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Abstract

Chalcogenide glasses exhibit properties applicable to a wide range of fields, including elec-

trical and optical switching and the transmission of infrared radiation. In this thesis, we

adopt a hierarchical multiscale modeling approach to investigate the fundamental physics

of chalcogenide systems.

Our multiscale modeling begins in Part I at the quantum mechanical level, where

we use the highly accurate Møller-Plesset perturbation technique to derive interaction po-

tentials for elemental and heterogeneous chalcogenide systems. The resulting potentials

consist of two-, three-, and effective four-body terms.

In Part II, we use these ab initio derived potentials in classical Monte Carlo sim-

ulations to investigate the structure of chalcogenide glasses. We discuss our simulation

results in relation to the Phillips model of topological constraints, which predicts critical

behavior in chalcogenide systems as a function of average coordination number.

Lastly, in Part III we address the issue of glass transition range behavior. After

reviewing previous models of the glass transition, we derive a new model based on nonequi-

librium statistical mechanics and an energy landscape formalism. The new model requires

as input a description of inherent structure energies and the transition energies between

these structures. To address this issue, we derive an eigenvector-following technique for

mapping a multidimensional potential energy landscape. This technique is then extended

for application to enthalpy landscapes. Our model will enable the first-ever calculation of

glass transition behavior based on only ab initio derived physics.

xvi



Part I

Quantum Mechanics
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Chapter 1

Many-Body Quantum Theory

1.1 Overview

Chalcogenide glasses exhibit unique electrical and optical properties applicable

to a wide range of fields, including electrical and optical switching and the transmission

of infrared radiation. However, these glasses must meet requirements for thermal and

mechanical properties such as glass transition temperature, strength, and toughness in

order to be suitable for many applications. Experiments have shown the promising but

often puzzling behavior of various chalcogenide glass compositions, but there is yet to be

a thorough investigation of chalcogenides based on first principles. In this thesis, we

adopt a hierarchical multiscale modeling approach to investigate the fundamental physics

of chalcogenide systems.

A schematic diagram of our multiscale approach is shown in Figure 1.1. We begin

at the quantum mechanical level, where individual electrons and nuclei are the fundamental

units under study. At this level, we use the highly accurate Møller-Plesset perturbation
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Figure 1.1. Schematic diagram of our multiscale modeling approach.

technique to derive interaction potentials for elemental and heterogeneous chalcogenide

systems. We begin by simulating elemental sulfur, selenium, tellurium, arsenic, and ger-

manium, and then proceed to binary and ternary systems. A cluster expansion approach

is used to isolate contributions due to two-, three-, and higher-body effects.

These ab initio potentials are then used in classical atomistic simulations to char-

acterize the structure of several chalcogenide systems, including S, Se, Te, S-Se, Se-Te,

Ge-Se, As-Se, and Ge-As-Se. The model potentials are shown to successfully reproduce ex-

perimental structural data, including pair distribution functions and coordination number

distributions. Our simulations also give support for a rigidity percolation threshold in the

Ge-Se and As-Se systems. Our work is the first to derive explicit interatomic potentials

from ab initio simulations for chalcogenide systems. It is also the first to bridge the gap

between quantum and classical simulations for chalcogenide systems, offering a true mul-

tiscale approach that combines the accuracy of quantum computations with the size and

efficiency of classical simulation techniques. Our approach is shown to provide advantage
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over traditional modeling using semi-empirical and density functional methods.

Finally, we address the issue of glass transition range behavior. After reviewing

previous models of the glass transition, we derive a new model based on nonequilibrium

statistical mechanics and an energy landscape formalism. The new model requires as in-

put a description of inherent structure energies and the transition energies between these

structures. To address this issue, we derive an eigenvector-following technique for mapping

a multidimensional potential energy landscape. This technique is then extended for ap-

plication to enthalpy landscapes. Our model will enable the first-ever calculation of glass

transition behavior based on only ab initio physics.

Some of the work presented in this thesis has been published in the following

journal articles:

• J.C. Mauro and A.K. Varshneya, “Modeling of Selenium Telluride Glass,” Phys. Sta-
tus Solidi B, 242 [6] R46-8 (2005).

• J.C. Mauro and A.K. Varshneya, “Model Interaction Potentials for Selenium from Ab
Initio Molecular Simulations,” Phys. Rev. B, 71, 214105 (2005).

• J.C. Mauro and A.K. Varshneya, “Monte Carlo Simulation of SexTe1−x Glass Struc-
ture with Ab Initio Potentials,” Phys. Rev. B, 72, 024212 (2005).

• J.C. Mauro, R.J. Loucks, and J. Balakrishnan, “A Simplified Eigenvector-Following
Technique for Locating Transition Points in an Energy Landscape,” J. Phys. Chem.
A, 109 [42] 9578-83 (2005).

• J.C. Mauro and A.K. Varshneya, “A Nonequilibrium Statistical Mechanical Model of
Structural Relaxation in Glass,” J. Am. Ceram. Soc., 89 [3] 1091-4 (2006).

• J.C. Mauro and A.K. Varshneya, “Ab Initio Modeling of Glasses in the Sulfur-
Selenium System,” Am. Ceram. Soc. Trans., in press (2006).

• J.C. Mauro, R.J. Loucks, and J. Balakrishnan, “Split-Step Eigenvector-Following
Technique for Exploring Enthalpy Landscapes at Absolute Zero,” J. Phys. Chem.
B, 110 [10] 5005-11 (2006).
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• J.C. Mauro, R.J. Loucks, J. Balakrishnan, and A.K. Varshneya, “Potential Energy
Landscapes of Elemental and Heterogeneous Chalcogen Clusters,” Phys. Rev. A, 73,
023202 (2006).

• J.C. Mauro and A.K. Varshneya, “Multiscale Modeling of GeSe2 Glass Structure,” J.
Am. Ceram. Soc., in press (2006).

The following papers have also been submitted for journal publication:

• J.C. Mauro and A.K. Varshneya, “Ab Initio Modeling of Rigidity Percolation and
Incipient Plasticity in Ge-Se Glasses,” J. Non-Cryst. Solids, submitted (2006).

• J.C. Mauro and A.K. Varshneya, “Multiscale Modeling of Arsenic Selenide Glass,” J.
Non-Cryst. Solids, submitted (2006).

• J.C. Mauro, R.J. Loucks, J. Balakrishnan, and A.K. Varshneya, “Mapping the Po-
tential Energy Landscapes of Selenium Clusters,” J. Non-Cryst. Solids, submitted
(2006).

• J.C. Mauro, R.J. Loucks, J. Balakrishnan, and A.K. Varshneya, “Ab Initio Modeling
of Volume-Temperature Curves for Glassforming Systems,” J. Non-Cryst. Solids,
submitted (2006).

The work in this thesis has also been the subject of a number of presentations:

• J.C. Mauro, “Thermodynamic Models of the Glass Transition,” Presented to the CES
585 (Glass Transition Range Behavior) Class at Alfred University, Apr. 6, 2005.

• J.C. Mauro, “Inherent Structures, Inverse Melting, and Kauzmann Curves,” Presented
to the CES 585 (Glass Transition Range Behavior) Class at Alfred University, Apr.
18, 2005.

• J.C. Mauro, “Modeling and Simulation at Corning Incorporated,” Presented at the
Undergraduate Engineering Seminar at Alfred University, Apr. 28, 2005.

• J.C. Mauro and A.K. Varshneya, “Ab Initio Modeling of Glasses in the Sulfur-
Selenium System,” 6th Pacific Rim Conference on Ceramic and Glass Technology,
PACRIM-GOM-62-2005, Sep. 16, 2005.

• J.C. Mauro, “Multiscale Modeling of Chalcogenides,” Multiscale Materials Modeling
Research Group, Massachusetts Institute of Technology, Nov. 4, 2005.

• J.C. Mauro, “Multiscale Modeling of Chalcogenides,” Center for Materials Research,
Cornell University, Nov. 14, 2005.
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• J.C. Mauro and A.K. Varshneya, “Ab Initio Modeling of Chalcogenide Glass Struc-
tures,” XV Symposium on Non-Oxide and New Optical Glasses, Bangalore, India,
Apr. 10, 2006.

• J.C. Mauro, R.J. Loucks, J. Balakrishnan, and A.K. Varshneya, “Nonequilibrium
Statistical Mechanical Model of Structural Relaxation in Glass,” XV Symposium on
Non-Oxide and New Optical Glasses, Bangalore, India, Apr. 10, 2006.

• J.C. Mauro, R.J. Loucks, J. Balakrishnan, and A.K. Varshneya, “Mapping the Poten-
tial Energy Landscapes of Chalcogen Systems,” XV Symposium on Non-Oxide and
New Optical Glasses, Bangalore, India, Apr. 10, 2006.

1.2 Computational Quantum Mechanics

Our multiscale modeling begins at the quantum mechanical level, where we are

concerned with solving the Schrödinger equation for a large system of electrons and nu-

clei. In this chapter, we introduce the Schrödinger equation and discuss the construction

of wavefunctions for a many-body system. The many-body Schrödinger equation is not

generally soluble by analytical means, so we must turn to numerical simulations in order to

compute the energy of realistic molecular systems.

Numerical solutions of the Schrödinger equation rely on the variational principle,

which involves construction of a trial wavefunction with a number of adjustable parameters.

Minimization of system energy with respect to these parameters can provide a good estimate

of the true ground state energy of a system.

The many-body problem is simplified through use of the Born-Oppenheimer ap-

proximation, which separates electronic motion from that of the much slower nuclei. Hartree-

Fock theory further simplifies the problem by assuming that the electrons see each other as

an average field. This allows for the introduction of a single-electron Fock operator, which,

when coupled with the variational principle, allows for efficient solution of the Schrödinger
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equation for large molecular systems.

The accuracy of the Hartree-Fock result can be improved through use of Rayleigh-

Schrödinger perturbation theory. Specifically, the Møller-Plesset technique uses the Rayleigh-

Schrödinger formalism to correct for the true electron-electron interactions in a molecular

system. In this thesis, we make use of second- and fourth-order Møller-Plesset perturbation

theory to derive ab initio potentials for chalcogenide systems.

This chapter assumes a basic familiarity with the postulates of quantum mechanics

and with Dirac notation. The interested reader is encouraged to review any of several

excellent textbooks1—4 for an introduction to these concepts. The many-body problem

itself is treated more thoroughly by a number of authors.5—9

1.3 The Schrödinger Equation

The quantum mechanical state of a system can be determined by solving the

Schrödinger equation. Using Dirac notation, we write

Ĥ |Ψi = E |Ψi , (1.1)

where Ĥ is the Hamiltonian operator for the system. The eigenket |Ψi represents a quantum

state of the system with energy eigenvalue E. Since Ĥ is Hermitian, |Ψi can be written as

a linear combination of eigenkets,

|Ψi =
X
i

ci |Φii , (1.2)
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where the various |Φii form a complete set and are normalized such that

hΦj |Φii = δij . (1.3)

The probability amplitude cj can be found by multiplying both sides of Equation (1.2) by

the bra hΦj |,

hΦj |Ψi =
X
i

ci hΦj |Φii = cj . (1.4)

In a similar fashion, the eigenket |Ψi can be related to the wavefunction Ψ (r) by

hr|Ψi = Ψ (r) , (1.5)

since Ψ (r) is simply a probability amplitude in r-space.

1.4 Identical Particles

All particles in nature can be classified as either bosons or fermions, where bosons

have an integer spin (s = 0, 1, 2, . . .) and fermions have a half-integer spin (s = 1
2 ,
3
2 ,
5
2 , . . .).

Consider a system of two identical particles with overlapping wavefunctions Ψa and Ψb.

In quantum mechanics, these particles are indistinguishable. Bosons, such as photons and

gluons, obey a symmetric wavefunction,

Ψ (r1, r2) =
1√
2
[Ψa (r1)Ψb (r2) +Ψb (r1)Ψa (r2)] , (1.6)
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where the positions of the particles, r1 and r2, can be exchanged without altering the

composite wavefunction of the system, Ψ (r1, r2). Fermions, such as protons, neutrons, and

electrons, obey an antisymmetric wavefunction,

Ψ (r1, r2) =
1√
2
[Ψa (r1)Ψb (r2)−Ψb (r1)Ψa (r2)] , (1.7)

where exchange of the particle positions results in negating the wavefunction:

Ψ (r1, r2) = −Ψ (r2, r1) . (1.8)

It follows that two identical fermions cannot occupy the same state, since in this case the

wavefunction itself vanishes:

Ψ (r1, r2) =
1√
2
[Ψa (r1)Ψa (r2)−Ψa (r1)Ψa (r2)] = 0. (1.9)

This is the famous Pauli exclusion principle.

In this thesis, we are concerned with solving the Schrödinger equation for a many-

body fermionic system. An antisymmetric wavefunction for an N-fermion system can be
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constructed using a Slater determinant,

Ψ (r1, r2, r3, . . . , rN ) =
1√
N !

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄

Ψ1 (r1) Ψ2 (r1) Ψ3 (r1) · · · ΨN (r1)

Ψ1 (r2) Ψ2 (r2) Ψ3 (r2) · · · ΨN (r2)

Ψ1 (r3) Ψ2 (r3) Ψ3 (r3) · · · ΨN (r3)

...
...

...
. . .

...

Ψ1 (rN) Ψ2 (rN) Ψ3 (rN ) · · · ΨN (rN)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
. (1.10)

Interchanging the coordinates of any two fermions corresponds to interchanging two rows

of the Slater determinant. This changes the sign of the determinant and hence ensures

the antisymmetry of the wavefunction. Having two fermions occupying the same state

corresponds to having two equal columns in the Slater determinant, which makes the entire

determinant zero.

1.5 The Variational Principle

The variational method is a technique for estimating the ground state energy of

any system by guessing a trial eigenket |Ψvi. The trial eigenket can be written as a linear

combination of the correct eigenkets,

|Ψvi =
X
i

ci |Ψii , (1.11)

such that

Ĥ |Ψvi =
X
i

ciEi |Ψii . (1.12)

10



Multiplying by the bra

hΨv| =
X
i

c∗i hΨi| , (1.13)

we obtain

hΨv| Ĥ |Ψvi =
X
j

c∗j hΨj |
X
i

ciEi |Ψii , (1.14)

or

hΨv| Ĥ |Ψvi =
X
j

X
i

c∗jciEi hΨj |Ψii . (1.15)

This reduces to

hΨv| Ĥ |Ψvi =
X
j

X
i

c∗jciEiδij =
X
i

|ci|2Ei, (1.16)

which can be expanded as

hΨv| Ĥ |Ψvi = |c0|2E0 + |c1|2E1 + |c2|2E2 + · · · . (1.17)

Since the ground state energy is lower than each of the excited state energies (E0 < E1 <

E2 < · · · ), we know that

hΨv| Ĥ |Ψvi ≥ |c0|2E0 + |c1|2E0 + |c2|2E0 + · · · , (1.18)

Since hΨv|Ψvi = 1, this simplifies to

hΨv| Ĥ |Ψvi ≥ E0. (1.19)

Equation (1.19) is known as the variational principle. Although its derivation is
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very simple, the implications are quite profound. Any trial eigenket |Ψvi that is chosen

will yield an energy no less than the actual ground state energy E0 of the system. Thus,

a variational solution to the Schrödinger equation can be found by choosing a form for

|Ψvi with a number of adjustable parameters. These parameters can then be optimized by

minimizing hΨv| Ĥ |Ψvi. If a realistic form of |Ψvi is chosen (such as a linear combination

of atomic orbitals for a molecular system), the minimum value of hΨv| Ĥ |Ψvi will represent

a good approximation to the actual ground state energy E0. This is an extremely powerful

technique for solving for the ground state of any quantum mechanical system.

1.6 The Born-Oppenheimer Approximation

The most fundamental approximation made in many-body quantum theory is the

Born-Oppenheimer approximation, which separates the Hamiltonian of the fast-moving

electrons from that of the slower-moving nuclei such that the electrons are considered to

move in a field of fixed nuclei. The general Hamiltonian for a molecular system is

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN , (1.20)

where

T̂e =
X
i

p̂2i
2m

(1.21)

is the kinetic energy of the electrons and

T̂N =
X
n

p̂2n
2Mn

(1.22)
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is the kinetic energy of the nuclei. The repulsive electron-electron Coulomb potential is

denoted V̂ee, the attractive electron-nucleus interaction is V̂eN , and the repulsive nucleus-

nucleus interaction is V̂NN . The electrons and nuclei have masses of m and Mn, respec-

tively, and p̂ is the momentum operator.

The Born-Oppenheimer approximation takes advantage of the fact that Mn À m,

such that the kinetic energy of the nuclei is much less than that of the electrons. This

allows us to write two separate Hamiltonian which act on different time scales:

Ĥelec = T̂e + V̂ee + V̂eN , (1.23)

and

Ĥnuc = T̂N + V̂NN . (1.24)

The solution of the electronic Schrödinger equation,

Ĥelec |Ψeleci = Eelec |Ψeleci , (1.25)

is the electronic eigenstate,

|Ψeleci = |Ψelec ({ri} ; {Rn})i , (1.26)

which depends explicitly on the electronic coordinates {ri} but only parametrically on the

nuclear positions {Rn}. In other words, for different values of {Rn}, |Ψeleci is a different

function of {ri}. After determining |Ψeleci, the repulsive energy of the fixed nuclei must
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be included in the final value for the molecular energy:

Etot = Eelec + hΨnuc| V̂NN |Ψnuci . (1.27)

Since the computation of hΨnuc| V̂NN |Ψnuci is trivial, from now on we will only be concerned

with solving for the electronic system of Equation (1.25). As such, we will drop the “elec”

subscripts.

