lapped and polished to control 

the conical angle to 120 ± 0.35 degrees.  The spherical tip of the diamond cone should 

have a mean radius of 0.200 ± 0.010mm.  The diamond indenter and the indenter holder 

are coaxial to within 0.5 degrees.   
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 Each dynamic indentation is done to a maximum load of 1500g.  A threshold 

value of 5g is used to eliminate the error arising from the noise in the machine.  The 

indenter was driven at a rate of 0.2µm/sec.  A 15 second dwell time was used at the 

maximum load.  The compliance of the machine, determined by indenting a flat steel disk 

with a hardened steel punch, was estimated to be 0.006534µm/g and was subtracted from 

the indentation curves.      

 

 Since the sample surfaces were almost parallel, no mounting medium or sample 

holder is used while making measurements.  Mounting media can result in some amount 

of bending by the specimen and can yield different results.  The stage on which the 

sample is kept can be adjusted in all of the three directions x, y or z.  Before every sample 

is indented, the height of the sample stage is adjusted (z-directional movement) so that 

the indenter tip just touches the sample surface.  The initial 2 to 3 indentations were spent 

in bringing the instrument to “equilibrium” and were not taken for analysis.  After 

making all the initial adjustments, each sample was indented 15 times for good statistical 

sampling of data. 

 

 Results obtained with the 400µm diameter indenter were compared with previous 

results obtained by Bowden, who used a 1mm diameter indenter.  The total and final 

penetration depth values and more importantly plasticity values turned out to be 

significantly different.  As a result, a decision was made to use a larger diameter indenter 

for quantitative comparison of results.  A 2mm ball indenter, made of hardened steel, was 

chosen (shown in Figure 2.2).  

 

 



 14

 

Figure 2.1.  The dynamic recording microindenter used for this study.  Shown in the top 
of the picture is the PZT column with dual capacitance gauges.  The spherical indenter, 
sample and the translatable stage are also shown. 

 
Figure 2.2.  Indenters used for dynamic micro hardness measurements.  Shown in the left 
is the 2mm ball indenter with hardened steel tip.  Shown in the right is the 400µm 
indenter with the diamond tip. 
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2.3  RESULTS AND DISCUSSION 
 

2.3.1  LBH, DBH and Elastic Modulus 
 

Different hardness values, elastic modulus and indentation energies are some of 

the properties calculated from the indentation curves.  Loaded Brinell Hardness (LBH), 

which is calculated from the maximum load and maximum penetration depth, is given by 

the relation, 

 

Pmax  

LBH (GPa) = πDhmax 
(2.2)

 

where Pmax is the maximum load in N and hmax is the maximum penetration depth in µm, 

which gives LBH the units of GPa. 

  

 

 

 

 

 

 

         

 
 
 
 
 
 

 

 

Figure 2.3.  LBH vs <r> for the binary Ge-Se system shown for two indenters.  A linear 
trend is observed in both cases. The values measured using 400µm indenter are 
considerably higher when compared to those using 2mm indenter. 
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Figure 2.4.  LBH vs <r> for the ternary Ge-Sb-Se system shown for two indenters.  A 
linear trend is observed, with 400µm indenter giving higher values. 

 

LBH, calculated from the above formula, is plotted as a function of the average 

coordination number <r> for binary and ternary glasses as shown in Figure 2.3 and 

Figure 2.4.  Also shown is the comparison between the two indenters.     
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detail elsewhere15 and the primary goal is to compare the values obtained with different 
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compare the results quantitatively, the LBH values obtained by Bowden with a 1mm ball 

indenter are also taken.25  The relationships obtained with the three indenters for the Ge-

Se binary system are given as follows. 

 

LBH (GPa) = 0.2545<r> − 0.1912  (400µm ball indenter) 

LBH (GPa) = 0.085<r> − 0.0206  (1mm ball indenter) 

LBH (GPa) = 0.0311<r> + 0.0405  (2mm ball indenter) 

 

Clearly, LBH400µm > LBH1mm > LBH2mm.  Therefore, it is to be concluded that for both 

binary and ternary systems, the values of LBH decrease as the indenter diameter 

increases. 

 

 Dynamic Brinell Hardness (DBH), on the other hand, depends on the value of 

final penetration depth, as given by the relationship, 

 

Pmax  

DBH (GPa) = πDho 
(2.2)

 

where ho is the final penetration depth in µm.  The plot of DBH vs <r> is shown for both 

binary and ternary glasses in Figure 2.5 and Figure 2.6.  The trend is almost similar to the 

one observed with LBH.  DBH increases with the average coordination number for both 

binary and ternary systems, with 400µm ball indenter on the higher side.  However, in the 

binary system, there is a local maximum observed in the curve at the physical threshold 

<r> = 2.4, for both indenters (400µm and 2mm), which is not the case with LBH.  Since 

DBH depends on the value of final penetration depth (ho), a higher value of ho would 

lower the DBH value and vice versa. So, as stated by Firstenberg, a lower final/plastic 

penetration depth value or a higher preferential elastic recovery of glasses of the 

composition Ge20Se80, causes them to have a higher DBH value when compared to other 

glasses in the system.  
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Figure 2.5.  DBH as a function of <r> for the binary Ge-Se system, shown for both 
indenters.  A hump is observed in the curve at <r> = 2.4.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6.  DBH as a function of <r> for the ternary system.  No clear trend is observed 
except an increase in DBH value with <r>. 
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Figure 2.7.  Values of DBH, plotted as a function of <r> for binaries, obtained with a 
1mm indenter.  Reproduced from Bowden.25   
 

As already pointed out, the DBH values obtained in the binary Ge-Se system, 

with a 400µm ball indenter are higher than those obtained with a 2mm ball indenter.  
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obtained with 400µm and 2mm indenters. 
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 Oliver and Pharr calculated the composite modulus, Ec, of the specimen-indenter 

system from the load-displacement curve through the equation, 

 

S√π  Ec = 2√A 
(2.3)

 

where A is the area of plastic deformation and S is the slope of the initial part of the 

unloading curve.28,29  In deriving the above equation, they assumed the contact area 

between the indenter and the specimen to remain constant during the initial withdrawal of 

the indenter.  However, later analysis by King showed that the unloading stiffness is 

independent of the indenter geometry.30   

 

The composite modulus, Ec, can also be given by, 

 

1 (1 - ν2) (1 - νi
2) 

Ec 
= E + Ei 

(2.4)

 

where E and ν are the elastic modulus and Poisson’s ratio for the specimen and Ei and νi 

are the same parameters for the indenter.  From the above two equations, the equation for 

calculating the elastic modulus of the specimen can be written as, 

 

(1 - ν2) E = 
2√A (1 - νi

2) 
(2.5)

 S√π 
- Ei  

 

Elastic moduli of the binary and ternary chalcogenide glasses are calculated using 

Equation 2.5.  The plots are shown in Figure 2.8 and Figure 2.9.  In both systems, E 

increases linearly with <r>, representing the increase in network connectivity and bond 

energy.  In the binary system, the values obtained with 400µm ball and 2mm ball 

indenters are quite close.  The 2mm ball indenter shows a very small local maximum 

around <r> = 2.4, but this can be considered inconclusive. 
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Figure 2.8.  Elastic Modulus increases with network connectivity when plotted as a 
function of <r> for the binary Ge-Se system. Values obtained with both indenters are 
shown and the line is drawn as a guide to the eye.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9.  Elastic Modulus as a function of <r> for the ternary Ge-Sb-Se system.  A 
similar trend is observed for both indenters.  
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A similar trend, i.e. a linear increase of elastic modulus with <r>, is observed in 

the ternary system.  However, in order to study the difference in E values obtained with 

both indenters, linear equations are fit to the data.  The 400µm ball indenter values are 

approximately 2GPa higher than those obtained by the 2mm ball indenter.  Such high E 

values can be attributed to the higher initial unloading stiffness or lesser elastic recovery 

created by the 400µm ball indenter.  Though the values of elastic modulus obtained by 

both indenters are slightly different, they fall in the same range of E values obtained by 

prior investigators. 

 

Though there is some amount of scatter present in the elastic modulus values, 

when plotted as a function of <r>, it is expected to follow a linear trend due to the 

following reasons. 

 Prior researchers have calculated the values of elastic modulus of glasses from <r> = 

2.0 to <r> = 2.8 using ultrasonic velocimetry measurements and established a linear 

relationship between E and <r>.  While ultrasonic velocimetry techniques do not 

involve any compression of the sample, dynamic indentations do.  So, the deviation 

of E values from linearity could be attributed to the differences in the methods used. 

 Several researchers have proposed different formulae for calculating the elastic 

modulus of specimens from dynamic indentation curves.  The one proposed by Oliver 

and Pharr is based on the assumption that the indentation retains the geometry of the 

indenter during initial unloading.  This could as well contribute to the deviations in 

data. 

 Finally, the sensitivity of chalcogenide glasses to surrounding temperature changes, 

due to their very low glass transition temperatures, may play a major role as well.   

 

2.3.2  Total and Elastic Energies of Indentation 
 

In a typical load versus displacement curve, the area under the loading curve 

represents the total energy (Et) measured during the indentation.  The area under the 

unloading curve represents the energy that is recoverable elastically (Ee).  The difference 

between the two curves is the unrecoverable plastic or hysteresis energy (Eh).  
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Measurement of the energies of indentation helps in understanding the effects of 

elasticity/plasticity created by the different indenters. 

 

The total energy (Et) is plotted as a function of <r> for both binary and ternary 

systems as shown in Figure 2.10 and Figure 2.11.  In both systems, the total energy (Et) 

decreases as the coordination number or the network stiffness increases.  Also, in both 

systems, the total energy measured with the 400µm ball indenter is much higher than that 

measured by the 2mm ball indenter.  Such high Et values can be attributed to high 

penetration depths created by the 400µm ball indenter.  For low coordination numbers, 

the difference is significantly high and it decreases as the coordination number increases. 