1.7 Hartree-Fock Theory

Even with the Born-Oppenheimer approximation, a solution of the Schrödinger

equation for a many-electron system is not readily obtained. Hartree-Fock theory sim-

plifies the problem further by assuming that the electrons see each other as an average

field. To derive this theory, let us consider a trial wavefunction Ψv, given in the form of a

Slater determinant with a number of variational parameters. The expectation value of the

Hamiltonian operator Ĥ is a number given by

E [Ψv] = hΨv| Ĥ |Ψvi , (1.28)

where E [Ψv] is a functional of Ψv. Suppose we vary Ψv by an arbitrarily small amount,

Ψv → Ψv + δΨv. (1.29)
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The energy then becomes

E [Ψv + δΨv] = hΨv + δΨv| Ĥ |Ψv + δΨvi (1.30)

= E [Ψv] + hδΨv| Ĥ |Ψvi+ hΨv| Ĥ |δΨvi+ · · · (1.31)

= E [Ψv] + δE + · · · , (1.32)

where δE is the first variation in E, including all terms that are linear in the variation δΨv.

According to the variational method, we are looking for the form of Ψv where

E [Ψv] is a minimum. In other words, we want to find the Ψv for which δE = 0. Given a

variational trial eigenket,

|Ψvi =
X
i

ci |Ψii , (1.33)

we wish to minimize the energy

E = hΨv| Ĥ |Ψvi =
X
i

X
j

c∗i cj hΨi| Ĥ |Ψji (1.34)

subject to the constraint that the trial wavefunction remains normalized, i.e.,

hΨv|Ψvi− 1 =
X
i

X
j

c∗i cj hΨi|Ψji− 1 = 0. (1.35)

Using Lagrange’s method of undetermined multipliers, we can minimize the functional

L = hΨv| Ĥ |Ψvi− E (hΨv|Ψvi− 1) (1.36)

=
X
i

X
j

c∗i cj hΨi| Ĥ |Ψji− E
X
i

X
j

(c∗i cj hΨi|Ψji− 1) , (1.37)
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where E is the Lagrange multiplier. The first variation in L is

δL =
X
i

X
j

δc∗i cj hΨi| Ĥ |Ψji− E
X
i

X
j

δc∗i cj hΨi|Ψji+X
i

X
j

c∗i δcj hΨi| Ĥ |Ψji− E
X
i

X
j

c∗i δcj hΨi|Ψji = 0. (1.38)

After collecting terms and interchanging indices, we obtain

X
i

δc∗i
X
j

(Hijcj − ESijcj) + c.c. = 0, (1.39)

where Hij = hΨi| Ĥ |Ψji. The linear expansion functions |Ψii are not assumed to be

orthogonal, but rather overlap according to

Sij = hΨi|Ψji . (1.40)

Since δc∗i is arbitrary, we must have

X
i

X
j

(Hijcj − ESijcj) = 0. (1.41)

This can be rewritten in matrix notation as

Hc = ESc, (1.42)

where H and S are matrices containing the elements of Hij and Sij , respectively, and c is

a column vector of the cj values.
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The Hamiltonian itself can be written as

Ĥ =
X
i

ĥi +
1

2

X
i

X
j 6=i

ĝij , (1.43)

where ĥi contains the single-electron energy terms,

ĥi = −
~2

2m
∇2i −

X
n

Znq
2
e

4π�0 |ri −Rn|
, (1.44)

and ĝij is the electron-electron interaction,

ĝij =
q2e

4π�0 |ri − rj |
. (1.45)

The first term in Equation (1.44) is the kinetic energy of the electron. The second term

accounts for the electron-nuclear interaction potential, where the summation is over all

nuclei in the system. The position of the nth nucleus is Rn, and its atomic number is Zn;

qe is the elementary charge, and �0 is the permittivity of free space.

In order to simplify the many-body problem, we introduce an effective single-

electron operator, f̂i, called the Fock operator:

f̂i = −
~2

2m
∇2i −

X
n

Znq
2
e

4π�0 |ri −Rn|
+ v̂HF

i . (1.46)

The Fock operator is the sum of the core Hamiltonian operator ĥi and an effective one-

electron potential operator, v̂HF
i , called the Hartree-Fock potential. The Hartree-Fock

potential is the average potential experienced by an electron due to the presence of the
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other electrons. It is defined as

v̂HF
i = Ĵi − K̂i, (1.47)

where Ĵi is the Coulomb operator,

Ĵi =
q2e
4π�0

X
j

Z
d3rjΨ

∗
jr
−1
ij Ψj , (1.48)

and K̂i is the exchange operator,

K̂i =
q2e
4π�0

X
j

Z
d3rjΨ

∗
jr
−1
ij Ψi. (1.49)

In terms of these operators, we can write the energy of the system as

EHF =
X
i

¿
Ψi

¯̄̄̄
ĥi +

1

2

³
Ĵi − K̂i

´¯̄̄̄
Ψi

À
. (1.50)

As we shall see in the next two sections, the Hartree-Fock energy EHF can be corrected for

the true electron-electron interactions using perturbation theory.

1.8 Rayleigh-Schrödinger Pertubation Theory

Suppose that we have solved the Schrödinger equation,

Ĥ0

¯̄̄
Ψ
(0)
i

E
= E

(0)
i

¯̄̄
Ψ
(0)
i

E
, (1.51)
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for some Hamiltonian Ĥ0 and now wish to perturb the system with a new interaction

Hamiltonian ĤI . In other words, we wish to solve the new eigenvalue problem,

Ĥ |Ψii =
³
Ĥ0 + ĤI

´
|Ψii = Ei |Ψii , (1.52)

where the eigenkets and eigenvalues of Ĥ0 have already been determined. Rayleigh-

Schrödinger perturbation theory is a systematic procedure for obtaining approximate solu-

tions to the above perturbed problem by building on the known solutions of the unperturbed

case. This is done by introducing an order parameter λ, which is later set to unity, and

writing

Ĥ = Ĥ0 + λĤI . (1.53)

The exact eigenvalues of Equation (1.52) can be expanded in a Taylor series in λ,

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · . (1.54)

Similarly, the eigenkets can be written as

|Ψii =
¯̄̄
Ψ
(0)
i

E
+ λ

¯̄̄
Ψ
(1)
i

E
+ λ2

¯̄̄
Ψ
(2)
i

E
+ · · · . (1.55)

Substituting these expanded forms into Equation (1.52), we obtain

³
Ĥ0 + λĤI

´³¯̄̄
Ψ
(0)
i

E
+ λ

¯̄̄
Ψ
(1)
i

E
+ λ2

¯̄̄
Ψ
(2)
i

E
+ · · ·

´
=

³
E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · ·

´³¯̄̄
Ψ
(0)
i

E
+ λ

¯̄̄
Ψ
(1)
i

E
+ λ2

¯̄̄
Ψ
(2)
i

E
+ · · ·

´
. (1.56)
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Collecting the zeroth-order λ0 terms, we obtain the unperturbed eigenvalue problem

Ĥ0

¯̄̄
Ψ
(0)
i

E
= E

(0)
i

¯̄̄
Ψ
(0)
i

E
, (1.57)

which has already been solved. The corrections to E(0)i and
¯̄̄
Ψ
(0)
i

E
are found by considering

the higher powers of λ.

Equating the coefficients of λ1, we obtain the first-order pertubation equation

³
Ĥ0 −E

(0)
i

´ ¯̄̄
Ψ
(1)
i

E
=
³
E
(1)
i − ĤI

´ ¯̄̄
Ψ
(0)
i

E
. (1.58)

The first-order correction to the energy, E(1)i , can be found by multiplying both sides of the

equation by the unperturbed bra
D
Ψ
(0)
i

¯̄̄
, such that

E
(1)
i =

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
i

E
. (1.59)

In other words, the first-order correction to the energy is simply the expectation value of

the perturbation in the unperturbed state.

The first-order correction to the eigenstate can be found by noting that the various¯̄̄
Ψ
(0)
i

E
eigenstates form a complete set. Taking

¯̄̄
Ψ
(n)
i

E
(n = 0, 1, 2, . . .) to be mutually

orthogonal, we write ¯̄̄
Ψ
(1)
j

E
=
X
i6=j

ci

¯̄̄
Ψ
(0)
i

E
. (1.60)
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Substituting into Equation (1.58), we have

³
Ĥ0 −E

(0)
j

´X
i6=j

ci

¯̄̄
Ψ
(0)
i

E
=
³
E
(1)
j − ĤI

´ ¯̄̄
Ψ
(0)
j

E
, (1.61)

or X
i6=j

ci

³
E
(0)
i −E

(0)
j

´ ¯̄̄
Ψ
(0)
i

E
=
³
E
(1)
j − ĤI

´ ¯̄̄
Ψ
(0)
j

E
. (1.62)

Multiplying by
D
Ψ
(0)
k

¯̄̄
,

X
i6=j

ci

³
E
(0)
i −E

(0)
j

´ D
Ψ
(0)
k

¯̄̄
Ψ
(0)
i

E
= E

(1)
j

D
Ψ
(0)
k

¯̄̄
Ψ
(0)
j

E
−
D
Ψ
(0)
k

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
, (1.63)

which reduces to

X
i6=j

ci

³
E
(0)
i −E

(0)
j

´
δik = E

(1)
j δjk −

D
Ψ
(0)
k

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
. (1.64)

Since j 6= k, we have

ck

³
E
(0)
k −E

(0)
j

´
= −

D
Ψ
(0)
k

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
, (1.65)

and

ck =

D
Ψ
(0)
k

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
E
(0)
j −E

(0)
k

. (1.66)

Substituting into Equation (1.58), we obtain the first-order correction to the eigenstate,

¯̄̄
Ψ
(1)
j

E
=
X
i6=j

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
E
(0)
j −E

(0)
i

¯̄̄
Ψ
(0)
i

E
. (1.67)
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Hence, the energy eigenvalues and eigenkets according to first-order perturbation theory

are

Ei ≈ E
(0)
i +

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
i

E
(1.68)

and

|Ψii ≈
¯̄̄
Ψ
(0)
i

E
+
X
i6=j

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
E
(0)
j −E

(0)
i

¯̄̄
Ψ
(0)
i

E
, (1.69)

respectively.

A more accurate approximation can be obtained by considering second- and higher-

order corrections. Equating the λ2 coefficients of Equation (1.56) and multiplying by
D
Ψ
(0)
i

¯̄̄
,

we obtain

E
(2)
i =

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(1)
i

E
. (1.70)

Substituting Equation (1.67) into the above expression, we have

E
(2)
j =

D
Ψ
(0)
j

¯̄̄
ĤI

X
i6=j

D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E
E
(0)
j −E

(0)
i

¯̄̄
Ψ
(0)
i

E
, (1.71)

which simplifies to

E
(2)
j =

X
i6=j

¯̄̄D
Ψ
(0)
i

¯̄̄
ĤI

¯̄̄
Ψ
(0)
j

E¯̄̄2
E
(0)
j −E

(0)
i

. (1.72)

Higher order corrections can be computed in a similar fashion.

1.9 Møller-Plesset Perturbation Theory

Møller-Plesset perturbation theory is a particular implementation of the Rayleigh-

Schrödinger formalism that seeks to improve the Hartree-Fock estimate of energy by ac-
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counting for the true electron correlation energy via a perturbation expansion.10 The

Hamiltonian is partitioned as

Ĥ = Ĥ0 + ĤI , (1.73)

where Ĥ0 is the Hartree-Fock Hamiltonian, given by the summation of Fock operators:

Ĥ0 =
X
i

f̂i =
X
i

³
ĥi + Ĵi − K̂i

´
. (1.74)

Note that the Hartree-Fock energy, EHF from Equation (1.50), is not the expectation value

of the Hartree-Fock Hamiltonian. Rather, Ĥ0 is an approximate Hamiltonian for which

the Hartree-Fock ground state
¯̄
Ψ(0)

®
is an exact eigenfunction, satisfying

Ĥ0

¯̄̄
Ψ(0)

E
= E(0)

¯̄̄
Ψ(0)

E
, (1.75)

where

E(0) =
X
i

D
Ψ
(0)
i

¯̄̄
f̂i

¯̄̄
Ψ
(0)
i

E
=
X
i

εi (1.76)

is just the zeroth-order perturbation energy. According to Møller-Plesset perturbation

theory, the perturbing Hamiltonian ĤI is chosen to be the difference between the actual

electron-electron correlation energy and the average potential assumed by Hartree-Fock:

ĤI =
q2e
4π�0

X
i

X
j<i

1

rij
−
X
i

v̂HF
i (1.77)

=
q2e
4π�0

X
i

X
j<i

1

rij
−
X
i

³
Ĵi − K̂i

´
. (1.78)
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With this definition of ĤI , the first-order perturbation energy is

E(1) =
D
Ψ(0)

¯̄̄
ĤI

¯̄̄
Ψ(0)

E
(1.79)

=
q2e
4π�0

X
i

X
j<i

D
Ψ
(0)
i

¯̄̄ 1
rij

¯̄̄
Ψ
(0)
j

E
−
X
i

D
Ψ
(0)
i

¯̄̄
Ĵi − K̂i

¯̄̄
Ψ
(0)
i

E
(1.80)

= −1
2

X
i

D
Ψ(0)

¯̄̄
Ĵi − K̂i

¯̄̄
Ψ(0)

E
. (1.81)

Therefore, the Hartree-Fock energy EHF is recovered from the first-order perturbation in

Møller-Plesset theory:

EHF = E(0) +E(1) (1.82)

=
X
i

D
Ψ
(0)
i

¯̄̄
f̂i

¯̄̄
Ψ
(0)
i

E
− 1
2

X
i

D
Ψ(0)

¯̄̄
Ĵi − K̂i

¯̄̄
Ψ(0)

E
, (1.83)

which simplifies to

EHF =
X
i

D
Ψ
(0)
i

¯̄̄
ĥi + Ĵi − K̂i

¯̄̄
Ψ
(0)
i

E
− 1
2

X
i

D
Ψ(0)

¯̄̄
Ĵi − K̂i

¯̄̄
Ψ(0)

E
(1.84)

=
X
i

D
Ψ
(0)
i

¯̄̄
ĥi +

1

2

³
Ĵi − K̂i

´ ¯̄̄
Ψ
(0)
i

E
. (1.85)

Thus, the first correction to the Hartree-Fock energy occurs in the second-order of the

perturbation expansion,

E(2) =
X
i

¯̄̄D
Ψ
(0)
i

¯̄̄
ĤI

¯̄
Ψ(0)

®¯̄̄2
E(0) −E

(0)
i

. (1.86)

Implementations of Møller-Plesset perturbation theory generally use up to fourth-

order corrections. The level of theory is typically denoted by MPn, where n is the highest-
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order used in the perturbation expansion. In this thesis, we make use of MP2 and MP4

levels of theory.
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Chapter 2

Model Interatomic Potentials

Accurate descriptions of interatomic potentials are necessary to model and under-

stand the structure and properties of materials. Ideally, these potentials are developed

using a first principles approach, which is most likely to accurately describe the interatomic

forces. For larger atoms, however, this approach has proved difficult. As a result, re-

searchers often use empirical or semi-empircal models to describe the effective behavior of

the atomic systems without necessarily capturing all of the true underlying physics.

The pioneering work of Stillinger, Weber, and LaViolette11 was the first successful

attempt at describing the interatomic potentials of sulfur. Using experimental structural

data and a trial-and-error process, Stillinger and coworkers developed expressions for both

two- and three-atom interactions in liquid sulfur. Application of these potentials in a

molecular dynamics simulation successfully reproduced the short-range order found in liquid

sulfur at different temperatures. In addition, Rustad, Yuen, and Spera12 used the Stillinger

model and nonequilibrium molecular dynamics to investigate the behavior of liquid sulfur
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under extreme shear. Another empirical model of sulfur was developed by Kastowky and

Bradaczek13 and used to calculate the structure of sulfur molecules.

Oligschleger et al.14 developed model potentials for selenium following an approach

similar to Stillinger and coworkers in their model of sulfur. Combining experimental data

with density functional calculations, Oligschleger et al. developed effective two- and three-

body interaction potentials that reproduce known structures and energies of selenium clus-

ters (Se2-Se8). The Oligschleger model of selenium has been used to determine selenium

glass structure,15 vibrational properties,16 and quench behavior.17—19 While both the Still-

inger and Oligschleger models have enabled much progress in the study of sulfur and sele-

nium, they are not based on fundamental physics and hence are inherently limited in scope

and applicability.

This problem may be addressed using quantum mechanical techniques. Descôtes

and Bichara20 employed a semi-empircal quantum mechanical technique to study the struc-

ture of liquid sulfur, but their model relies on knowing much of this structural data a priori.

Thus, this model cannot be used to predict new structures beyond what has already been

measured experimentally.

Shimojo et al.21—23 investigated the structure and electrical properties of fluid se-

lenium using density functional theory (DFT), a quantum mechanical technique pioneered

by Hohenberg and Kohn24 that relates the total electronic energy to the electron den-

sity. Zhang and Drabold25, 26 utilized additional localization techniques by Sankey and

Niklewski27 to study the impact of photon absorption on the structure of amorphous se-

lenium. In addition, Shimizu et al.28 and Nakamura and Ikawa29 performed molecular
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orbital calculations on amorphous selenium and found excellent agreement between their

calculated structures and those determined by infrared/Raman spectrometry. However,

none of this work at the quantum mechanical level has attempted to bridge the gap to

larger scale molecular dynamics or Monte Carlo simulations.