 

The trends observed in the total energy values with respect to the average 

coordination number and indenter diameter can be studied simultaneously by plotting on 

a 3-D graph, such as the one shown in Figure 2.12.  The data obtained using 1mm 

diameter indenter are taken from Bowden’s thesis.25  Changes in Et values with respect to 

<r> are joined separately for different indenters.  Another important observation is that 

the total energy decreases as the indenter diameter increases.  An arrow pointing 

downwards indicates this.   
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Figure 2.10.  Total energy as a function of the coordination number for the binary Ge-Se 
system.  Et decreases as the connectivity of the network increases.  Also shown is the 
comparison between two indenters. 
 

 
Figure 2.11.  Et Vs <r> for the ternary Ge-Sb-Se system for both indenters.  A similar 
trend is observed. 
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Figure 2.12.  Changes in total energy with respect to both the indenter diameter and 
coordination number for the binary system.  The data obtained by three indenters are 
separately joined.  The arrow points towards the direction of decreasing total energy with 
increasing indenter diameter.  
 
 

 

 Elastic energy is normalized to total energy and plotted as a function of <r> for 

both binary and ternary systems as shown in Figure 2.13 and Figure 2.14.  In both 

systems, the value of normalized elastic energy increases as the coordination number 

increases.  However, in the binary system, the elastic energy approaches a shallow 

maximum at the physical threshold, <r> = 2.4.  It is already seen that the value of DBH 

approaches a maximum at <r> = 2.4.  In the ternary system, there may be a shallow 

maximum closer to <r> = 2.6. 
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Figure 2.13.  Normalized elastic energy is plotted as a function of the average 
coordination number for the binary Ge-Se system.  A broad hump is noted at <r> = 2.4 
for both indenters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.14.  Normalized elastic energy is plotted as a function of <r> for the ternary 
system.  No such trend is observed.   
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 Another important observation is that the values of normalized elastic energy 

obtained with the 2mm ball indenter are higher when compared to the 400µm indenter.  

This makes sense since a larger diameter indenter does create lesser total and final 

penetration depths than a smaller diameter indenter.  By plotting a 3-D diagram such as 

the one shown in Figure 2.15, the effects can be best understood.  The values of 

normalized elastic energy increase as the coordination number increases and approach a 

maximum at <r> =2.4 in the binary system.  A similar trend is observed for all the three 

indenters.  Also, the values of Ee/Et increase as the indenter diameter increases.   An 

arrow pointing upwards indicates this.  Values for 1mm indenter are taken from 

Bowden’s thesis.25      

 

 

Figure 2.15.  Normalized elastic energy is plotted with respect to both the indenter 
diameter and <r> for the binary system.  Values obtained with different indenters are 
separately joined.  Arrow is pointing towards the direction of increasing elastic energy 
with indenter diameter. 
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2.3.3  Trends Observed in Normalized Plasticity Values 
 

As already mentioned, the difference between the total energy and elastic energy 

represents plastic energy.  Values of plastic energy are normalized to total energy and 

plotted as a function of coordination number for both systems as shown in Figure 2.16 

and Figure 2.17.  For both systems, the values of normalized plastic energy decreases as 

the coordination number increases.  Also important are the values obtained with different 

indenters.  The difference between the values obtained with both indenters is high for low 

coordination numbers and decreases as <r> increases.  It is clearly seen that a 400µm ball 

indenter creates higher plasticity when compared to a 2mm ball indenter.  In fact, the 

values obtained for low coordination numbers using 400µm ball indenter are 

approximately two times higher than those obtained with the 2mm ball indenter.  

Normalized plastic energy versus <r> versus indenter diameter is shown in Figure 2.18.  

Unsurprisingly, the values of normalized plastic energy decrease as the indenter diameter 

and coordination number increase.  Values for 1mm indenter are taken from Bowden.25   
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Figure 2.16.  Normalized plastic energy decreases down the line, when plotted as a 
function of <r>, for the binary system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17.  Normalized plastic energy is plotted as a function of <r> for the ternary 
system.  A similar trend is observed for both indenters. 
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Figure 2.18.  Normalized plastic energy is plotted with respect to both the indenter 
diameter and <r> for the binary system.  Arrow points towards the direction of decreasing 
plastic energy with increasing indenter diameter.  
 
 The trends observed with elastic and plastic energies normalized to total energy 

explain the behavior of different indenters.  Another valid comparison would be to 
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created by different indenters.  Such a plot is shown in Figure 2.19 for the binary Ge-Se 

system.  The trend is similar to the one observed with normalized plastic energy.  The 

plasticity/elasticity ratio decreases as the indenter diameter and coordination number 

increase.  A very important observation is that glasses of the coordination number 2.4 

have the lowest plasticity/elasticity ratio when compared to other glasses.  This is 

observed with all the indenters.  This means that glasses of the coordination number 2.4 

not only show a high elastic recovery, but also have the lowest percentage of plasticity in 

the system.  Again this can be explained by the fact that they have the lowest ho/hmax (the 

ratio of final to total penetration depth) value in the system.                 
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Figure 2.19.  The ratio of plasticity to elasticity is plotted as a function of both the 
indenter diameter and the coordination number for the Ge-Se binary system.  Arrow 
points towards the direction of decreasing plasticity/elasticity ratio with increasing 
indenter diameter.  Values for 1mm indenter are taken from Bowden. 
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For a spherical indenter, the contact area can be given by the following equation, 