There has been very little work in the modeling of elemental tellurium, and none

of it has been particularly successful. Attempts at modeling tellurium with density func-

tional theory have produced highly incorrect results,30 such as predicting a coordination

number of six for liquid tellurium instead of the correct value of two. There have been no

previous modeling efforts in the heterogeneous Se-Te system. The only previous theoretical

investigation of the heteregenous S-Se system is a DFT study of the ground states of small

S-Se clusters.31

Previous modeling of elemental arsenic includes molecular orbital32, 33 and DFT34

studies of small As clusters. Density functional theory has also been used to study the

structure of liquid arsenic35, 36 and liquid As2S3, As2Se3, and As2Te3.37

Semi-empirical models of germanium, including two- and three-body terms, have

previously been used to study elemental clusters, liquids, crystals, and the amorphous

state.38—40 Subsequent DFT studies have investigated liquid Ge41 and GeSe.42 Liquid

and glassy GeSe2 have been studied with DFT by a number of researchers.43—48 There

have been no previous modeling efforts in the Ge-As-Se system.

In this chapter, we use ab initio molecular modeling and a cluster expansion tech-

nique to derive effective interaction potentials for elemental sulfur, selenium, tellurium,

arsenic, and germanium. We also develop ab initio potentials for the binary S-Se, Se-Te,
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As-Se, Ge-Se, and Ge-As systems and the ternary Ge-As-Se system. We will use these

potentials in classical Monte Carlo simulations to investigate the structure of chalcogenide

glasses.

2.1 Choice of Basis Set

Any molecular orbital calculation requires specification of an appropriate basis

set, i.e., a linear combination of mathematical functions from which the wavefunction is

constructed. For computational convenience, basis sets are typically constructed from a

set of primitive Gaussian functions. In order to accurately describe the molecular orbitals

of a system, it is often necessary to use a large basis set composed of tens or even hundreds

of primitive Gaussians.

In our modeling of sulfur, selenium, arsenic, and germanium, we use the aug-cc-

pVQZ basis sets of Dunning and coworkers,49, 50 where the acronym stands for “augmented

correlation-consistent polarized valence quadruple-ζ.” As a “quadruple-ζ” basis set, each

orbital is represented by four basis functions, and the term “augmented” implies that addi-

tional diffuse functions are used to represent non-localized electrons; these diffuse functions

are especially important for large atoms like selenium. “Polarized valence” refers to the

presence of additional basis functions at the valence to increase mathematical flexibility.

Finally, “correlation-consistent” implies that the basis set has been optimized for calcula-

tions including electron correlations, such as in Møller-Plesset perturbation theory. The

aug-cc-pVQZ basis set allows for explicit representation of all electrons in every atom of the

simulation. For selenium, the aug-cc-pVQZ basis set uses 93 basis functions composed of
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343 primitive Gaussians.

This explicit representation of electrons does not scale well to very large atoms

such as tellurium, which has 52 electrons per atom. In this case, we employ a small-

core relativistic pseudopotential51 in which the inner shell electrons are combined with

the nucleus as an effective core. For tellurium, the n = 1, 2, 3 shells are incorporated

into the effective core, and the 4s2p6d105s2p4 outer electrons are modeled explicitly. The

corresponding basis set is denoted aug-cc-pVQZ-pp and contains 27 basis functions with 87

primitive Gaussians.

Unfortunately, we found that a combination of the aug-cc-pVQZ basis set for

selenium with the aug-cc-pVQZ-pp basis set for tellurium in heterogeneous systems did not

lead to well-converged energy values due to excessive mixing of frozen core and valence

orbitals between atoms. In order to address this problem, we use aug-cc-pVQZ-pp basis

sets for both tellurium and selenium in all heterogeneous Se-Te simulations. The aug-cc-

pVQZ-pp basis set for selenium incorporates the n = 1, 2 shells into an effective core and

models explicitly the 3s2p6d104s2p4 outer electrons.

The total potentials of individual atoms using the MP2 and MP4 levels of theory

are shown in Table I in units of hartrees, where 1 hartree = 27.211 eV = 627.51 kcal/mol =

2626 kJ/mol. We use the Gaussian 03 software52 for all quantum-level simulations. The

pseudopotential basis sets were obtained from the Extensible Computational Chemistry

Environment Basis Set Database.53
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Table I. Total Potential Energy of a Single Atom (units of hartrees)

Level of Theory MP2 MP4 MP4
Basis Set aug-cc-pVQZ aug-cc-pVQZ aug-cc-pVQZ-pp
Sulfur −397.6409303 −397.6665769 N/A
Selenium −2400.106568 −2400.124998 −2373.527355
Tellurium N/A N/A −6547.122362
Arsenic −2234.443255 −2234.457287 N/A
Germanium −2075.550212 −2075.564534 N/A

2.2 Cluster Expansion Theory

In order to calculate multi-body interaction potentials, we adopt the technique

of cluster expansion.54, 55 Cluster expansion assumes that the total potential of a system

is the sum of the single-atom energies and all combinations of higher-order interactions.

Mathematically, we can write the total potential as

U =
NX
i=1

U1,i +
NX
i=1

NX
j 6=i

U2,ij (rij) +
NX
i=1

NX
j 6=i

NX
k 6=i,j

U3,ijk (rij , rjk, θijk) + · · · , (2.1)

where Un refers to the nth-order interaction potential. In theory, the series of interactions

terminates only with the UN term, where N is the total number of atoms in the system.

However, since the magnitudes of the interactions typically decrease with increasing n (and

due to computational efficiency considerations), it is common to truncate the series after

the second- or third-order terms.

The U1 term contributes by far the most energy to the system, often several orders

of magnitude larger than all other terms combined. For a simulation with constant number

of atoms, the contribution of the total system energy from U1 will remain constant. As a
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result, for closed systems we are concerned only with modeling the interaction potentials

between atoms, i.e., Un where n > 1; the U1 term itself can be neglected in these simulations.

However, in cluster expansion theory, accurate computation of U1 is still necessary in order

to isolate the many-body effects. Since U1 is so much larger than the interaction potentials,

U1 must be computed with as much precision as possible.

For each order of interaction, it is necessary to determine the generalized coordi-

nates that affect the energy of the system. For U1 there are no degrees of freedom since

any translation of the monomer yields the same one-body potential. For U2 there is one de-

gree of freedom, rij , the two-body separation distance. For the U3 term we consider three

generalized coordinates: two separation distances, rij and rjk, and the subtended angle,

θijk. (Alternatively, we could consider three separation distances, rij , rjk, and rik, but it is

usually more intuitive and convenient to express V3 in terms of a bond angle.) The number

of generalized coordinates increases dramatically with increased order of interaction.

In order to compute an nth-order interaction potential as a function of its general-

ized coordinates, we first simulate systems of 1, 2, 3, . . ., (n− 1) particles to determine all

lower-order interactions. Then, the total potential of n-atom systems should be calculated

using different coordinates in phase space. Finally, the nth-order interaction can be isolated

by subtracting all lower-order contributions:

XX
· · ·
X

Un (· · · ) = U (· · · )−
NX
i=1

U1 −
NX
i=1

NX
j 6=i

U2 (rij)− · · ·

−
XX

· · ·
X

Un−1 (· · · ) . (2.2)

For example, after the one-body potentials have been computed, the two-body interaction
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can be calculated from the total dimer potential as

2X
i=1

2X
j 6=i

U2,ij (rij) = U (rij)−
2X

i=1

U1,i. (2.3)

Accounting for symmetry and assuming an elemental system, this simplifies to

2U2 (rij) = U (rij)− 2U1. (2.4)

The same technique can then be applied to three-body and all higher order interactions.

2.3 Two-Body Interaction Potentials

In order to be used in higher-level classical simulations (e.g., molecular dynamics

and Monte Carlo), the ab initio potentials are fit to continuous functions that accurately

reproduce the quantum data. We compute the potential energy of two-body clusters as a

function of interatomic separation distance, rij , using the MP4 level of theory. Following

cluster expansion theory, the two-body interaction potential is calculated by subtracting

the potentials of the isolated monomers from the total dimer potential:

2U2,ij (rij) = U (rij)−
2X

i=1

U1,i. (2.5)

The two-body interaction potential for the homogeneous S-S, Se-Se, Te-Te, As-As, and Ge-

Ge dimers are plotted in Figure 2.1, and potentials for the heterogeneous dimers are given

in Figure 2.2.
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Figure 2.1. Two-body interaction potentials for elemental sulfur, selenium, tellurium, ar-
senic, and germanium.
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Figure 2.2. Two-body interaction potentials for heteropolar dimers.
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Table II. Parameters for the Homogeneous Two-Body Interaction Potentials

S-S Se-Se Te-Te As-As Ge-Ge
D0 (eV) 1.80499785 1.517550 1.070009 2.092012 1.239626
r0 (Å) 1.91298491 2.173489 2.667650 2.132471 2.399151
α (Å−1) 1.91906871 1.790250 1.852509 1.609369 1.465028

We fit the ab initio data using a Morse potential56 of the form

U2 (rij) = D0e
−2α(rij−r0) − 2D0e

−α(rij−r0) (2.6)

= D0

∙³
1− e−α(rij−r0)

´2
− 1
¸
, (2.7)

where D0 is the potential well depth, r0 is the equilibrium separation distance, and α is the

shape parameter. Using a least-squares fitting routine, we determine optimized values of

D0, r0, and α for all interaction pairs. These values are provided in Tables II and III for

homogeneous and heterogeneous pairs of atoms, respectively.

Note that the total two-body interaction potential for a given dimer is

U2 (rij) + U2 (rji) = 2U2 (rij) . (2.8)

For example, the total cohesive energy of the Se-Se dimer is 2D0 = 3.0351 eV. Given a

system of N atoms, the total two-body interaction potential for the ensemble is

U2,tot =
NX
i=1

NX
j 6=i

U2,ij (rij) = 2
NX
i=1

NX
j>i

U2,ij (rij) . (2.9)
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Table III. Parameters for the Heterogeneous Two-Body Interaction Potentials

S-Se Se-Te As-Se Ge-Se Ge-As
D0 (eV) 1.6524751 1.135962 1.808382 2.751080 1.637631
r0 (Å) 2.0520452 2.449647 2.162598 2.155640 2.183368
α (Å−1) 1.8585684 1.981215 1.921385 1.405003 1.559512

2.4 Three-Body Interaction Potentials

In order to calculate three-body interaction potentials, we compute the total po-

tential energies of the various trimers of interest using the MP2 level of theory. (MP4 is

too computationally intensive for the three-body systems.) The three-body interaction is

isolated by subtracting the one- and two-body contributions:

U3,ijk (rij , rjk, θijk) = U (rij , rjk, θijk)−
3X

i=1

U1,i − 2
3X

i=1

3X
j>i

U2,ij (rij) , (2.10)

where rij is the separation distance between atoms i and j, rjk is the separation between

atoms j and k, and θijk is the bond angle. Simulations are performed for fixed values

of rij = rjk and varying bond angle θijk. Following the examples of Stillinger11 and

Oligschleger,14 we fit the three-body interaction potentials using a separable function,

U3,ijk (rij , rjk, θijk) = Rij (rij)Rjk (rjk)Θijk (θijk) . (2.11)

For the radial components, Rij (rij) and Rjk (rjk), we adopt the form

R (r) = b sech (cr) , (2.12)
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where b and c are constants. Note that for an elemental cluster such as Se-Se-Se, R (r) =

Rij (r) = Rjk (r); in a heterogeneous cluster the radial functions are defined separately for

each pairwise combination of elements.

Due to symmetry reasons the angular component, Θijk (θijk), of the three-body

potential must be an even function, so we assume a Fourier cosine solution,

Θ (θ) =
1

2
a0 +

MX
m=1

am cos (mθ) . (2.13)

We determine the constants in the above equations by fitting the ab initio data using a

least-square error routine. Extra weight is given to fitting the ab initio data at higher

bond angles, since two-body interactions dominate at low angles. We truncate the Fourier

series in Equation (2.13) with M = 18 in order to provide a good fit of important features

in the ab initio data.

Optimized parameters for the radial components are shown in Tables IV and V for

elemental and heterogeneous trimers, respectively. The Fourier coefficients for the angular

components are provided in Tables VI through XII.

Fitting is performed first on the elemental trimers, shown in Figure 2.3. While

two-body terms are dominant at low angles, care is taken that the three-body interactions

extrapolate to some positive energy at θ = 0. Low-angle extrapolatations for the elemental

trimers are shown in Figure 2.4. Next, we perform fitting for the binary sulfur-selenium

trimers, S-Se-S, S-S-Se, Se-S-Se, and S-Se-Se, shown in Figure 2.5. We take the values of

bS-S,Se-Se and cS-S,Se-Se from our previous fits of the elemental S-S-S and Se-Se-Se trimers.

Figure 2.6 shows extrapolation of these fits to low bond angles. This fitting procedure is
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repeated for the remaining binary systems, with results shown in Figures 2.7 through 2.16.

Finally, results for the ternary Ge-As-Se system are shown in Figures 2.15 and 2.16.

Note that in our formulation the total three-body interaction potential for any

three atoms, i, j, and k, is the sum of all permutations:

U3,tot = Rij (rij)Rjk (rjk)Θijk (θijk) +Rji (rji)Rik (rik)Θjik (θjik)+

Rik (rik)Rkj (rkj)Θikj (θikj) +Rki (rki)Rij (rij)Θkij (θkij)+

Rjk (rjk)Rki (rki)Θjki (θjki) +Rkj (rkj)Rji (rji)Θkji (θkji) . (2.14)

Taking into account symmetry considerations, the expression simplifies to

U3,tot = 2Rij (rij)Rjk (rjk)Θ (θijk) + 2Rij (rij)Rik (rik)Θ (θkij)+

2Rik (rik)Rjk (rjk)Θ (θjki) . (2.15)

Thus the total three-body interaction potential for the entire system is

U3,tot = 2
NX
i=1

NX
,j 6=i

NX
k 6=i,k>j

U3,ijk (rij , rjk, θijk) . (2.16)

The total interaction energies of the various trimers can be determined by summing

the two- and three-body interaction potentials. Figure 2.17 shows this total multi-body

interaction potential as a function of bond angle for the S-S-S, Se-Se-Se, and Te-Te-Te

clusters assuming equilibrium bond lengths for rij and rjk. Whereas the minimum energy

configurations for the S-S-S and Se-Se-Se trimers are at a bond angles of 115-120◦, the
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minimum energy configuration for Te-Te-Te occurs with a bond angle of 65◦. The Te-

Te-Te cluster has a second (relative) minimum around 110◦, and the S-S-S and Se-Se-Se

clusters have a second minimum at around 65◦. This “dual minimum” behavior is in

good agreement with experimental cluster measurements for sulfur,57, 58 selenium,14 and

tellurium,59 which predict two distinct optimized geometries: an open triangular structure

and a closed, equilateral triangle.
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Figure 2.3. Three-body interaction potentials for elemental sulfur, selenium, tellurium,
arsenic, and germanium at rij = rjk = r0 for each pair of elements.
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Figure 2.4. Extrapolated three-body interaction potentials for the elemental trimers.
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Figure 2.5. Three-body interaction potentials for the binary sulfur-selenium system at
rij = rjk = 2.0527 Å.
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Figure 2.6. Extrapolated three-body interaction potentials for the binary S-Se system.

0

1

2

3

4

5

6

7

8

40 60 80 100 120 140 160 180

Bond Angle (deg)

Th
re

e-
B

od
y 

In
te

ra
ct

io
n 

Po
te

nt
ia

l (
eV

)

Se-Te-Se (Calculated) Se-Te-Se (Fit)
Se-Se-Te (Calculated) Se-Se-Te (Fit)
Te-Se-Te (Calculated) Te-Se-Te (Fit)
Se-Te-Te (Calculated) Se-Te-Te (Fit)

Figure 2.7. Three-body interaction potentials for the binary selenium-tellurium system at
rij = rjk = 2.4496 Å.
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Figure 2.8. Extrapolated three-body interaction potentials for the binary Se-Te system.
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Figure 2.9. Three-body interaction potentials for the binary arsenic-selenium system at
rij = rjk = 2.5 Å.
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Figure 2.10. Extrapolated three-body interaction potentials for the binary As-Se system.
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Figure 2.11. Three-body interaction potentials for the binary germanium-selenium system
at rij = rjk = 2.5 Å.
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Figure 2.12. Extrapolated three-body interaction potentials for the binary Ge-Se system.