 

A = π(Dh – h2)               (2.6) 

 

where D is indenter diameter and h is its penetration depth.31  Integrating the above 

equation between the limits 0 and h, the volume being penetrated by the indenter is given 

by, 

      

Dh2 h3 V   = π ( 2 - 3 )                             (2.7) 
 

Equation 2.7 is used to calculate the indentation volume.  The plastic energy normalized 

to the total system energy is plotted for both binary and ternary systems as shown in 

Figure 2.20 and Figure 2.21.  The density data required for the calculations are taken 

from a paper by Senapati et al.32  Total system energy is calculated as the sum of total 

energy of indentation (Et) and the total covalent bond energy of the network.  The 

densification component of plastic deformation increases with <r> and so is the covalent 

bond energy of the network.  As expected, the plastic energy normalized to the total 

system energy decreases as the coordination number increases.  The plastic component of 

the total indentation energy decreases rapidly (elastic energy increases rapidly) till <r> = 

2.4 and a slight increase is observed at higher coordination numbers.  The same effect is 

observed with both indenters with 400µm ball indenter giving higher values.  Since the 

indentation volume is proportional to the diameter, a larger diameter indenter would 

create a higher penetration volume than a smaller diameter indenter.  So, the number of 

atoms displaced by the 2mm ball indenter would be higher than that displaced by the 

400µm ball indenter.  
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Figure 2.20.  Plastic energy normalized to total system energy of the network for different 
indenters as a function of <r> for the binary system. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.21.  Plastic energy normalized to total system energy of the network for different 
indenters as a function of <r> for the ternary system. 
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To summarize, the total and plastic energies decrease as the indenter diameter and 

the coordination number increase.  Elastic energy increases as <r> increases showing a 

local maximum <r> = 2.4.  The calculation of energies consumed/recovered normalized 

to total system energy of the network shows similar trends for both binary and ternary 

systems.  The consumed plastic energy normalized to total system energy of the network 

decreases rapidly till <r> = 2.4.  However, there is a slight increase observed in the values 

at higher coordination numbers.  This is more pronounced in the ternary system.  The 

plastic component of indentation energy observed with a 2mm ball indenter is lower than 

that observed with the 400µm ball indenter.   
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3  STATIC INDENTATION MEASUREMENTS 

 

3.1 ROOM TEMPERATURE MEASUREMENTS 
 
3.1.1  Experimental Procedure 
 

Since the dynamic micro-indentation measurements showed extrema at <r> = 2.4 

in properties such as DBH and Ee, static indentations were performed to find extrema, if 

any, in properties such as indentation toughness or brittleness as observed by Strange.16  

A Buehler Micromet II hardness tester fitted with a Vickers’ diamond tip was used for 

making the measurements.  Each sample was indented with loads of 50, 100, 200, 300, 

and 500g.  The loading time was 15 seconds in order to include the observations of 

possible viscous flow and plastic deformation.  The resulting impressions and crack 

diagonals were measured using a video microscope.  A Hitachi KP-D50 digital video 

camera connected to a digital image capture system was used for observing the 

indentations.  Measurements were done using Image Pro Plus 3.0 image analysis 

software.  Before the actual measurements were carried out, the system was calibrated 

using a micrometer slide.  

 

After each indentation, the crack lengths (C1 and C2) and indentation diagonals (a1 

and a2) were measured.  Both of them are averaged for calculations.  There exists some 

difficulty in measuring the exact length of cracks if they are at a slight angle to the 

indentation diagonal.  In those cases, measurements were done parallel to the indentation 

diagonal.  The longest crack is always chosen for the measurement.  Most importantly, if 

no cracks are seen around indentation corners, then the crack length is assumed to be of 

the same length as the indentation diagonal.    

 

3.1.2  Results and Discussion 
 

Vickers Hardness Number, calculated from the applied load, P and the indentation 

diagonal, a is given by the equation, 
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                                  VHN (GPa) = 1.854 P/a2    (3.1) 

 

VHN is plotted as a function of <r> in Figure 3.1, just to confirm the expected 

linear trend.  It is approximated by the relationship, 

 

                             VHN (GPa) = 1.9541<r> - 3.4589    (3.2) 

 

which is quite close to the relationship shown in Figure 1.3. 

 

 

 

 

 

               

 

 

 
 
 
 
 
 
 
 
Figure 3.1.  VHN vs <r> plot for Ge-Se and Ge-Sb-Se systems. 
 

Fracture toughness, Kc, and brittleness, B, can be calculated using the indentation 

diagonal and crack length measurements.  Fracture toughness is calculated using the 

equation proposed by Anstis et al.,33 
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where § is a material independent constant for Vickers produced radial cracks (= 0.016), 

co is the average length of the radial crack in metres, E and H are the Young’s modulus 

and hardness of the material in MPa, which gives Kc the units of MPa√m.   

 

Lawn and Marshall,34 in 1979, defined brittleness as the ratio of hardness to 

fracture toughness (H/K), from which Sehgal et al. developed the expression,35 

 

                                            B = (1/0.0056)3/2 (co/a)3/2 P-1/4       (3.4) 

 

Brittleness and fracture toughness, calculated using the above equations were 

correlated to compositions to observe any property threshold. The brittleness was found 

to attain a minimum at Ge20Se80 and the fracture toughness maximized at the same 

composition.  Low coordination number glasses have glass transition temperatures close 

to room temperature.  So, in order to have only structural factors, and not thermal factors, 

contributing to trends in data, indentations were then performed at –80°C.   

 

3.2 INDENTATIONS AT  –80°C 
 
3.2.1  Experimental Procedure 
 

Cold indentations were performed at –80°C using methanol and liquid nitrogen.  

An aluminum receptacle was fabricated for this purpose.  The inner bath was filled with 

methanol (Mallinckrodt AR grade), which was chilled to its freezing point (–97.6°C) by 

slowly adding liquid nitrogen in the outer bath.  A plastic extension rod was used to 

extend the Vickers diamond tip.  A type T thermocouple was used to record the 

temperature.  Indentations were performed at –80°C and continued as the temperature 

increased, one indentation every 3 degrees centigrade, till it reached the room 

temperature. 
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3.2.2  Results and Discussion 
 

The plots of brittleness versus <r> for the binary and ternary systems are shown in 

Figure 3.2 and Figure 3.3.  Binary glasses of the composition Ge20Se80 have the lowest 

brittleness in the system for both room temperature data and cold indentation data.  This 

suggests that the structural consideration of optimized connectivity, which is making 

them resistant to fracture, is independent of temperature.  The brittleness is high for low 

coordination number glasses until it drops down to a minimum at <r> = 2.4.  It increases 

again drastically to a maximum at <r> = 2.8.  The cold indentation data for low 

coordination number glasses differ much from room temperature data when compared to 

high coordination number glasses.  This means that the “chilling” significantly increased 

the hardness and brittleness of the low coordination number glasses while high 

coordination number glasses are less affected by it.  However, as seen in Figure 3.3, no 

clear trend is observed for ternary glasses. 

 

Plot of indentation toughness, calculated at room temperature, versus <r> is 

shown in Figure 3.4 for the binary and ternary systems.  Again, a maximum is observed 

in Kc at <r> = 2.4 for the binary system.  Glasses below and above <r> = 2.4 have values 

far below 0.8 MPa m1/2 such that the Kc value of Ge20Se80 is almost twice or thrice that of 

other glasses.  However, calculated values for ternary glasses are very low and no clear 

trend is observed.  Indentation toughness calculations performed for the cold indentation 

data also show similar results.  
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Figure 3.2.  Brittleness is plotted as a function of <r> for the Ge-Se binary system.  A 
minimization is observed at <r> = 2.4 at room temperature as well as at –80°C. RT stands 
for Room Temperature.  Brittleness values for RT indentations and cold indentations are 
slightly different for low coordination number glasses, which are joined by separate 
curves.  
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Figure 3.3.  Brittleness is plotted as a function of <r> for the Ge-Sb-Se system.  No clear 
trend is observed. 
 

Since the Kc value for the Ge20Se80 glass was very much higher than those of 

other glasses, two other samples of the same composition (US* and DS** as shown in 

Figure 3.4) were chosen to verify the results.  The sample labeled DS is ~ 4 years old and 

the other sample labeled US is ~ 8 years old.  Both of them also showed very high 

toughness values.  This leads to the conclusion that binary glasses of the coordination 

number 2.4 show very high toughness values with little changes over time.  

 
So far, it is seen that binary glasses of the coordination number 2.4 have 

maximum Kc, Ee and DBH.  Strange16 attributed this to the observed minimum in 

brittleness.  Firstenberg15 attributed the same to the high plastic yield strength of those 

glasses.  In order to understand the mechanics, which leads to extrema in properties, a 

finite elemental simulation was performed. 

 
 
 
                                                
* Glass melted by U. Senapati 
** Glass melted by D. Strange 
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Figure 3.4.  Fracture toughness, measured at room temperature, is plotted as a function of 
<r> for both binary and ternary systems.  Maximization occurs at <r> = 2.4 for the binary 
system.  No such trend is observed in the ternary system.  DS and US represent the <r> = 
2.4 binary glass samples made by two prior investigators.      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5.  Fracture toughness, measured at –80°C, is plotted as a function of <r> for 
both binary and ternary systems.  A similar maximization is observed at <r> = 2.4 for the 
binary system. 
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4  FINITE ELEMENT ANALYSIS OF INDENTATION 

 

4.1  INTRODUCTION TO CONTACT MECHANICS 
 

A fundamental problem in the mechanics of materials is the contact between two 

non-conforming bodies.   Examples include the friction and wear of engineering solids, 

powder compaction processes which rely upon the plastic indentation of deformable 

particles for their success, indentation tests to measure the elastic/plastic properties of 

materials and so on.  Spherical indentations, using a steel ball, have been in play since 

Brinell introduced it in 1901.  Recently, load-depth sensing micro-indenters using 

diamond spherocones, from which representative stress-strain curves can be produced, 

have been developed.  They can also be coupled with finite element method to investigate 

strain hardening behavior of materials.   