0

1

2

3

4

5

6

7

8

40 60 80 100 120 140 160 180

Bond Angle (deg)

Th
re

e-
B

od
y 

In
te

ra
ct

io
n 

Po
te

nt
ia

l (
eV

)

Ge-As-Ge (Calculated) Ge-As-Ge (Fit)
Ge-Ge-As (Calculated) Ge-Ge-As (Fit)
As-Ge-As (Calculated) As-Ge-As (Fit)
Ge-As-As (Calculated) Ge-As-As (Fit)

Figure 2.13. Three-body interaction potentials for the binary germanium-arsenic system at
rij = rjk = 2.5 Å.
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Figure 2.14. Extrapolated three-body interaction potentials for the binary Ge-As system.
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Figure 2.15. Three-body interaction potentials for the ternary germanium-arsenic-selenium
system at rij = rjk = 2.5 Å.
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Figure 2.16. Extrapolated three-body interaction potentials for the ternary Ge-As-Se
system.
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Figure 2.17. Total two- plus three-body interaction potentials for the S-S-S, Se-Se-Se, and
Te-Te-Te trimers at rij = rjk = r0.
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Table IV. Homogeneous Two-Body Radial Parameters for the Three-Body Interaction
Potentials

S-S Se-Se Te-Te As-As Ge-Ge
b (eV1/2) 4.4643122 7.9074605 6.1277354 0.310383 0.992756
c (Å−1) 1.4089831 1.4510428 1.3972349 1.727836 1.500000

Table V. Heterogeneous Two-Body Radial Parameters for the Three-Body Interaction
Potentials

S-Se Se-Te As-Se Ge-Se Ge-As
b (eV1/2) 6.2119469 19.076068 0.407885 6.938291 0.214437
c (Å−1) 1.3515589 2.1406499 1.581859 2.000798 1.068536

Table VI. Three-Body Fourier Coefficients for the Elemental Trimers

S-S-S Se-Se-Se Te-Te-Te As-As-As Ge-Ge-Ge
a0 2.5209085 1.4737009 6.3815150 5963.0799 351.914690
a1 −2.3800373 −0.7488205 −7.2938000 −1308.3017 29.206466
a2 −1.2322490 −0.3235095 −0.8722934 −737.2801 −23.110155
a3 −1.8707962 −0.8336347 −5.3866029 −5702.1420 76.585262
a4 0.0661656 0.3661849 −1.1660934 −1917.9391 3.310100
a5 −0.2388731 0.0559816 −1.4283849 −88.2395 −20.881477
a6 0.1311631 0.0506636 −0.2498004 1250.3015 7.628035
a7 0.0489161 −0.0042692 0.2152772 657.1982 1.903190
a8 0.1809061 −0.0116419 0.6061612 966.7898 0.564988
a9 −0.0022569 −0.0636407 −0.0489911 576.2556 1.655172
a10 −0.3279935 −0.3031730 −1.0056510 636.6168 −11.158179
a11 −0.3907347 −0.2478697 −1.2943361 212.9018 −4.505804
a12 −0.2596401 −0.2017648 −0.6955193 −70.9160 11.911857
a13 −0.0391134 0.0186467 −0.0892812 −521.6409 12.593301
a14 −0.0600140 −0.0517747 0.0788748 −788.6293 8.505400
a15 0.0002528 0.0337409 0.0481918 −724.8093 3.272179
a16 −0.0125521 −0.0149274 0.1699672 −691.4643 −3.029141
a17 0.0605235 0.0537881 0.2387772 −352.5857 −3.103025
a18 −0.0028334 −0.0063938 0.1788512 −222.3367 −1.270753
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Table VII. Three-Body Fourier Coefficients for the Heterogeneous S-Se-S, S-S-Se, Se-S-Se,
and S-Se-Se Trimers

S-Se-S S-S-Se Se-S-Se S-Se-Se
a0 1.2183252 2.8555385 2.0356276 1.4239221
a1 −0.4938253 −0.7805802 −1.1444016 −1.1947322
a2 0.1253943 −0.5052337 −0.7839961 −0.6643760
a3 −0.3868286 −1.0397844 −0.6272820 −0.6861257
a4 0.5232214 0.4608983 0.5837225 0.6597807
a5 0.1191132 0.0507676 0.0615490 0.1995165
a6 0.1643227 0.0841439 0.1139735 0.2146434
a7 0.0065064 −0.0088773 −0.0085916 −0.0423155
a8 0.0425734 0.0004760 0.0027530 0.0181715
a9 0.0824306 −0.1904425 −0.2062313 −0.1346219
a10 −0.0287008 −0.5398316 −0.2880510 −0.2286437
a11 −0.0929698 −0.4169818 −0.2500148 −0.3096873
a12 −0.1323757 −0.3025326 −0.0690876 −0.1347800
a13 −0.0366498 −0.0043958 −0.0002147 −0.0010731
a14 −0.1064618 −0.0863026 0.0150516 0.0524841
a15 −0.0993453 0.0793184 0.0043558 −0.0022850
a16 −0.1611172 0.0195371 0.0197465 0.0042689
a17 −0.0675304 0.1258474 0.0036008 0.0267898
a18 −0.0519736 −0.0297712 −0.0106217 0.0413820

48



Table VIII. Three-Body Fourier Coefficients for the Heterogeneous Se-Te-Se, Se-Se-Te, Te-
Se-Te, and Se-Te-Te Trimers

Se-Te-Se Se-Se-Te Te-Se-Te Se-Te-Te
a0 19.264535 9.1619754 22.223224 7.2979673
a1 −17.273420 −10.1123940 −13.462698 −10.259955
a2 −2.4874198 −2.6299683 5.2217488 −5.0139178
a3 −11.597780 −5.2549641 0.5202633 −8.6622940
a4 1.3381763 0.7451214 4.7205673 −0.2471748
a5 −0.0107653 0.0009848 −5.6671392 0.2233760
a6 −0.0344267 0.0509585 −2.3424787 0.5589294
a7 −1.7371929 0.2655886 2.7865778 0.2058917
a8 0.3212924 0.7741911 2.9739254 −0.0053356
a9 2.0171056 −0.1361319 −0.5264682 −1.6691366
a10 1.2612500 −1.1315190 −1.7323615 −3.3067562
a11 −1.2352494 −1.1231347 0.0921489 −3.3001658
a12 −2.3823570 −0.3718989 1.9353049 −1.2803732
a13 −1.2790921 0.0757642 1.7476688 0.9489806
a14 −0.1052132 0.0033640 0.5419944 1.6485507
a15 −0.4400456 −0.0269044 0.0828253 0.8962156
a16 −1.9463542 0.1257210 0.0224998 0.0075327
a17 −2.2185852 0.2181182 −0.0360265 −0.2410890
a18 −1.4913421 0.0463594 −0.2454533 −0.0602311
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Table IX. Three-Body Fourier Coefficients for the Heterogeneous As-Se-As, As-As-Se, Se-
As-Se, and As-Se-Se Trimers

As-Se-As As-As-Se Se-As-Se As-Se-Se
a0 3221.485 4743.6116 3493.1265 9.8512234
a1 505.22827 102.90211 −749.42661 −103.40046
a2 745.56917 1415.2321 −230.15066 −0.017185972
a3 −1007.0001 −1717.1846 −1329.9301 −5.0192143
a4 −0.60141828 −161.44122 −1095.8384 55.397467
a5 −419.88064 700.88213 −190.77686 70.809932
a6 −858.45185 151.1445 255.98217 81.006945
a7 −999.93347 −8.3439707 −28.091459 68.267664
a8 −408.48981 −352.90103 −685.63583 61.15029
a9 −138.39041 53.017501 −783.31046 44.712615
a10 0.12182297 827.45096 −436.59039 31.226385
a11 43.205972 1373.6404 0.018804362 10.508458
a12 195.06909 1488.4261 196.32365 0.007131125
a13 387.54611 697.06031 33.472081 −4.774371
a14 547.31548 −7.2535653 −257.28443 −0.015958192
a15 553.25242 −725.81357 −379.4647 9.4038126
a16 393.68351 −567.62639 −318.03461 11.01707
a17 175.04005 −428.95292 −168.6433 9.4174194
a18 13.07628 74.368862 0.001394742 1.9676911
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Table X. Three-Body Fourier Coefficients for the Heterogeneous Ge-Se-Ge, Ge-Ge-Se, Se-
Ge-Se, and Ge-Se-Se Trimers

Ge-Se-Ge Ge-Ge-Se Se-Ge-Se Ge-Se-Se
a0 82.945859 397.584790 82.921031 8.911976
a1 91.592285 132.869480 −0.236906 −11.805593
a2 83.105557 0.012418 1.600026 −7.284772
a3 54.487405 −21.512127 −56.882352 −8.210666
a4 31.408274 −52.018548 −31.232760 −2.782941
a5 −4.175893 −27.482655 1.382681 −2.157868
a6 −14.957023 0.044432 39.773257 −1.525588
a7 −9.446081 7.847918 53.648097 0.000008
a8 −1.633654 0.000058 32.720027 0.000060
a9 0.000001 −13.150164 9.715971 0.000008
a10 −0.721175 −27.179969 −2.089577 −1.311332
a11 −0.384855 −22.033792 −3.213719 −0.961830
a12 2.308721 −0.001137 −0.000024 −0.366157
a13 5.981354 12.099748 0.192213 2.189979
a14 8.280630 8.173760 −3.085069 3.688234
a15 6.972707 −3.900059 −7.034189 4.173368
a16 3.448765 −8.984208 −7.562722 2.144111
a17 0.718317 −0.000191 −5.010979 0.005655
a18 −0.037279 4.192944 −2.427981 −1.075268
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Table XI. Three-Body Fourier Coefficients for the Heterogeneous Ge-As-Ge, Ge-Ge-As, As-
Ge-As, and Ge-As-As Trimers

Ge-As-Ge Ge-Ge-As As-Ge-As Ge-As-As
a0 −3462.1793 1404.8113 1700.2259 −763.53905
a1 −2663.9909 487.67617 592.72331 −1751.7486
a2 −1217.9738 −36.244085 −79.718116 0.49346212
a3 −129.07575 −124.60316 −573.64104 76.769423
a4 612.06046 −185.37242 −141.80538 1287.4393
a5 853.18457 −145.46597 −12.895968 782.24732
a6 302.92659 −3.0496823 −1.5231763 640.34738
a7 −59.225925 −35.447699 −50.105351 −158.02807
a8 −40.090299 −0.22664552 1.2403059 −505.95488
a9 −312.38841 154.42274 36.890344 −572.66263
a10 −695.00043 282.33193 0.1451221 −315.21813
a11 −868.80274 326.10055 −78.738406 −208.97741
a12 −743.4105 232.68569 −112.82708 −49.446725
a13 −375.30926 59.33348 −54.174407 −161.42138
a14 107.86213 −105.02239 58.080641 −201.01169
a15 475.60263 −220.81499 134.97435 −272.39222
a16 547.45189 −235.41696 129.66449 −139.04657
a17 368.01327 −154.2873 70.250843 −79.281276
a18 126.63061 −57.127906 16.125145 4.2465131
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Table XII. Three-Body Fourier Coefficients for the Heterogeneous Ge-As-Se, Se-Ge-As, and
As-Se-Ge Trimers

Ge-As-Se Se-Ge-As As-Se-Ge
a0 3437.3228 0.88161965 302.3577
a1 2026.214 −58.550219 −2.6466402
a2 1112.9897 60.175349 −55.881024
a3 217.98378 0.090727669 −201.82237
a4 462.67885 16.66222 0.9998426
a5 267.61854 −13.389274 35.581883
a6 44.81003 −22.14782 38.387415
a7 −0.71312651 −41.110226 −20.719506
a8 53.008038 −39.447784 −67.358034
a9 −14.267328 −12.510683 −80.150916
a10 −135.66139 3.489125 −37.748826
a11 −203.69251 8.6762959 17.198688
a12 −82.408512 1.9688586 51.309807
a13 42.131571 0.002897036 31.242799
a14 176.72105 6.7650875 −9.4914689
a15 173.80961 13.514421 −29.384284
a16 149.82438 11.361956 −14.442467
a17 51.748109 8.5712395 3.1249156
a18 0.87458256 2.3508663 9.6720386
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Figure 2.18. Effective four-body potentials.

2.5 Effective Four-Body Interactions

For the case of a four-body cluster we have six generalized coordinates: three in-

teratomic separation distances, rij , rjk, and rkl; two bond angles, θijk and θjkl; and one

torsion angle, φijkl. This six-dimensional phase space is much too large to explore fully

at the quantum mechanical level; moreover, a full description of the four-body interaction

would lead to computation times in the classical simulation that scale as O
¡
N4
¢
, which

is impractical for systems of hundreds or thousands of atoms. Therefore, we model the

four-body interaction for the chalcogen systems as an effective pairwise repulsion that de-

pends only on the separation distance between an atom and its third- and longer-distance
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Table XIII. Parameters for the Effective Four-Body Interaction Potential

Sulfur Selenium Tellurium
g (eV) 70 42 30
h (Å−1) 2.5 2.0 1.5

neighbors. Computation of this effective four-body interaction in a classical simulation is

on the order of O
¡
N2
¢
, which is small compared to the O

¡
N3
¢
three-body calculation.

In order to determine this effective repulsion, we introduce a fourth atom to the

three-body clusters discussed in the previous section. We assume a bond angle of θijk = 60◦

and equilibrium bond lengths for the trimers. The fourth atom is positioned equidistant

to these three atoms, and the total four-body potential is calculated as a function of this

variable separation distance dl. The four-body interaction is isolated from the two- and

three-body contributions using the standard cluster expansion approach:

U4,ijkl = U (dl)−
4X

i=1

U1,i − 2
4X

i=1

4X
j>i

U2,ij (rij)−

2
NX
i=1

NX
j 6=i

NX
k 6=i,k>j

U3,ijk (rij , rjk, θijk) . (2.17)

As shown in Figure 2.18, the four-body interaction is highly repulsive at short

distances and rapidly decays to zero. We fit the ab initio data with

1

4
U4 (dl) = g sech (hdl) , (2.18)

where g and h are constants and the factor of 14 accounts for the contribution of four different

four-body interactions to the total four-body potential. Values for g and h are given in
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Table XIII for the S4, Se4, and Te4 clusters.

The case of a heterogeneous four-body cluster could become difficult given the

number of different combinations of elements in different positions. We can dramatically

simplify this case by assuming that the total four-body interaction is the sum of the four-

body contributions of the individual elements in the cluster. For example, the four-body

interaction for a S3Se cluster would be

U4 = 3gS sech (hSdl) + gSe sech (hSedl) , (2.19)

and the four-body interaction for a Se3S cluster would be

U4 = gS sech (hSdl) + 3gSe sech (hSedl) . (2.20)

Figure 2.18 shows that this is a reasonable assumption and fits well to the ab initio data

for heterogeneous clusters. We take gAs = gGe = 0.

2.6 Conclusions

We have derived ab initio potentials for the S, Se, Te, As, Ge, S-Se, Se-Te, As-

Se, Ge-Se, Ge-As, and Ge-As-Se systems using Møller-Plesset perturbation theory and a

cluster expansion approach. The interatomic potentials include two-, three-, and effective

four-body terms. In the next part of this thesis, we will use these potentials in classical

Monte Carlo simulations to investigate the structure of chalcogenide glasses.
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Part II

Atomistic Simulations
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Chapter 3

Metropolis Monte Carlo

Classical modeling allows for the simulation of much larger systems than what

is possible with quantum mechanics alone. Classical atomistic simulations are based on

the notion of interatomic potentials, i.e., continuous functions that describe the interactions

between atoms. These interatomic potentials can be drawn empirically to reproduce known

experimental data, but an ab initio approach ensures greater transferability and allows for

prediction of material structure and properties without a priori knowledge of experimental

results. In Part I of this thesis, we used highly accurate quantum mechanical simulations to

derive two-, three-, and effective four-body interaction potentials for elemental, binary, and

ternary chalcogenide systems. In Part II, we will use these potentials in classical atomistic

simulations to compute the structure of various chalcogenide glasses.

The most popular atomistic simulation technique is molecular dynamics,60, 61 where

interatomic potentials are used to compute a net force on each atom. Dividing this force

by the mass of the atom yields an acceleration, which is integrated in order to update
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atomic velocities and positions. A thermostat is typically employed to maintain a specified

temperature through adjustment of the atomic velocities.

Whereas molecular dynamics provides a deterministic method for following atomic

trajectories in time, it is not the most efficient technique for computing static properties

such as material structure. The Metropolis Monte Carlo technique is an atomistic simula-

tion method that avoids computation of forces and integration of the equations of motion;

instead, it relies on generating random configurations of atoms in phase space and using

special criteria to determine whether or not to accept each new configuration.62 In fact,

the name “Monte Carlo” was coined by Metropolis63 owing to the technique’s extensive

use of random numbers. By relying on energy calculations and a stochastic sampling

process, Metropolis Monte Carlo can provide an equilibrated material structure with much

less computation time than traditional molecular dynamics.

In this chapter, we introduce the basic concepts of the Monte Carlo approach,

including importance sampling, Markov processes, detailed balance, and acceptance ratios.

We derive the Metropolis algorithm and discuss its implementation for the simulation of

atomic systems. For additional information on Monte Carlo beyond what is discussed in

this chapter, please see the excellent textbook by Newman and Barkema.64

3.1 Importance Sampling

Ideally, the expectation value of an arbitrary thermodynmic property, hQi, can be

calculated by
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hQi =
R
Qλe

−Eλ/kTdλR
e−Eλ/kTdλ

, (3.1)

where E is energy, k is Boltzmann’s constant, T is absolute temperature, and the integrals

are over all possible states of the system. However, in practice it is generally impossible to

enumerate every available state of a system, especially for condensed matter. Monte Carlo

addresses this issue by choosing a subset of states at random. The average property hQi is

approximated by the estimator,

QM =

PM
i Qip

−1
i e−Ei/kTPM

i p−1i e−Ei/kT
. (3.2)

which samples a total of M states that are chosen with probability distribution p. As

the number of sampled states increases, the estimator becomes more and more accurate; in

particular,

lim
M→∞

QM = hQi . (3.3)

In order to improve the accuracy and convergence of the estimator with smaller

values of M , it is necessary to draw random states from an appropriate probability distri-

bution p. If p is chosen to be a uniform distribution over all the available states, the vast

majority of chosen states will be highly unfavorable and their contributions to the partition

function will be negligible. It is therefore desirable to choose p such that the lower energy

states are chosen preferentially. The technique for choosing the important low-energy states

from among the very large number of possibilities is known as importance sampling.

In our case, we would like to choose states according to a Boltzmann probability
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distribution,

pi =
e−Ei/kTPM
j e−Ej/kT

. (3.4)

Substituting this probability distribution into the estimator of Equation (3.2) yields

QM =

PM
i Qie

Ei/kT e−Ei/kT
PM

j e−Ej/kTPM
i eEi/kT e−Ei/kT

PM
j e−Ej/kT

, (3.5)

where the Boltzmann factors all cancel to give the simple average

QM =
1

M

MX
i

Qi. (3.6)

This leaves the important question of how we actually choose states such that they follow

the Boltzmann probability condition of Equation (3.4). In Metropolis Monte Carlo, this

is accomplished by generating a Markov chain of states and using the criterion of detailed

balance.

3.2 Markov Processes and Detailed Balance

A Markov process is a mechanism for generating a new state j based only on the

current state i, and not on any of the previous states. The transition probability from state

i to state j is denoted P (i→ j) and satisfies the constraint

X
j

P (i→ j) = 1. (3.7)
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Note that the transition probability P (i→ i), which is the probability of remaining in the

original state i, may be nonzero.

With Metropolis Monte Carlo, we use the Markov process repeatedly to generate

a Markov chain of states. In other words, starting from a state i, the Markov process is

used to generate a new state j. This new state is used again in the Markov process to

generate another new state. This process continues until we have generated a sequence of

states that appear with the desired probability distribution, i.e., the Boltzmann distribution.

When this occurs, we are said to have “reached equilibrium,” and the estimator can then

be calculated according to Equation (3.6).

This process assumes the condition of ergodicity, i.e., it must be possible for the

Markov process to reach any state of the system from any other state if we let it run for

long enough. While we can make some of the transition probabilities zero, there must be

at least one path of nonzero probability between any two states of the system.

The other necessary condition for achieving equilibrium is that of detailed balance,

piP (i→ j) = pjP (j → i) , (3.8)

where the probability of transition from state i to state j is equal to that of the reverse

transition. Since we wish the equilibrium distribution to satisfy the Boltzmann condition

of Equation (3.4), the detailed balance equation should satisfy

P (i→ j)

P (j → i)
=

pj
pi
= e−(Ej−Ei)/kT . (3.9)
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If Equations (3.7) and (3.9) are satisfied, as well as the condition of ergodicity, then we

have generated an equilibrium chain of states following the desired Boltzmann probability

distribution.

3.3 Acceptance Ratios

The trick to actually achieving these criteria is to break the transition probability

into two parts,

P (i→ j) = g (i→ j)A (i→ j) , (3.10)

where g (i→ j) is the selection probability, which is the probability that our Monte Carlo

algorithm will generate a new target state j starting from state i, and A (i→ j) is the

acceptance probability or acceptance ratio. The acceptance ratio states that if we start

in some state i and the algorithm generates a new state j, this new state should only be

accepted with a probability A (i→ j); otherwise, the system should remain in the original

state i. With this definition, Equation (3.9) becomes

P (i→ j)

P (j → i)
=

g (i→ j)A (i→ j)

g (j → i)A (j → i)
= e−(Ej−Ei)/kT . (3.11)

In Metropolis Monte Carlo, new states are generated with an equal probability

distribution, i.e., g (i→ j) = g (j → i) such that

P (i→ j)

P (j → i)
=

A (i→ j)

A (j → i)
= e−(Ej−Ei)/kT . (3.12)
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Therefore, the task of achieving the desired Boltzmann distribution is left to proper choice

of acceptance ratios. In Metropolis Monte Carlo, the acceptance ratio is chosen to be

A (i→ j) =

⎧⎪⎪⎨⎪⎪⎩
e−(Ej−Ei)/kT , if Ej −Ei > 0

1, otherwise.

(3.13)

In other words, any transition that lowers the energy of the system is always accepted, and

any transition that increases the energy of the system is accepted according to a Boltzmann

probability. Note that this choice of A (i→ j) satisfies the condition of Equation (3.12).

3.4 The Metropolis Algorithm

The Metropolis algorithm for implementing the above Monte Carlo scheme consists

of the following steps:

1. Compute the energy of the current state, Ei.

2. Generate a new state according to the Markov process. In the canonical ensemble,

this is accomplished by choosing a random atom in the system and assigning it a

random displacement. (In an isobaric ensemble, a new state can also be generated

by changing the volume of the system. In an open ensemble, new states may also

involve randomly creating or annihilating atoms. For more information on using

Monte Carlo with these alternative ensembles, see Allen and Tildesley.61)

3. Compute the energy of the new state, Ej .

4. If Ej ≤ Ei, accept the new state. If Ej > Ei, draw a random value from a uniform
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distribution between 0 and 1. If this random value is less than e−(Ej−Ei)/kT , then

the new state is accepted; otherwise, return the system to the original state.

5. Repeat steps 1-4 until the energy of the system has converged to an equilibrium value.

Please note that in the canonical ensemble the temperature of the system is held

constant. In this case, the average kinetic energy of the system is the same for all states, so

the difference in internal energy between states is equal to the difference in potential energy

only:

Ej −Ei = Uj − Ui. (3.14)

Hence, unlike molecular dynamics, the Monte Carlo technique does not involve calculation

of atomic momenta. This effectively reduces the phase space dimensionality from 6N to

3N , where N is the total number of particles in the system.

In the next chapter we introduce Molsym, an object-oriented program that imple-

ments the above Metropolis Monte Carlo algorithm. This algorithm is used together with

our ab initio interatomic potentials from the previous chapter to compute the structure of

chalcogenide glasses.
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Chapter 4

Molsym: An Object-Oriented

Platform for Atomistic Simulations

Molsym is a new program we have developed for classical atomistic simulations.

The program is a unified, object-oriented platform for a variety of simulation techniques,

including molecular dynamics, Metropolis Monte Carlo, and mapping of energy landscapes

using eigenvector-following. In this chapter, we give an overview of the design philosophy

behind Molsym and provide details on some of the key components of the program.

4.1 Design Philosophy

Object-oriented design is a computer programming paradigm where software is

composed of a set of individual objects or data structures; this is in contrast to the tradi-

tional view in which software is simply a list of instructions to be executed by the computer.

Object-oriented design allows for much greater modularity and extensibility compared to

66



traditional procedural programming. Objects are created, or instantiated, from a class. A

class defines all of the properties and behaviors that an object should have. For example,

if we wish to model a door, we could create a class that has data members for such prop-

erties as height, width, type of doorknob, etc. The behaviors, or functions, would include

the ability for the door to open, close, lock, and unlock. Once the door class is defined,

any number of door objects can be instantiated, each with different properties but similar

behaviors. In the case of Molsym we define a variety of classes to describe different aspects

of an atomistic simulation. Some of the key classes in Molsym are discussed in Section 4.2.

One of the greatest advantages of object-oriented design is that it facilitates code

reusability. For example, Molsym supports a variety of different solvers, including molecular

dynamics, Monte Carlo, and eigenvector-following. All these techniques are based on having

a set of atoms defined in a simulation space, where the interactions are described by a set

of potentials. The atoms, the simulation space, and the interatomic potentials are common

to all three solvers. With object-oriented programming, the same classes are used to define

the common elements of the simulation, and different solver classes can be substituted to

change the computational behavior of the simulation.

The idea of having different variations on a common theme, e.g., different types

of solvers that act differently on the same system, is facilitated through the concept of

inheritance. For example, if we want to model living organisms we can define an abstract

base class for an arbitrary organism. This base class would contain elements that are

common to all organisms, including data members for DNA and cellular structure and

functions for nutrition and reproduction. We can then derive new classes from the base
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organism class, e.g., a plant class or an animal class. These subclasses inherit all of the

data members and functions of the base class, but they also define new data members

and functions that are specific to the subclass. For example, the plant class would have

a function for photosynthesis that is not found in the animal class, and the animal class

would have a function for locomotion that is not available to plants. New subclasses can

also be defined from the existing subclasses, e.g., separate fish, bird, and mammal classes

could be derived from the animal class. These new classes inherit the data members and

functions from all classes above them in the hierarchy.

Another important concept in object-oriented design is polymorphism, where the

same function can produce different behaviors depending on the particular subclass from

which it is called. In our example of living organisms, the functions of the base organism

class can be overloaded to define more specific behavior. For instance, the reproduction

function can be overloaded to define mitosis behavior in a bacterium class or sexual re-

production in an animal class. When the reproduction function is called for an arbitrary

organism object, polymorphism enables the organism to “know” specifically how it is sup-

posed to reproduce.

In the case of Molsym, we define an abstract base class for an arbitrary solver

object. This solver class contains a “run” function that is overloaded to produce specific

behavior in the molecular dynamics and Monte Carlo subclasses. The program requires a

pointer to an arbitrary solver object, and when the “run” function is called, polymorphism

allows the correct algorithm to be executed depending on particular type of solver.

Object-oriented programming also allows for operator overloading, where functions

68



are defined in a class for describing addition using the + operator, multiplication using the

* operator, and so on. For instance, Molsym defines a Coordinates class that represents

a vector in three-dimensional space. The various operators are overloaded to provide a

convenient way of doing vector arithmetic using the standard +, *, and other operators.

Molsym is written entirely in ANSI-standard C++, which allows for portability

across different operating systems and chip architectures. We have compiled and run

Molsym on a PowerPC architecture under Mac OS X, an Alpha architecture under Tru64

UNIX, and AMD/Intel architectures running Red Hat Linux.

4.2 Class Structure

Figure 4.1 shows the class hierarchy for Molsym. Each box represents a separate

class, and the abstract base classes are indicated by a dashed outline. The arrows indicate

inheritance; for example, the MonteCarlo class inherits from the abstract Solver class, and

the Nanoindentation class inherits from MonteCarlo. In this section, we provide a brief

description of the important classes in Molsym. For more information on specific details

of implementation, please contact the author.

4.2.1 Application and Simulation Classes

The Application class is an abstract base class that provides basic functions for

initializing, running, and terminating a computer program. Application also includes

exception handling capabilities to handle possible errors such as division by zero. The

Simulation class derives all of these behaviors from Application and includes all of the
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Figure 4.1. Molsym class hierarchy. Abstract base classes are shown with a dashed outline.
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data members and functions specific to classical atomistic simultions. Data members in-

clude a Space object to define the simulation space, with the appropriate BoundaryConditions.

An Ensemble object defines the statistical mechanical ensemble, and an array of Particle

objects explicitly defines each atom and its properties. The Simulation class also includes

an array of Interaction objects to define the atomic interactions. Finally, a Solver class

defines the computation mode for the simulation. More details on these classes are provided

in the ensuing subsections.

4.2.2 Space Class

The Space class defines the dimensions of the simulation cell. The simulation cell

is assumed to be a rectangular prism with associated boundary conditions.

4.2.3 BoundaryConditions Class

The BoundaryConditions class defines the boundary conditions for the simulation

cell. Options include periodic boundary conditions, fixed wall boundaries, or open bound-

aries. These can be chosen independently for the xy, xz, and xy planes of the simulation

cell. The class also contains functions for computing the shortest distance between two

atoms accounting for the specified boundary conditions.

4.2.4 Ensemble Class

The Ensemble class specifies the statistical mechanical ensemble of the system.

Choices include canonical (NV T ), isothermal-isobaric (NPT ), grand canonical (µV T ), and

Gibbs (µPT ). The microcanonical (NV E) ensemble is also available for molecular dynam-
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ics simulations.

4.2.5 Particle Class

The Particle class defines a single atom (or larger particle unit). Data mem-

bers include a particle name, mass, position, velocity, acceleration, and a list of neighbor

particles. Functions in the Particle class allow for calculation of kinetic and potential

energies, movement of the particle, and updating of the neighbor list.

4.2.6 Interaction Class

The Interaction class defines a matrix of Potential objects to describe the

potentials for all combinations of particle types. The interactions can be one-body (e.g.,

the potential in an electric field), two-body, or three-body.

4.2.7 Potential Classes

The Potential class is an abstract base class for defining individual potential in-

teractions. It contains a “calculate” function that can be overloaded for each specific type of

interaction. We have defined subclasses for Coulomb, HarmonicOscillator, LennardJones,

Morse, and ThreeBodyCosine potentials, among others.

4.2.8 Solver Classes

The Solver class is an abstract base class for defining different types of classical

solvers, such as MolecularDynamics and MonteCarlo. The Hybrid solver inherits func-

tions from both the MolecularDynamics and MonteCarlo solvers to allow for molecular
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dynamics time steps interspersed with Monte Carlo displacments. The EnergyLandscape

solver implements the eigenvector-following techniques discussed in Part III of this the-

sis. The Nanoindentation solver is a specific implementation of MonteCarlo that allows

for the loading and unloading of a hard-shell spherical indenter at a surface. Finally, the

SimulatedAnnealing class implements a version of MonteCarlo where the temperature is

decreased throughout the course of the simulation. Each of these subclasses overloads the

Solver run function in order to provide the computational behavior for that specific type

of solver.

4.2.9 PostProcessor Class

The PostProcessor class allows for calculation of structural properties such as pair

distribution functions, bond angle distributions, bond type distributions, and chain/ring

length distributions.

4.2.10 Utility Classes

Molsym has several utility classes, including an Array class for generating dynam-

ical arrays of arbitrary objects. The Coordinates class is used for representing vectors

in three-dimensional space and includes functions and operator overloading for all types of

vector operations. The Dictionary class is similar to Array, except that the elements

of a Dictionary object are accessed through keys instead of through an index number.

The Exception class enables detailed exception handling for locating errors in the code.

The Random class includes functions for generating random numbers according to uniform,

Gaussian, and Poisson distributions. Finally, the String class contains many features for
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easy input, output, and manipulation of character strings.

4.3 Optimization Techniques

Molsym includes many optimization techniques to increase computational effi-

ciency. For example, each Particle object includes a list of neighbors within a specified

cutoff distance. When computing the potential energy of the particle, it considers only

those particles within this list of neighbors. The neighbor list is automatically updated

when an atom moves a total distance of more than half the cutoff value.

In order to further reduce computation time, interatomic potentials are precom-

puted on a fine grid when the program first initializes. This grid is fit to a cubic spline such

that potential calculations involve only array lookups and simple multiplication rather than

evaluation of the full expressions, which are more computationally intensive. Molsym also

takes advantage of symmetries in the two- and three-body interactions in order to further

increase computational efficiency.

Another technique for reducing computation time is to avoid square root calcu-

lations wherever possible. For example, comparing square distances instead of distances

eliminates two square root operations without detracting from the intended purpose of the

computation.

Finally, Molsym takes advantage of a number of compiler optimizations that max-

imize computational efficiency for a given chip architecture and operating system.
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Chapter 5

Chalcogenide Glass Structure

Over seventy years have passed since the publication of Zachariasen’s landmark

1932 paper on glass structure,65 which he began by acknowledging, “It must be frankly

admitted that we know practically nothing about the atomic arrangement in glass.” While

our knowledge has certainly grown enormously in the ensuing decades,66 many aspects of

glass and glass structure still remain a mystery.

Whereas Zachariasen’s rules for glass formation65 focus on oxide glasses, the Phillips

topological constraints model67—69 addresses glass formability and structure in covalently

bonded materials such as chalcogenides. According to the Phillips theory, glass-forming

ability is determined by comparing the number of atomic degrees of freedom with the num-

ber of interatomic force field constraints.67 If the number of degrees of freedom is greater

than the number of constraints the network becomes “floppy,” a condition which facilitates

rearrangement of atoms into a minimum energy configuration, i.e., a crystalline structure.

Conversely, if the network becomes overconstrained, rigid structures will percolate through-
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out the entire body which can lead to crystallization.70—74 Phillips conjectured that the

tendency for glass formation would hence be maximized when the number of degrees of

freedom equals the number of constraints:67

Md =Mc. (5.1)

Accounting for two- and three-body force fields, the number of constraints is

Mc =
NX
i=1

hmi

2
+ (2mi − 3)

i
, (5.2)

where the system contains N atoms and mi is the coordination number of the ith atom.

The number of degrees of freedom in the system is

Md = 3N . (5.3)

Equating Mc and Md, and averaging over all atoms, we obtain

mc

2
+ (2mc − 3) = 3, (5.4)

where mc is the critical average coordination number of atoms. This yields

mc = 2.4. (5.5)

Thus, according to the Phillips model the optimum condition for glass formation occurs
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when the average coordination number of the constituent atoms realizes a critical value of

hRi = Rc = 2.4.71, 75

The average coordination number itself is defined as

hmi =
X
i

ximi (5.6)

where xi is the mole fraction of the ith constituent element of the material. The coordination

number of each element is given by mi = 8 − Ni, where Ni is the number of valence

electrons. Thus, the Group VI chalcogen elements (e.g., sulfur, selenium, and tellurium)

have a coordination number of mV I = 2. Similarly, the coordination number of Group

V elements (e.g., arsenic and antimony) is mV = 3, and the coordination of Group IV

elements such as germanium is mIV = 4. Chalcogenide glasses are often binary, ternary, or

even quaternary compounds of these elements, but by definition they must contain at least

one chalcogen element.

In order to determine the validity of the Phillips model, many researchers have

sought correlation between measured values of thermal and mechanical properties and the

average coordination number of chalcogenide glass compositions. Measurement of elastic

constants in the Ge-As-Se system by Halfpap and Lindsay76 showed evidence of rigidity

percolation at hmi = 2.4. In addition, Mössbauer experiments by Bresser et al.77 showed

microscopic structural changes consistent with the Phillips model.

Swiler et al.78 experimentally prepared thirty-six compositions in the Ge-Sb-Se

ternary system and performed Vickers microhardness and surface toughness measurements

on the resulting samples. Their results show that while hardness increases linearly with
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the average coordination number hmi of the glass, surface toughness displays a distinct

maximum at hmi ≈ 2.6. Sreeram et al.79 extended this study to include arsenic and

tellurium and found a similar trend for hardness as a function of hmi. However, an ensuing

study by Senapati et al.80 of Ge-Sb-Se and Ge-Se systems showed a maximum in the Vickers

hardness number at hmi = 2.67.

Sreeram et al.81 also used experimental data to develop an empirical relationship

between glass transition temperature Tg and average coordination number hmi. Their

results show that Tg increases monotonically with hmi, which suggests that there is no

fundamental change in bonding at hmi = 2.4. However, another study by Sreeram et

al.82 shows that the molar volume of chalcogenide glasses does exhibit a clear minimum

at hmi = 2.4, notwithstanding that the measured values of elastic moduli do not show any

significant change at this point.