 

Hertz was the first to analyze the stresses at the contact of two elastic solids.  He 

derived the basic relationship between displacement (h), and force applied to an indenter 

(P), namely,36 

 

h = (3P/4Er)2/3(1/R)1/3 
 

(4.1)

where R is the nominal radius of the indenter tip and Er is the reduced modulus which is 

related to the elastic modulus of the sample, E, through the elastic modulus of the 

indenter, Ei, and Poisson’s ratio of the indenter, νi, and the sample ν by, 

 

1 (1 - ν2) (1 - νi
2) 

Er 
= E + Ei 

(4.2)

 

 The next important step towards the determination of plastic properties of 

materials by indentation techniques is attributed to Meyer, who derived the following 

empirical relation,37 

 

Kam P = Dm-2 (4.3)
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where m is the hardening factor, D is the indenter’s diameter, a is the contact radius of 

the indentation, and K is a material constant.  The above relation, however, ignored the 

sinking-in or piling-up of the material at the circumference of contact area.  Norbury and 

Samuels, later on, defined a numerical constant, c, which was demonstrated to be 

invariable for a given material and depended only on the strain hardening exponent.  It is 

given by the relation,38 

 

c2 = a2/Dh (4.4)
  

 Hill, in 1945, showed that for ideal plastic materials,39 

 

Pm = cY (4.5)
 

where Pm is the mean resistive pressure or hardness of the material and Y is the yield 

stress.  Tabor, in 1948, showed that the constant c has a value of 1.1 at the onset of plastic 

deformation and has a value of 3 in the fully plastic state.  He also related the true plastic 

strain, εp, to the ratio of residual contact diameter, d, and indenter diameter, D, by the 

empirical relation,40 

     

εp = 0.2d/D (4.6)
 

 Sneddon, in 1965, studied the relationship between load and penetration with a 

rigid punch of arbitrary profile and developed the equation,41 

 

4µa P = 
1 - ν 

h (4.7)

    

where a is the radius of the punch, µ is the shear modulus, and ν is Poisson’s ratio.  The 

above equation is especially valid for the indentation of elastic half-space by a flat, 

cylindrical punch where the contact area between the indenter and the specimen remains 

constant during the initial withdrawal of the indenter.  King, later on, obtained an 

equation relating the elastic modulus of the specimen to the initial slope of the unloading 

curve by differentiating Equation 4.7, 
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dP/dh = βEr√A (4.8)
 

where A is the contact area of the indenter and β is a numerical constant whose value for 

a circular punch is one.30 

 

 The analysis of Oliver and Pharr showed that the load-displacement relationships 

for many simple punch geometries could conveniently be written as,28,29 

 

P = αhm (4.9)
 

where α and m are constants.  Also, the unloading data can be approximated by the 

relationship, 

 

P = A(h – ho)m (4.10)
 

where A and m are constants and ho is the final displacement after unloading.  Suresh et 

al.,37 using load-depth sensing spherical indentations, analyzed the fully plastic regime of 

the unloading curve and proposed an equation for calculating the value of yield point.  It 

is given by, 

 

P 0.002 
σy = 3A ( εr )n

(4.11)

   

where σy is the yield strength of the material, which corresponds to a plastic strain of 

0.002, εr is the true characteristic strain, A is the true contact area at loading and n is the 

strain hardening exponent.  The above equation is used to some extent to estimate the 

yield stress and strain hardening exponent of materials since it does not require a prior 

knowledge of material-related parameters.      
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4.2  FINITE ELEMENT SIMULATION OF GLASSES 
 

Elastic-plastic simulation of the indentation process was performed using ANSYS 

version 7.0 software package.  The material was assumed to be isotropic, homogenous 

and rate-independent and was modeled using VISCO106 linear 4-node elements.  A rigid 

indenter-flexible substrate contact analysis was chosen.  The indenter (target) and 

substrate (contact) were modeled using TARGE169 and CONTA172 elements 

respectively.  The whole system with the indenter and substrate was axisymmetric with 

1317 nodes and 1287 elements.  Bilinear isotropic strain hardening behavior was 

assumed, which uses a Von Mises yield criterion coupled with a user-defined strain 

hardening curve and an associative flow rule.  The solution uses Newton-Raphson 

iteration with a minimum of 20 substeps and a maximum of 2000 substeps.  The number 

of substeps can be varied accordingly to vary the number of loading and unloading data 

points. 

                       

Figure 4.1.  3/4th slice of the expanded model with the indenter and substrate at zero 
contact.   
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A 3/4th 3D cyclic expansion of the model, with the rigid indenter just touching the 

substrate, is shown in Figure 4.1.  The model was initially built with 228 nodes and 

analyzed.  The size of the model and mesh were optimized until the dynamic indentation 

curves were smoothened.  The radial and vertical dimensions of the body were 20 times 

the indentation depth, which made sure that the model approximated that of a semi-

infinite body.  Driving the target vertically through a pilot node by the application of a 

constant force, simulating the experimental conditions, made indentations.  The target can 

also be driven to a constant penetration depth, with penetration depth values taken from 

experiments. 