Subsequent experiments on Ge-Se and Ge-Sb-Se systems by Senapati and Varsh-

neya83 confirmed a relative minimum in molar volume at hmi = 2.4 and also found minima

in liquid-state heat capacity and thermal expansion coefficient at this same point. Cou-

pled with measurements of the glassy-state heat capacity and thermal expansion coefficient,

Senapati and Varshneya determined that the configurational contribution to these two prop-

erties (i.e., the change in these properties associated with glass transition) is at a minimum

in chalcogenide glasses with hmi = 2.4. These results suggest that structural rearrange-

ments in the liquid state are minimized at hmi = 2.4, thereby minimizing the propensity

for crystallization. Thus compositions with this average coordination number are the best

glassformers, exhibiting the greatest yield strength and lowest plasticity.84 In another pa-
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per, Senapati and Varshneya85 discuss how this result demonstrates an anomaly in the

traditional classification of “strong” and “fragile” liquids put forth by Angell.86—89 The

relationship between the Phillips and Angell theories has also been shown by Tatsumis-

ago et al.90 for the Ge-As-Se system, but without the observed anomaly of Senapati and

Varshneya.

While the experiments of Varshneya and coworkers78—85 focused on the behavior

of chalcogenide glass properties around hmi = 2.4, Tanaka91 found that the molar volume

of the Ge-As-S ternary system exhibits two distinct thresholds: a minimum at hmi = 2.4

and a maximum at hmi = 2.67. Tanaka hypothesized that these critical values of average

coordination number correspond to changes in the dimensionality of the glass network;

specifically, at hmi = 2.4 the glass transitions from a one-dimensional to a two-dimensional

structure, and at hmi = 2.67 the glass network becomes three-dimensional. Narayanan

and Kumar92 suggested that this second threshold is where the bonds in the glass system

become completely heteropolar, i.e., all bonding is between unlike atoms (Ge-S, not Ge-Ge).

However, Sen and coworkers93, 94 effectively refuted this argument by finding ho-

mopolar bonding in Ge-As-S glasses with deficient sulfur. While the bonding was com-

pletely heteropolar in the stoichiometric system, As-As and then Ge-Ge bonds were found

with decreasing sulfur content. Additional experiments on Ge-As-S glasses by Aitken and

Ponader95, 96 found that thermal expansion coefficient and molar volume are both maxi-

mized at hmi = 2.6, but they found no evidence of any threshold at hmi = 2.4.

In order to explain these and other similar results,97 Narayanan98 introduced a

variation of the chemically ordered covalent network model in which homopolar bonding
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Table XIV. Color Key for Structure Plots

Element Color
Sulfur Yellow
Selenium Gray
Tellurium Blue
Arsenic Red
Germanium Purple

is also considered. Homopolar bonding can result in the formation of elemental clusters

within the glass structure that may shift the Tanaka chemical threshold from hmi = 2.67

to hmi = 2.6 or even as low as hmi = 2.4. Narayanan maintained that the best glass

formation occurs near the rigidity percolation threshold (hmi = 2.4), and compositions near

the chemical threshold (hmi = 2.67 or less) are poor glass formers. Narayanan subsequently

demonstrated the utility of his model by accurately predicting the phase diagrams of several

chalcogenide glass systems.99 The idea of clustering in chalcogenide glasses leading to non-

ideal behavior has also been put forth by Thorpe et al.100 and experimentally investigated

by Boolchand and coworkers.101—104 An additional modification to the theory of covalent

network glass structure includes the possibility of one-fold coordinated atoms,105—109 as

would occur in chalcohalide glasses.

While laboratory experiments are essential for confirming or refuting any theory,

additional physical insight may be gained through modeling and simulation. In this chapter,

we use our ab initio interatomic potentials from Part I in classical Monte Carlo simulations

to characterize the structure of elemental, binary, and ternary chalcogenide glasses. Glass

structures are shown using the color key in Table XIV.
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5.1 Elemental Glasses

We begin our simulations by placing 1000 atoms at random positions in a cubic,

isochoric simulation space with periodic boundary conditions. The densities of the S, Se,

and Te systems are fixed at 1.75, 4.30, and 5.90 g/cm3, respectively, and we consider a

constant temperature of T = 200 K for sulfur and T = 298 K for selenium and tellurium.

The trial displacements are made by assigning a random move along each of the three global

axes, x̂, ŷ, and ẑ, where the probability density function is Gaussian with zero mean and a

standard deviation of σ. We simulate a total of 20 million trial displacements with a target

acceptance rate of 40%. The magnitude of σ is dynamically adjusted during the simulation

to achieve this acceptance rate.

Since our cluster expansion approach to potential development is based on energies

computed for small isolated clusters of atoms, it is desirable to test the validity of these

potentials in an extended, three-dimensional solid. While we have accurately included

interactions up to the fourth order, higher order interactions, if significant, could change

the overall cohesive energy of a solid system. We have computed a cohesive energy of 2.258

eV/atom for pure selenium glass using our two-, three-, and effective four-body potentials.

This is in excellent agreement with experimental values, which range from about 2.25 to

2.35 eV/atom, depending on the defect concentration in the glass.110, 111 Therefore, we

may gain confidence in our cluster expansion method and the truncation of higher order

interaction terms.

Pictures of the final S, Se, and Te glass structures are shown in Figures 5.1-5.6,

where we can see that the structures are dominated by many kinked, tangled chains of
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atoms. The pair distribution functions112 for the elemental glasses are given in Figures

5.7-5.9. From these figures, we can see that the nearest-neighbor distance is well-defined in

all cases. The second- and third-nearest neighbor positions are more diffuse owing to the

bond angle distributions, also shown in Figures 5.7-5.9, which are centered around 110-120◦.

Bond angles in the 110-120◦ range are expected based on the three-body potentials in Figure

2.3. The pair distribution functions show that the glassy structures become completely

disordered after about 7 Å.

Whereas liquid sulfur is known to be composed largely of S8 rings, the structure

of sulfur glass is not well-characterized since sulfur glasses are highly unstable. However,

a recent experimental study by Kalampounias, Kastrissios, and Yannopoulos113 has deter-

mined that the dominant features in sulfur glass are likely to be Sn chains in addition to

a reduced fraction of S8 rings. This notion is supported by the empirical modeling of

Popescu,114 who found that glassy sulfur is composed of a random mixture of short Sn

chains and rings. As shown in Figure 5.7(d), our modeling predicts that sulfur glass is

dominated by Sn chains with an average length of hni = 156 atoms; however, we do not

observe many ring structures. This lack of ring structures was also observed in the em-

pirical modeling of Kastowsky and Bradaczek.13 The difference between modeling and

experiment in this matter could be related to the simulation method or the large experi-

mental uncertainty. However, it is likely that the thermal history and processing of sulfur

play a large role in determining the final structure: glasses prepared by melting and then

quenching crystalline sulfur at a lower temperature could be more likely to have S8 rings

than those prepared by other methods, e.g., vapor deposition or the quenching of liquid
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sulfur from a high temperature.115 In other words, it is possible that the S8 ring structures

observed by Kalampounias et al.113 are artifacts of their particular glass-forming process;

the Monte Carlo method used by Kastowsky and Bradaczek13 and in this work could better

approximate the latter case of vapor deposition or high temperature quenching, where the

initial configuration has a higher degree of disorder. Further experimental and modeling

work is required in order to clarify this point.

Our calculated pair distribution function for selenium glass in Figure 5.8(a) is in

very good agreement with the semi-empircal modeling of Caprion and Schober15 and that of

Molina, Lomba, and Kahl.116 However, our bond angle distribution is in disagreement with

Molina and coworkers, who predict a distribution centered at about 100◦. The preferred

experimental bond angle is about 115◦,14 which is in good agreement with our modeling

results in Figure 5.8(b). As shown in Figure 5.8(c), the defect concentration in our selenium

glass, i.e., the fraction of atoms with an “incorrect” coordination, is about 7.5%. This is less

than a quarter of the defect concentration found by Molina and coworkers116 in their semi-

empirical modeling. Again, our results are in better agreement with experiment, which

predicts a structure dominated by long, two-coordinated chains of selenium atoms.117—120

We also find the presence of large rings containing hundreds of atoms.

Similar structural data are shown in Figure 5.9 for elemental Te glass. The pair

distribution function in Figure 5.9(a) predicts well-defined first and second neighbor dis-

tances and complete amorphism after about 7 Å. These features are in very good agreement

with neutron scattering data121 for liquid tellurium. The bond angle distribution in Figure

5.9(b) consists of a broad peak centered around 110◦. This distribution is significantly

83



broader than for selenium. The coordination number distribution for Te glass is plotted in

Figure 5.9(c), assuming a bond cutoff distance of 3.0 Å. We find that 91.4% of atoms are

two-coordinated, leading to long chains of atoms similar to that found in Se glass, a result

which is in good qualitative agreement with neutron scattering studies.122 Comparing Fig-

ure 5.9(d) with Figure 5.8(d), we note that the atomic chains in Te glass are significantly

shorter than those in Se glass; moreover, ring structures are almost completely absent in Te

glass.
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Figure 5.1. Computed structure of sulfur glass.
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Figure 5.2. Computed structure of sulfur glass (stick representation).
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Figure 5.3. Computed structure of selenium glass.
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Figure 5.4. Computed structure of selenium glass (stick representation).
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Figure 5.5. Computed structure of tellurium glass.
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Figure 5.6. Computed structure of tellurium glass (stick representation).
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Figure 5.7. Calculated structural data for sulfur glass: (a) pair distribution function, (b)
bond angle distribution, (c) coordination number distribution, and (d) chain/ring length
distribution.
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Figure 5.8. Calculated structural data for selenium glass: (a) pair distribution function, (b)
bond angle distribution, (c) coordination number distribution, and (d) chain/ring length
distribution.
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Figure 5.9. Calculated structural data for tellurium glass: (a) pair distribution function, (b)
bond angle distribution, (c) coordination number distribution, and (d) chain/ring length
distribution.

5.2 SexTe1−x Glasses

In this section we use the newly developed interaction potentials combined with

the Metropolis Monte Carlo molecular simulation technique62 to model the structure of

glasses in the SexTe1−x system. The simulations begin by placing 1000 atoms at random

positions in a cubic, isochoric simulation space with periodic boundary conditions. The

93



density of a SexTe1−x glass is assumed to be 5.9−1.6x g/cm3, a linear interpolation between

the densities of elemental Se and Te, and we consider a constant temperature of T = 298

K. We simulate a total of 20 million trial displacements of single atoms with a target

acceptance rate of 40%. Plots of the final glass structures for x = 0.1 through 0.9 are

shown in Figures 5.10-5.19.

Structural data for a Se0.5Te0.5 glass are provided in Figure 5.20. Whereas the

homopolar pair distribution functions in Figure 5.20(a) have strong first-neighbor peaks,

the Se-Te pair distribution is zero until after 3 Å and shows very little correlation there-

after. This is a result of the glass’s strong preference for homopolar bonding, shown in

Figure 5.20(c). Here we see that nearly 99% of all bonds are homopolar, indicating almost

perfect phase separation at the covalent chain level. As shown in Figure 5.20(d), the Se

and Te atoms are primarily two-coordinated and there is a slightly higher number of mis-

coordinated atoms than in the elemental glasses, presumably due to the phase separated

nature of the heterogeneous glass. It follows that the chain lengths for Se0.5Te0.5 glass are

shorter than for both elemental glasses, as indicated by Figure 5.20(e). While there is not

much experimental data on the Se0.5Te0.5 system available in literature, our structural data

is in good qualitative agreement with the experimental predictions that the glass should

consist of two-coordinated chains of atoms123 and is phase separated.124

Figure 5.21(a) plots the average coordination number of Se and Te atoms in

SexTe1−x glass as a function of x. We find that the average coordination number of

Se drops with low Se content, as does the average coordination number of Te with low Te

content. Interestingly, Figure 5.21(b) shows that the fraction of heteropolar bonds increases
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with decreasing Se content, indicating that Se is more soluble in a high-Te glass than Te in

a high-Se glass. This can also be seen from the glass structure plots in Figures 5.10 through

5.19. Combining these two findings, the average chain length should be a minimum for

low Se-content glasses. This result is confirmed by Figure 5.21(c), where we see that the

average chain length is a minimum at about x = 0.2.

Figure 5.22 compares the distribution of bond types in the SexTe1−x system versus

an ideally mixed homogeneous glass. This figure shows that SexTe1−x becomes highly phase

separated in the regime of x > 0.2.
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Figure 5.10. Computed structure of Se0.1Te0.9 glass.
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Figure 5.11. Computed structure of Se0.2Te0.8 glass.
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Figure 5.12. Computed structure of Se0.3Te0.7 glass.
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Figure 5.13. Computed structure of Se0.4Te0.6 glass.
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Figure 5.14. Computed structure of Se0.5Te0.5 glass.
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Figure 5.15. Computed structure of Se0.5Te0.5 glass (stick representation).
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Figure 5.16. Computed structure of Se0.6Te0.4 glass.
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Figure 5.17. Computed structure of Se0.7Te0.3 glass.
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Figure 5.18. Computed structure of Se0.8Te0.2 glass.
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Figure 5.19. Computed structure of Se0.9Te0.1 glass.
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Figure 5.20. Calculated structural data for Se0.5Te0.5 glass: (a) pair distribution functions,
(b) bond angle distribution, (c) bond population, (d) coordination number distribution, and
(e) chain/ring length distributions.
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Figure 5.21. Calculated structural data for glasses in the SexTe1−x system: (a) average
coordination number, (b) fraction of heteropolar bonds, and (c) average chain length.
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Figure 5.22. Distribution of bond types for glasses in the SexTe1−x system (solid lines)
compared to that of a perfectly homogeneous glass (dashed lines).

5.3 SxSe1−x Glasses

We compute the structures of glasses in the binary SxSe1−x following the same

procedure as for the elemental glasses in Section 5.1. The density of a SxSe1−x glass is

assumed to be 4.30− 2.55x g/cm3, a linear interpolation between the densities of elemental

S and Se, and we consider a constant temperature of T = 200 K. Plots of the final glass
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structures are shown in Figures 5.23-5.32 for x = 0.1 through 0.9.

Figure 5.28 shows that S0.5Se0.5 glass consists of many kinked, tangled chains of

atoms. The S-S, S-Se, and Se-Se pair distribution functions for this glass are given in Figure

5.33(a), where we can see that the nearest-neighbor distances are well-defined for all three

cases. This is in contrast to our previous modeling of Se0.5Te0.5 glass, in which a nearest-

neighbor peak for the Se-Te pair distribution was not observed. Whereas Se0.5Te0.5 glass

is composed almost exclusively of segregated chains of selenium and tellurium atoms with

little Se-Te bonding, Figure 5.33(c) shows that S0.5Se0.5 exhibits significant heteropolar and

homopolar bonding. This leads to the well-defined first-neighbor peaks shown in Figure

5.33(a).

The second- and third-nearest neighbor positions in Figure 5.33(a) are more diffuse

owing to the bond angle distribution shown in Figure 5.33(b). The bond angle distribution

is centered around 118◦ and ranges from 96◦ to 143◦. This is very similar to the bond

angle distributions we obtained previously for elemental sulfur and selenium glasses. Figure

5.33(a) shows that the glassy structure becomes completely disordered after about 7 Å.

The distributions of atomic coordination numbers for sulfur and selenium atoms

in S0.5Se0.5 glass are plotted in Figure 5.33(d). Here we see that about 85% of S and Se

atoms are two-coordinated, giving a “defect” rate of about 15%. Most defective atoms are

either one- and three-coordinated, with sulfur atoms exhibiting a greater tendency for the

higher coordination. The average coordination numbers for sulfur and selenium in S0.5Se0.5

glass are 2.07 and 1.94, respectively, where the bond cutoffs are taken to be the first zeroes

in the pair distribution functions (2.4, 2.5, and 2.6 Å for S-S, S-Se, and Se-Se, respectively).
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Figure 5.33(e) plots the fraction of atoms that are members of chains or rings of

different sizes. Three-coordinated atoms lead to branching that allows a single atom to

be a member of multiple chains and rings simultaneously. Figure 5.33(e) shows that the

structure of S0.5Se0.5 glass is dominated by long chains and, to a lesser extent, by large

rings composed of about 60-400 atoms. This is a similar result as obtained for elemental

selenium glass, but with a somewhat larger presence of rings. The average chain length for

S0.5Se0.5 is 268 atoms. Very few rings were found in our previous study of Se0.5Te0.5 glass,

and the average chain length for that case was only 83 atoms.

Figures 5.34 and 5.35 plot structural results for glasses in the SxSe1−x system

for varying sulfur content, x. Figure 5.34 shows the distribution of bond types in the

simulated SxSe1−x system versus an ideally homogeneous case. There is some preference

for homopolar bonding in the region of x < 0.7. High sulfur-content glasses are nearly

homogeneous. Figure 5.35 shows that the average chain length decreases at high mole

fractions of sulfur. The average chain length of S glass is just over half that of Se glass.

This decrease in chain length is due to a slightly higher defect concentration in sulfur.

Unfortunately there is very little data in literature with which to validate our

model of SxSe1−x glass. Our model of the binary SxSe1−x system is the first of its kind,

and there has been very little experimental work on this system. Fukunaga et al.125 pre-

pared amorphous S0.5Se0.5 through mechanical alloying, i.e., milling of sulfur and selenium

powders for tens of hours. However, this method failed to produce a material that was

truly amorphous at atomic scales.125
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Figure 5.23. Computed structure of S0.1Se0.9 glass.
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Figure 5.24. Computed structure of S0.2Se0.8 glass.
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Figure 5.25. Computed structure of S0.3Se0.7 glass.
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Figure 5.26. Computed structure of S0.4Se0.6 glass.
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Figure 5.27. Computed structure of S0.5Se0.5 glass.
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Figure 5.28. Computed structure of S0.5Se0.5 glass (stick representation).
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Figure 5.29. Computed structure of S0.6Se0.4 glass.
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Figure 5.30. Computed structure of S0.7Se0.3 glass.
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Figure 5.31. Computed structure of S0.8Se0.2 glass.
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Figure 5.32. Computed structure of S0.9Se0.1 glass.
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Figure 5.33. Calculated structural data for S0.5Se0.5 glass: (a) pair distribution functions,
(b) bond angle distribution, (c) bond population, (d) coordination number distribution, and
(e) chain/ring length distributions.
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5.4 Ge-Se Glasses

The basic structure of the prototypical network glass GeSe2, consisting of corner-

and edge-sharing Ge(Se1/2)4 tetrahedra, has been well-known since the pioneering neu-

tron diffraction study of Susman et al.126 and further investigated by subsequent experi-

ments.127—129 The resulting model of GeSe2 glass structure has been supported by numerous

molecular dynamics simulations, mostly based on density functional theory (DFT).43—48

However, a recent neutron diffraction experiment by Petri, Salmon, and Fischer130

incorporating isotopic substitution has found that ≈ 4% of bonds in GeSe2 glass are ho-

mopolar, breaking with the traditional heteropolar-bonded Ge(Se1/2)4 tetrahedral motif.

Furthermore, in addition to the well-known peak at 2.36 Å in the Ge-Se pair distribution

function, Petri and coworkers found a second peak at 3.02 Å. This second peak is attributed

to the presence of deformed Ge-centered tetrahedra with three Se atoms at 2.36 Å and a

fourth at 3.02 Å. Unfortunately, previous DFT modeling has not been able to capture these

details of GeSe2 structure.

In this section, we use the ab initio potentials of Part I in Metropolis Monte Carlo62

simulations at the atomistic level to model the structure of Ge-Se glasses, with particular

emphasis on GeSe2. The Monte Carlo simulations begin by placing 2880 atoms at random

positions in a cubic, isochoric simulation space with periodic boundary conditions and a

cell length of 44.46 Å. We consider a constant temperature of T = 298 K and simulate 40

million trial displacements with a target acceptance rate of 40%.

A plot of the final GeSe2 glass structure is shown in Figure 5.36, and structural

data are plotted in Figure 5.37. The average coordination numbers of the Ge and Se
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atoms are 3.97 and 2.04, respectively, very close to the nominal experimental values of 4.0

and 2.0.130 While the vast majority of bonds are heteropolar, approximately 3.1% are

homopolar Se-Se bonds. This is close to the experimental prediction of ≈ 4% by Petri and

coworkers;130 however, this value also includes homopolar Ge-Ge bonds, which we did not

observe in our simulation. Previous DFT modeling work has found either >10% homopolar

bonding44 or none whatsoever.48

The predominant structural motif in our simulated GeSe2 glass is a Ge(Se1/2)4

tetrahedron with an average Ge-Se distance of 2.37 Å and an average Se-Ge-Se bond angle

of 104◦; the average computed Ge-Se-Ge bond angle is 120◦. The tetrahedra are found to

be primarily corner-sharing, but a significant number of edge-sharing tetrahedra also exist.

The experimentally measured Ge-Se bond distance in this standard tetrahedral configu-

ration is 2.36 Å,130 in very close agreement with our simulation results. The computed

Se-Ge-Se bond angle of 104◦ is close to the ideal tetrahedral angle of about 109.5◦.

We also find the presence of deformed Ge-centered tetrahedra as proposed by

Petri et al.,130 wherein three Se atoms reside at 2.36 Å from the center Ge with a fourth

Se at 3.02 Å. Our modeling predicts deformed Ge-centered tetrahedra with three Se atoms

at 2.37 Å and a fourth a 3.04 Å, in very good agreement with the experimental results.

Unfortunately, experiments have not hitherto been able to measure the bond angles of

these deformed tetrahedra. According to our simulation results, the deformed tetrahedra

come in at least three unique configurations with different bond angles, as depicted in Figure

5.38. The presence of 50◦, 75◦, and 140◦ bond angles in Figure 5.38 can also be clearly

seen in the bond angle distribution of Figure 5.37(b).
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The presence of these deformed tetrahedra is also reflected in the Ge-Se pair dis-

tribution function in Figure 5.37(a), where a strong peak at 2.37 Å is followed by a weaker

peak at 3.04 Å. Previous DFT modeling has not observed this second peak,43—48 which is

experimentally located at 3.02 Å.130 The pair distribution functions for Se-Se and Ge-Ge

show small peaks at 2.42 Å and 3.30 Å due to homopolar bonding and edge-sharing tetra-

hedra, respectively. The Se-Se peak at 2.42 Å is in perfect agreement with experiment, but

the Ge-Ge peak at 3.30 Å is at a longer distance than the experimental value of 3.02 Å.130

The success of our model at reproducing even the defect structures in GeSe2 glass

can be attributed to its multiscale nature. The use of Møller-Plesset perturbation theory

allows for highly accurate energy calculations on small clusters of atoms, allowing for a more

accurate description of interatomic interactions than can be provided by DFT. By fitting the

discrete set of ab initio data to continuous functions, large-scale classical simulations can be

run with hundreds or thousands of atoms to provide good statistics for structural analysis.

This combination of highly accurate quantum-level calculations with large-ensemble classical

simulations can provide a significant advantage over DFT for obtaining accurate structural

data.

As shown in Figure 5.39, the fraction of homopolar bonding increases dramatically

on either side of GeSe2 (hmi = 2.67). This is because GeSe2 glass achieves the ideal

stoichiometry for forming a chemically ordered covalent network (COCN).84 As expected,

the fraction of Ge-Ge bonds increases for hmi > 2.67, and the fraction of Se-Se bonds

increases for hmi < 2.67.
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5.4.1 Rigidity Percolation

According to the Phillips theory of topological constraints, covalent systems with

hmi < 2.4 exhibit a large number of floppy modes which allow for continuous deformations

of the network without any cost in energy.70, 71 In contrast, covalent systems with hmi > 2.4

display rigidity percolation where the excess constraints propagate throughout the system

making a completely rigid structure with no modes of continuous deformation. The critical

value of hmi = mc = 2.4 therefore corresponds to a threshold for rigidity percolation.

We can test this theory by computing the Hessian matrix H for our bulk glasses

in the Ge-Se system. The Hessian matrix consists of second derivatives of the total system

potential U with respect to the 3N atomic coordinates:

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2U
∂x21

∂2U
∂x1∂x2

· · · ∂2U
∂x1∂x3N

∂2U
∂x2∂x1

∂2U
∂x22

· · · ∂2U
∂x2∂x3N

...
...

. . .
...

∂2U
∂x3N∂x1

∂2U
∂x3N∂x2

· · · ∂2U
∂x23N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
xi=x0i

. (5.7)

We now define bi and Vi as the eigenvalues and associated eigenvectors of the Hessian

matrix:

HVi = biVi. (5.8)

Since H is a real symmetric matrix, the eigenvalues bi are real and the eigenvectors Vi form

a complete set. Physically, the values of bi indicate the curvature of the potential energy

landscape in the corresponding Vi eigendirections. If bi ≤ 0, a continuous deformation

is possible without any external stimulus. High values of bi indicate rigid modes where

126



deformations are only possible with a very high kinetic energy. Low, positive values of bi

indicate soft modes that can be traversed with low kinetic energy, such as that provided by

thermal fluctuations at room temperature.

Figure 5.40 plots the number of soft modes (bi < 20 J/m2) normalized to the total

number of independent modes available to the system (3N−6). This figure shows evidence

in support of a rigidity percolation threshold at hmi = 2.4: as the average coordination

number increases to hmi = 2.4, the fraction of soft modes decreases dramatically; above

hmi = 2.4, the fraction of soft modes equilibrates quickly, indicating the onset of rigidity

percolation.

5.4.2 Glass Surfaces

We prepare Ge-Se glass surfaces by removing periodic boundary conditions in

the xy-plane and allowing for surface relaxation via Metropolis Monte Carlo. The initial

configuration of atoms is the equilibrated bulk structure. Atoms below z = 1.5 nm are

frozen in the bulk configuration and not allowed to participate in Monte Carlo displacements.

This effectively provides for a bulk glass interface in the lower part of the simulation cell

and a free surface at the top.

The surface relaxation process in Ge-Se glasses involves diffusion of selenium atoms

to the free surface. This is shown for GeSe4 in Figure 5.41 and is also true for GeSe2, GeSe3,

GeSe5, GeSe7, GeSe11, and GeSe17 glasses. Since selenium prefers a twofold coordination, it

can more easily adopt an exposed configuration at a surface than can a fourfold-coordinated

germanium atom. Hence, it is more energetically favorable to form a layer of selenium atoms

at a free surface than to have exposed germanium atoms. The Ge remaining in the bulk
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glass continues to adopt its tetrahedral coordination. GeSe did not form an obvious Se-rich

layer at the surface since selenium is both deficient and highly constrained in this glass.

5.4.3 Nanoindentation and Incipient Plasticity

In order to investigate incipient plasticity as a function of average coordination

number, we perform nanoindentation simulations on the Ge-Se glass surfaces from Section

5.4.2. We consider a hard-shell spherical indenter with a radius of 1.0 nm. The indenter

starts above the glass surface and is loaded in steps of 0.1 nm to a maximum penetra-

tion depth of 1.0 nm. The atoms respond to the indentation with 500,000 Monte Carlo

displacements per step of the indenter. After reaching maximum penetration depth, the

indenter is unloaded in steps of 0.1 nm back to the original height. Again, 500,000 Monte

Carlo displacements are used at each step to allow the glass to relax during removal of the

indenter.

Figures 5.42 and 5.43 show cross-sections of the GeSe and GeSe4 glasses, respec-

tively, during loading of the indenter. Whereas GeSe responds primarily by densification

around the indenter, the GeSe4 glass develops a ring-shaped mound above the original glass

surface. Figure 5.44 shows the growth of these mounds during indenter loading and un-

loading for all of the Ge-Se glasses under consideration. During the initial loading of the

indenter, the mound size grows most quickly in glasses with lower average coordination

number. These glasses have a greater number of floppy modes, which enable shear flow.

However, floppy modes can also facilitate densification, which plays an increasingly

dominant role in low-hmi glasses at higher loads. Figure 5.44 shows a crossover point about

halfway through the loading process where glasses near the rigidity percolation threshold of
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hmi = 2.4 start to exhibit the greatest mound size. The mound size at maximum indenter

penetration is shown in Figure 5.45 as a function of average coordination number. This

figure shows a clear maximum at hmi = 2.4, indicating the greatest shear flow and least

densification in the GeSe4 glass.

According to the Phillips model of topological constraints, systems near the rigidity

percolation threshold have an optimized glass structure. This is supported by the critical

behavior of incipient plasticity we observe about hmi = 2.4, where the preferred mode of

deformation is shear flow rather than densification. Shear flow allows for displacement,

rather than distortion, of the glass structure, thereby preserving its integrity.

The deformation behavior of Ge-Se glasses in the hmi > 2.4, hmi < 2.4, and

hmi = 2.4 regimes is further elucidated by Figures 5.46-5.48, which plot cross-sections of

the initial glass structures prior to indentation, with arrows indicating atomic displacements

after complete loading and unloading of the indenter. The arrows in Figure 5.46 show that

GeSe glass (hmi = 3.0) undergoes densification by short displacements of atoms from the

indentation volume. Here there is only a slight movement of atoms upward from the

surface. On the other hand, Figure 5.47 shows that atoms in GeSe17 glass (hmi = 2.11)

undergo large displacements leading to both densification and mound formation. The ease

of atomic motion in this glass is due to the large presence of floppy modes. Finally, Figure

5.48 shows atomic displacements in GeSe4 glass, which has the optimal value of hmi = 2.4.

GeSe4 exhibits shear flow through a cooperative upward motion of atoms, with very little

densification. This cooperative motion minimizes distortion of the GeSe4 glass structure

as it plastically deforms.

129



As one final remark, Figure 5.44 shows that the mound sizes remain fairly constant

during indenter unloading. The densification induced by the nanoindentation is also found

to be irreversible in our simulations. This is in contrast to microindentation experiments

on similar systems, where the deformations are predominantly elastic, and plasticity is

found to be a minimum at hmi = 2.4.84 This difference between nanoindentation and

microindentation behavior is not unexpected since the former operates on an atomistic scale

and the latter on a continuum scale. Plastic behavior is known to display a strong size

dependence, especially in the sub-micron regime.131 This is demonstrated by Figures 5.49

and 5.50, which show our simulations of GeSe and GeSe4 glass during and after indentation

with a perfectly flat indenter. As with our previous case of a spherical indenter, we consider

a maximum penetration depth of 1.0 nm. Figure 5.49 shows that GeSe glass exhibits only

partial elastic recovery after full unloading of the flat indenter. In contrast, Figure 5.50

shows that GeSe4 glass displays total elastic recovery. A plot of elastic recovery as a

function of average coordination number is provided in Figure 5.51. Here we see that

elastic recovery is a maximum at hmi = 2.4, in excellent agreement with microindentation

experiments.84 This is also consistent with our understanding that GeSe4 has the ideal

glass structure and is hence most resistant to structural deformation. The high-hmi glasses

exhibit the greatest plasticity due to their excess of topological constraints, which act to

frustrate the deformed glass structure.
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Figure 5.36. Computed structure of GeSe2 glass.
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Figure 5.37. Calculated structural data for GeSe2 glass: (a) pair distribution functions, (b)
bond angle distributions, (c) bond population, and (d) coordination number distributions.
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Figure 5.38. Three configurations of deformed Ge(Se1/2)4 tetrahedra, where r1 = 2.37 Å
and r2 = 3.04 Å.
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Figure 5.39. Distribution of bond types as a function of average coordination number in
Ge-Se glasses.
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Figure 5.40. Fraction of soft modes as a function of average coordination number for bulk
Ge-Se glasses.
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Figure 5.41. Simulated surface of GeSe4 glass (44.46 Å × 44.46 Å × 44.46 Å).
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Figure 5.42. Loading of a nanoindenter into the surface of GeSe glass. The dashed lines
indicate the initial surface of the glass.
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Figure 5.43. Loading of a nanoindenter into the surface of GeSe4 glass. The dashed lines
indicate the initial surface of the glass.
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Figure 5.44. Growth of mounds encircling a nanoindentation in Ge-Se glass surfaces with
varying average coordination number hmi.
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Figure 5.45. Mound size at maximum load as a function of average coordination number
for glasses in the binary Ge-Se system.
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Figure 5.46. Cross-section of GeSe glass (hmi = 3.0), with vectors indicating atomic dis-
placements after the loading and unloading of a nanoindenter.
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Figure 5.47. Cross-section of GeSe17 glass (hmi = 2.11), with vectors indicating atomic
displacements after the loading and unloading of a nanoindenter.
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Figure 5.48. Cross-section of GeSe4 glass (hmi = 2.4), with vectors indicating atomic
displacements after the loading and unloading of a nanoindenter.
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Figure 5.49. Loading and unloading of a flat indenter into the surface of GeSe glass.
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Figure 5.50. Loading and unloading of a flat indenter into the surface of GeSe4 glass.
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Figure 5.51. Fraction of elastic recovery in Ge-Se glasses after complete loading and un-
loading of a flat indenter.

5.5 As-Se Glasses

In this section, we model glasses in the As-Se system using Metropolis Monte Carlo

simulations together with our ab initio potentials. The Monte Carlo simulations begin by

placing 1500 atoms at random positions in a cubic, isochoric simulation space with periodic

boundary conditions and a cell length of 34.854 Å. We consider a constant temperature

of T = 298 K and simulate 30 million trial displacements with a target acceptance rate of

40%. The As-Se glass compositions cover a range of average coordination numbers from

2.1 to 2.67.

A plot of the As2Se3 glass structure (hmi = 2.4) is shown in Figure 5.52, and graphs

of the structural data are given in Figure 5.53. As expected,37, 132—139 As2Se3 glass consists

142



of predominantly three-coordinated arsenic and two-coordinated selenium with nearly 100%

heteropolar bonding. Experimental measurements indicate an average As-Se bond length

of 2.44 Å,133 somewhat shorter than our calculated bond length of 2.55 Å. The experimental

Se-Se distance of 3.65 Å133 is slightly longer than our computed value of 3.50 Å. We predict

an average As-Se-As bond angle of 104◦ and an average Se-As-Se bond angle of 116◦.

The chemical order of As-Se glasses is remarkably perseverant with respect to

compositional variations about hmi = 2.4. Figure 5.54 shows the computed structure of

AsSe2 glass (hmi = 2.33), and Figure 5.55 shows the computed structural data. As with

As2Se3, nearly 100% of the bonds are heteropolar. A recent experiment by Georgiev,

Boolchand, and Micoulaut140 suggested that Se-rich compositions in the As-Se glassy sys-

tem exhibit tetrahedrally-coordinated arsenic atoms where a fourth selenium atom has a

“double” bond to the center arsenic. This suggestion is in agreement with our computed

structure of AsSe2, where we observe both an increased number of four-coordinated arsenic

and one-coordinated selenium atoms compared to As2Se3.

This propensity for heteropolar bonding is also demonstrated by the arsenic-rich

AsSe glass (hmi = 2.5), shown in Figures 5.56 and 5.57. Here, selenium adopts a three-

coordinated arsenic-like character in order to preserve heteropolar bonding. This system

has not yet been the subject of a thorough experimental study, but if our modeling results

are any indication, AsSe should provide for a very interesting study.

Figure 5.58 plots the fraction of soft modes in As-Se glasses as a function of

average coordination number. The As-Se system exhibits a somewhat shallower rigidity

transformation compared to Ge-Se glasses (Figure 5.40). While we have drawn the rigidity
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percolation threshold at hmi = 2.4 in Figure 5.58, it could arguably be placed closer to

hmi = 2.3. Such an early onset of rigidity percolation is consistent with the experimental

measurements of Georgiev, Boolchand, and Micoulaut,140 who found an onset of rigidity

percolation at hmi = 2.29.