 

4.3  FEA CALCULATIONS AND COMPARISON WITH EXPERIMENTAL RESULTS 
 

Elastic modulus, Poisson’s ratio and an assumed yield stress are input to the 

analysis.  Elastic modulus and Poisson’s ratio were taken from prior investigators results 

through the equations,11,17 

 

                                 E (GPa) = 15.29<r> - 21.68      (4.12) 

    ν = 0.5055 - 0.0919<r>      (4.13) 

 

The FEA simulation yielded load vs penetration curves from which both ho/hmax and E 

(from the slope of the unloading curve) could be computed.  Both the values were then 

compared with experimental data and a new yield stress input was made.  Matching of E 

was more sensitive to the yield stress input.  Iteration was stopped when E matched 

within ∼1.5GPa (Figure 4.2).  The FEA calculated values were generally higher most of 

the time.  Matching of ho/hmax allowed a good match between experimentally measured 

LBH or DBH and those calculated (Figure 4.3 for the 2mm ball indenter).  The important 

point is that the local maximum observed in experimental DBH at <r> = 2.4 for binary 

glasses is also observed in computed results.  This indicates that glass of the coordination 

number 2.4 recovers to a lower final penetration depth according to both experimental 

and computed results.      
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Figure 4.2.  Difference between computed and experimental E values.  A difference of 
zero indicates a perfect match while a positive value indicates that the computed value is 
higher than the experimental value.      

 

Figure 4.3.  Comparison between computed and experimental LBH and DBH values 
obtained with a 2mm ball indenter.  
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Figure 4.4.  Computed yield stress as a function of <r> for the binary system.  Apparent 
linearity is indicated by the dotted line. 
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Stresses and strains calculated from the finite element analysis are plotted as a 

function of <r> for the 400µm ball indenter in Figure 4.5 and Figure 4.6 respectively.  Y-

axis represents the direction of loading (lateral crack driving stress) whereas X- and Z- 

axes represent radial and median crack driving stresses respectively.  It is noted that the 

stresses increase and strains decrease as <r> increases.  This is due to increasing elastic 

modulus values with <r>.  The lateral crack driving stress increases as the load increases, 

attains a maximum at the maximum load and starts to decrease as the load is retracted.  

However, the radial crack driving stress continues to increase even during unloading.  

The X-unloading stress remains almost constant throughout the composition range 

indicating no difference in cracking behavior between different glasses.     

 

 Figure 4.7 and Figure 4.8 show similar plots for stresses and strains as a function 

of <r> for 2mm ball indenter.  Lateral crack driving stress and strain values observed 

with the 400µm ball indenter are almost twice than that observed with 2mm ball indenter.  

So, it can be concluded that the maximum stresses and strains decrease as the ball 

diameter increases.  

 
Figure 4.5.  Radial, lateral and median (X, Y and Z) crack driving stresses as a function 
of <r> for the binary system obtained with the 400µm ball indenter. 
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Figure 4.6.  Radial, lateral and median (X, Y and Z) crack driving strains as a function of 
<r> for the binary system obtained with the 400µm ball indenter. 
 
 

Figure 4.7.  Similar plot showing stresses versus <r> for the 2mm ball indenter. 
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Figure 4.8.  Similar plot showing strains versus <r> for the 2mm ball indenter.  
 

  

The computed yield stress, plotted as a function of <r> for the Ge-Se binary 

system, is shown in Figure 4.4.  Yield stress, in general, increases as the coordination 

number increases.  This is due to the increase in the stress built-up rate with <r>.  

However, the plot does not seem to follow a linear trend.  To be noted are the values of 

yield stress in the vicinity of <r> = 2.4 and <r> = 2.67.  Those values seem to be slightly 

deviated from the linear trend observed for other glasses.  The computed FEA results 

show that those small deviations in yield stress from apparent linearity may be sufficient 

to produce extrema in properties observed.         
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5  OVERALL DISCUSSION AND CONCLUSIONS 

 
The theory of rigidity percolation may be used to explain the trends observed in 

Ge-Se binary glasses.  It is not exactly known what happens when antimony is added to 

the binary system.  One possibility is that antimony may increase the connectivity of the 

network thereby increasing the hardness or brittleness of the glass.  This hypothesis is 

consistent with all the observations.  If glasses of the compositions Ge20Se80 (<r> = 2.4) 

and Ge12.5Sb15Se72.5 (<r> = 2.4) are compared, it is clear that twice as many 3-coordinated 

antimony atoms replace every 4-coordinated germanium atom.  Since equal amount of 

selenium atoms are also taken out of the system, the connectivity of the ternary glass 

should be higher than that of the binary glass. 

 

In the binary system, glasses below and above <r> = 2.4 showed significant 

cracking during static indentation measurements.  Brittleness was found to approach a 

minimum and fracture toughness a maximum at <r> = 2.4.  However, the radial crack 

driving stresses calculated from FEA do not show any difference in the cracking behavior 

between different glasses.  If glasses of the coordination number 2.4 do not show any 

radial cracking on unloading, there should be a maximum observed in the radial crack 

driving stress at <r> = 2.4.  Instead, the radial crack driving stress is relatively higher for 

the coordination number 2.8, which has the highest brittleness value in the system. 

 

The various criteria for defining the preferred direction of crack propagation fall 

into two categories: energy methods and stress methods.  Energy methods propose that 

the crack will propagate in the direction of the maximum energy release rate while the 

stress methods assume that the crack will propagate in the direction that maximizes the 

fracture.42  According to energy methods, if Ge20Se80 glasses were to have higher fracture 

toughness values or higher preferential elastic recovery in the loading direction, lateral 

cracking should predominate.  However, the values of lateral crack driving stress during 

unloading do not show any dip at that composition. 
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Poisson’s ratio is a means to describe the relationship between the volume change 

and stress applied.  Poisson’s ratio decreases linearly with <r> for the binary system 

following the equation, ν = 0.5055 - 0.0919<r>, as determined by Sreeram and others.11  

If <r> = 0, then ν ~ 0.5, results in an ideally plastic or completely incompressible system, 

which, in turn, means that the material maintains constant volume regardless of the stress 

applied (zero elastic modulus or infinite bulk modulus). 

 

Piling-up of the material around the indentation corners is directly proportional to 

the depth penetrated by the indenter; lower penetration depths giving lower pile-up 

heights.  Also, higher elastic recovery of the material in the vertical direction during 

unloading results in lower plasticity created by the indenter, which, in turn, results in 

lower pile-up height around the indention corners.  If the plastic deformation maintains 

constant volume during indentation, then the pile-up height observed would still be low.  

Since glasses of the coordination number 2.4 have the highest elastic recovery, the 

amount of plastically deformed material around the indentation corners would be low, 

giving rise to low pile-up heights.  This can be observed using surface roughness (contact 

profilometer/laser interferometer) measurements.  Furthermore, a smaller diameter ball 

indenter would penetrate deeper in to the material and hence would create higher pile-up 

heights around indention corners when compared to a larger diameter indenter. 

 

The maximum observed in DBH and fracture toughness for Ge20Se80 may be 

attributed to the observed minimum in brittleness and it can be argued that the lack of 

radial cracking leaves more of the energy of indentation available for elastic recovery.  

However, brittleness is itself a ratio of hardness to fracture toughness.  Yield stress, on 

the other hand, is an intrinsic property of a material and properties such as the fracture 

toughness can directly be correlated to it.  Calculations from FEA also support this 

argument.  Even though there is no difference seen in cracking behavior between 

different glasses, there are differences in the values of yield stress.  Yield stress values for 

glasses of the composition Ge20Se80 are slightly deviated from the linear trend observed 

for other glasses, which may be sufficient to produce extrema in DBH.          
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The conclusions drawn from this work can be summarized as follows:   

 Binary glasses show maximum elastic recovery, DBH, indentation toughness and 

minimum brittleness at <r> = 2.4.   

 However, ternary glasses do not show any such trends.   

 Examination of the energies of indentation as a function of the indenter diameter 

reveals that the elastically recovered energy increases with the indenter diameter.  

Additionally, the plasticity/elasticity ratio approaches a minimum at the composition 

Ge20Se80.   

 The data computed from finite element calculations also show similar trends for LBH 

and DBH.  Increasing elastic moduli cause stresses to increase with <r> for a given 

indenter ball diameter.  Furthermore, maximum stresses are found to decrease with 

increasing indenter ball diameter.   

 Computed yield stresses, when plotted against <r>, show small deviations from 

apparent linearity at <r> = 2.4.  This may be sufficient to produce extrema in the 

properties observed. 
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6  FUTURE WORK 

 
The term “coordination number” itself is a simple representation of the 

connectivity of the network and does not give a complete picture of the network 

structure.  This is evident when the two glasses Ge20Se80 (<r> = 2.4) and Ge12.5Sb15Se72.5 

(<r> = 2.4) are compared; one showing the “magic trends” whereas the other does not.  In 

order to have a complete understanding of the network structure, the bonding between 

individual atoms need to be studied.  Molecular dynamic simulations of glasses would 

reveal the bonding between individual atoms, the percentage of bonding between 

particular pair of atoms and so on. 

 

The surface roughness of the indented samples can be observed using contact 

profilometer or laser interferometer.  Using these measurements, the amount of plastic 

pile-up around indentation corners of different glasses can be compared. 

 

 The cracking behavior of different glasses needs to be studied.  The effect of 

formation of radial, median and lateral cracks during loading and unloading can be 

included in the model and hence the elastic recovery measurements can directly be 

correlated to it.   

 

 SEM and EDS analysis of etched samples would determine the presence of phase 

separation, which, in turn, can be used to establish the immiscibility and spinodal domes. 

 

 Finite element and molecular dynamic simulations can be used to study the 

response of atoms to indentations.  The displacement of atoms due to indentations can in 

turn be used to calculate the bond energy in the localized area of indentation, which, in 

turn, would lead to a better understanding of the network.   
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