Figure 5.52. Computed structure of As2Se3 glass.
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Figure 5.53. Calculated structural data for As2Se3 glass: (a) pair distribution functions, (b)
bond angle distributions, (c) bond population, and (d) coordination number distributions.
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Figure 5.54. Computed structure of AsSe2 glass.
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Figure 5.55. Calculated structural data for AsSe2 glass: (a) pair distribution functions, (b)
bond angle distributions, (c) bond population, and (d) coordination number distributions.
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Figure 5.56. Computed structure of AsSe glass.
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Figure 5.57. Calculated structural data for AsSe glass: (a) pair distribution functions, (b)
bond angle distributions, (c) bond population, and (d) coordination number distributions.
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Figure 5.58. Fraction of soft modes as a function of average coordination number for bulk
As-Se glasses.

5.6 Ge-As-Se Glasses

Finally, we simulate the structure of several glasses in the Ge-As-Se ternary using

Metropolis Monte Carlo and our ab initio potentials: GeAsSe13 (hmi = 2.2), GeAsSe8

(hmi = 2.3), GeAs2Se7 (hmi = 2.4), Ge2AsSe7 (hmi = 2.5), Ge2As2Se6 (hmi = 2.6), and

Ge4As4Se7 (hmi = 2.8), covering a range of average coordination numbers from 2.2 to

2.8. The Monte Carlo simulations begin by placing 1500 atoms at random positions in

a cubic, isochoric simulation space with periodic boundary conditions and a cell length of

35.7748 Å. We consider a constant temperature of T = 298 K and simulate 30 million trial

displacements with a target acceptance rate of 40%.

The resulting glass structures are plotted in Figures 5.59 through 5.64. These
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plots show evidence for regions of pure selenium interspersed with regions of higher As and

Ge content, particularly in the low-hmi glasses (with high Se content). Figure 5.65 plots

the fraction of homopolar and heteropolar bonds in the Ge-As-Se system as a function of

average coordination number. Here we see that homopolar bonding is predominant with

hmi < 2.4 and heteropolar bonding dominates with hmi > 2.5. This is consistent with the

presence of high-Se regions in the low-hmi glasses.

Figure 5.66 plots the fraction of soft modes in the Ge-As-Se system as a function

of average coordination number. Unlike for the binary Ge-Se and As-Se glasses, we do

not observe a rigidity transformation in the ternary Ge-As-Se system in the region of 2.2 ≤

hmi ≤ 2.8. This can be explained by Figure 5.67, which shows the computed average

coordinations of Ge, As, and Se atoms for the compositions under study. Here we observe

a steady increase in the atomic coordinations as the ideal average coordination number of

the glass increases. This leads to a higher actual value of hmi for these glasses compared

to what is predicted using the nominal coordinations of mGe = 4, mAs = 3, and mSe = 2.

Figure 5.68 plots our computed hmi versus their corresponding ideal values. Whereas

GeAsSe13 glass has an ideal average coordination number of hmiideal = 2.2, we compute

an actual average coordination number of hmiactual = 2.4. Hence, the Ge-As-Se ternany

system exhibits a nonlinear (quadratic) behavior of actual coordination number with com-

position, effectively lowering the rigidity percolation threshold to a composition having

hmiideal = 2.2.

Experimentally, the issue of rigidity percolation in the Ge-As-Se system is still a

matter of debate.76, 90, 94, 141—144 Regardless of the ultimate outcome in this matter, our
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simulations show the importance of considering the actual average coordination number

of a glass instead of just its ideal value. This is also important for chalcogenide systems

that exhibit molecular clustering, where free molecules in a glass can have an effective

coordination of zero.

Figure 5.59. Computed structure of GeAsSe13 glass.
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Figure 5.60. Computed structure of GeAsSe8 glass.
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Figure 5.61. Computed structure of GeAs2Se7 glass.
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Figure 5.62. Computed structure of Ge2AsSe7 glass.
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Figure 5.63. Computed structure of Ge2As2Se6 glass.
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Figure 5.64. Computed structure of Ge4As4Se7 glass.
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Figure 5.65. Fraction of homopolar and heteropolar bonds in Ge-As-Se glasses as a function
of average coordination number.
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Figure 5.66. Fraction of soft modes in Ge-As-Se glass as a function of the ideal hmi.
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glasses as a function of the ideal hmi.
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The dashed line shows the nominal case.

159



5.7 Conclusions

We have performed atomistic Monte Carlo simulations of chalcogenide glasses using

our ab initio interatomic potentials from Part I. We have successfully reproduced the two-

coordinated chain structure of chalcogen glasses. Heterogeneous SexTe1−x glasses are found

to be highly phase separated at the chain level in the regime of x > 0.2.

Our multiscale modeling technique is able to capture defect structures in GeSe2

not previously found with traditional DFT simulations. The scaling of soft modes with

respect to average coordination number hmi in the bulk glasses provides evidence for a

rigidity percolation threshold at hmi = 2.4. Furthermore, nanoindentation simulations

on Ge-Se glass surfaces display critical plastic behavior at hmi = 2.4. These results give

support to the Phillips model of topological constraints for the Ge-Se, which uses counting

arguments to predict a rigidity percolation threshold at an average coordination number of

hmi = 2.4.

The binary As-Se system shows a strong preference for chemical ordering. We

have found evidence for a rigidity percolation threshold in the regime of 2.3 < hmi < 2.4

for this system.

The ternary Ge-As-Se system has a rigid structure, even with an ideal average

coordination number as low as hmi = 2.2. This result underscores the importance of

considering actual average coordination numbers when computing a rigidity percolation

threshold, and not strictly relying on their ideal values, since ideal coordination numbers

do not necessarily capture the detailed structural features of the glass.
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Part III

Energy Landscapes and the Glass

Transition
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Chapter 6

Introduction to the Glass

Transition

From windows and lenses to light bulbs and optical fiber, glass has had a profound

positive impact on society. While our scientific understanding of glass has grown immensely

in the past century,66 the true nature of the glassy state still remains mysterious. It is

well-known that the structure and properties of glass depend strongly on both composition

and thermal history, but there is yet to be any rigorous physical model explaining this

behavior and offering the ability to compute glass properties from fundamental physics.

In this chapter, we discuss the concept of the glass transition and how it governs

the experimentally observed properties of glass. We then review several phenomenological,

thermodynamic, and kinetic models of the glass transition that each offer important insights

into the nature of glass. While none of these models offers a complete picture of the glass

transition, they address different aspects of the problem that can be used to construct a
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Figure 6.1. The volume-temperature diagram for a glass-forming liquid. Reproduced with
permission from Varshneya.66

more comprehensive understanding of the glassy state.

6.1 The Glass Transition

Perhaps the most ubiquitous figure in all of glass science is the volume-temperature

(V -T ) diagram depicted in Figure 6.1. Consider an equilibrium liquid at point a in the

diagram. Upon cooling, the volume of the liquid generally decreases along the path abc.

Point b corresponds to the melting temperature Tm of the corresponding crystal. At this
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Figure 6.2. Nucleation and crystal growth rates with respect to temperature. Reproduced
with permission from Varshneya.66

point, the liquid exhibits an infinitesimally small number of crystal nuclei. The degree of

crystallization is governed by nucleation and crystal growth rates in the liquid. In this

context, a “nucleus” refers to a precursor to a crystal that lacks a recognizable growth

pattern. As shown in Figure 6.2, the rates of nucleation and crystal growth are both zero

at Tm and in the limit of low temperature. The maximum nucleation and crystal growth

rates occur slightly below Tm, corresponding to point c in Figure 6.1. If crystallization

occurs, the system undergoes a phase change from point c to the crystal line in the V -T

diagram. Subsequent cooling of the crystal generally results in a decrease in volume along

the path de.
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Figure 6.3. Time-temperature-transformation (T -T -T ) diagram for silica using a crystal
volume fraction of 10−6. Reproduced with permission from Varshneya.66

The shaded region around point c in Figure 6.1 corresponds to the temperature

region where perceptible crystallization can occur. If a liquid is cooled quickly enough

through this temperature range to avoid a phase change, it moves into the “supercooled

liquid” state along the path bcf . The minimum cooling rate required to avoid crystallization

can be determined using a time-temperature-transformation (T -T -T ) diagram, as depicted

in Figure 6.3. The solid “transformation” curve in this figure represents the locus of all

points in the temperature-time plane which yield a given crystal concentration (typically

10−6 volume fraction) which serves as a threshold for crystal detection. Given a liquid at
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Figure 6.4. Various glass reheating curves. Reproduced with permission from Varshneya.66

Tm, the minimum cooling rate to avoid crystallization is determined by the slope of the line

which just touches the transformation curve (the dashed line in Figure 6.3).

As a supercooled liquid continues to cool, the molecular motions slow down suffi-

ciently such that the system departs from its straight-line cooling behavior. In other words,

the molecules do not have sufficient time to rearrange themselves into the volume character-

istic of that temperature and pressure. (Recall that the thermodynamic equation of state

for a closed system at equilibrium is defined in terms of any two of V , P , and T .) Further

cooling results in a gradual solidification of the system and a return to straight-line cooling

behavior in the V -T diagram. The resulting material is a glass. Glass is remarkable in that
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Figure 6.5. Heat capacity of glycerol: (a) liquid, (b) supercooled liquid, (c) glass, (d)
crystal, and (e) very slowly cooled supercooled liquid. Reproduced with permission from
Varshneya.66

it has a liquid-like structure but with solid-like behavior. As shown in Figure 6.1, the final

volume of a glass depends on the cooling rate. A faster cooling rate generally results in a

higher volume since the molecules are given less time to relax into a lower energy structure

before the onset of viscous arrest.

The smooth curve between the supercooled liquid and glassy regions in Figure 6.1 is

termed the “glass transition” or “glass transformation” range. It should be emphasized that

the transition from the supercooled liquid to glassy states does not occur at a single, well-
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Figure 6.6. Schematic diagram illustrating relative thermodynamic stability.

defined temperature. Rather, the change is gradual and occurs over a range of temperatures.

This temperature range depends on both the material under study and the particular cooling

path. In other words, glass transition range behavior, and hence the properties of the final

glass itself, depend on both composition and thermal history.

Another interesting behavior of glass is that it never retraces its cooling path in

the transition range upon reheating. Figure 6.4 shows a variety of reheating curves for

different cooling and reheating rates; a quickly cooled glass can actually show a decrease in

volume as it is reheated through the transition range.

The glass transition is not a phase transition in the thermodynamic sense. Whereas

the crystallization of a liquid results in a discontinuity in first-order thermodynamic vari-

ables (such as volume), there is no such discontinuity in the case of a glass transition.

Instead, the glass transition often involves a rather sharp change in second-order thermody-

namic variables such as heat capacity and thermal expansion coefficient. Figure 6.5 shows

the heat capacity of glycerol as it undergoes a glass transition. This change in heat capac-
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ity is dramatic, but still not discontinuous. This observation has led some researchers to

postulate an “ideal glass transition,” in which a system undergoes a discontinuity in second-

order thermodynamic variables. Such an ideal glass transition has not been observed in

reality, but only in theoretical or computational studies.

Glass is not an equilibrium state of matter in the statistical mechanical sense. In

fact, the only reason we observe the existence of glass at all is that the relaxation dynamics

in glass are much slower than our observation time. While glass appears as a rigid, solid

material to us humans, on a geologic time scale it is actually relaxing toward the supercooled

liquid state. Hence, glass is unstable with respect to the supercooled liquid state. The

supercooled liquid is, in turn, metastable with respect to the equilibrium crystal.

Finally, we should comment on the difference between a glass and an amorphous

solid. Both materials are noncrystalline, but whereas a glass is continuously connected to

the liquid state, an amorphous solid will crystallize upon reheating without undergoing a

glass transition.67 For example, amorphous silicon prepared by vapor deposition crystal-

lizes directly upon reheating. Interestingly, glassy silicon has not yet been experimentally

realized: liquid silicon is 12-coordinated and always crystallizes on cooling, even for the

greatest experimentally realizable cooling rates. Figure 6.6 illustrates the relative stability

of the glassy, supercooled liquid, amorphous, and crystalline states. In this chapter we are

only concerned with glasses and supercooled liquids, not amorphous solids.
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Figure 6.7. Variation of viscosity with normalized inverse temperature Tg/T for strong and
fragile liquids. Reproduced with permission from Varshneya.66

6.2 Strong and Fragile Liquids

It is useful to classify glass-forming liquids as either “strong” or “fragile,” de-

pending on their observed dependence of viscosity on temperature. According to Angell’s

criterion,86—89 strong liquids exhibit a behavior that is close to the Arrhenius form,

η = η0 exp

µ
∆H

kT

¶
, (6.1)
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Figure 6.8. Heat capacity as a function of normalized temperature, T/Tg, for various strong
and fragile liquids. Reproduced with permission from Varshneya.66

where ∆H is an activation barrier to flow, k is Boltzmann’s constant, T is temperature,

and η0 is a constant. When the logarithm of viscosity is plotted as a function of inverse

temperature, as in Figure 6.7, strong liquids will have a near-straight-line relationship.

Examples of strong liquids include silica (SiO2) and germania (GeO2).

Fragile liquids, on the other hand, exhibit a large departure from this straight-line

relationship. In this case, the viscosity-temperature relationship can often be described by
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the Vogel-Fulcher-Tamman (VFT) relation,

η = η0 exp

∙
∆H

k (T − T0)

¸
, (6.2)

where T0 is a constant. Examples of fragile liquids include o-terphenyl, heavy metal halides,

and calcium aluminosilicates. The difference in behavior between strong and fragile liquids

is related to allowable relaxation modes of the liquids at different temperatures. Under-

standing the details of these relaxation modes is a key consideration in modeling glass

transition range behavior, as we discuss later in this chapter.

The magnitude of the change in second-order thermodynamic variables during the

glass transition is often correlated to the fragility of the glass-forming liquid. Figure 6.8

shows that fragile liquids experience a much greater change in heat capacity during the

glass transition than strong liquids.

6.3 The Kauzmann Paradox

In a landmark 1948 paper, Kauzmann145 plotted the difference in configurational

entropy between several supercooled liquids and their corresponding crystalline states. He

extrapolated the curves to low temperatures, such as shown in Figure 6.9 for glycerol, and

found that the entropy difference becomes zero at a finite temperature TK , the Kauzmann

temperature. Continued extrapolation below TK would yield negative configurational en-

tropy for the supercooled liquid, in violation of the Third Law of Thermodynamics. Ex-

amples of this so-called “Kauzmann paradox” are shown in Figure 6.10.

Kauzmann himself proposed a resolution to this paradox, arguing that the energy
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Figure 6.9. Entropy of supercooled and glassy glycerol relative to that of the crystal and
normalized to the entropy of fusion Sf . Reproduced with permission from Varshneya.66

barrier to crystallization must decrease to the same order as the thermal energy. In this way

crystallization would be inevitable at low temperatures, and the issue of negative entropy

would be completely meaningless. Figure 6.11 illustrates this point of view in terms of

total configurational plus vibrational entropy. The entropy of an infinitely slowly cooled

liquid would meet that of the crystalline state at TK and then follow it down to absolute

zero.

The resolution of the Kauzmann paradox is intimately connected to an under-

standing of the thermodynamics of the glass transition, and forced crystallization is just

one possible explanation. In Section 6.5 we will summarize other explanations provided by

different thermodynamic models of the glass transition.
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Figure 6.10. Examples of the Kauzmann paradox, where supercooled liquid entropies ap-
parently extrapolate to negative values at low temperature. Reproduced with permission
from Varshneya.66

6.4 Phenomenological Models

Mathematical models of physical phenomena are classified under many categories,

including physical (deterministic or stochastic), empirical, and phenomenological models.

The first category usually describes physical mechanisms that are fairly well understood.

On the other hand, empirical models are often statistical fits of observed data that predict

the expected trend in the behavior of a system. Many systems and phenomena, including

glass transition, are too poorly understood to be cast into a rigorous physical model, either

deterministic or stochastic. At the same time, these systems may not lend themselves to
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Figure 6.11. Absolute entropy of a supercooled liquid and its corresponding crystal. Re-
produced with permission from Varshneya.66

statistical extrapolation via empirical models. This is especially true of glass transition

range behavior, which is highly dependent on the glass’s thermal history. Mathematical

models of such systems are often based on a phenomenological approach in order to provide

insight into the system’s behavior.

Phenomenological models bridge the gap between physical and empirical models,

usually by providing a framework that is an analog of the real system. Using a set of

control parameters, this framework needs to be tuned to mimic the behavior of the real

system. This approach has been used, with some success, to provide kinetic models of

glass relaxation. We briefly describe some important developments of this approach to

understanding of glass transition behavior in the sections below. It must be stated that an

excellent and comprehensive review of such models, as well as related concepts, has been

done by Scherer.146, 147 Other reviews by Mazurin148 and Rekhson149—151 are also worthy
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of note here. This section is merely a synthesis of material that may be found in these

reviews.

6.4.1 Structural Relaxation and the Fictive Temperature

Phenomenological models of glass transition represent the earliest attempt at pro-

viding a mathematical basis for understanding this phenomenon. These models drew their

early inspiration from the field of viscoelasticity. This is evident in the usage of the term

“structural relaxation” to describe the glass transition phenomenon. This perspective of

glass transition considered the glass to undergo a change towards equilibrium much in the

same way as a viscoelastic material undergoes stress or strain relaxation. Due to this

intimate relation between the two phenomena, and the presence of analogous ideas in their

treatment, it is hard to talk exclusively about the structural relaxation of glass without

describing the simultaneous work that studied viscoelastic stress relaxation. Nevertheless,

we will have to do so in the interest of brevity, especially since we will be summarizing sixty

years of previous work.

Possibly the most important concept related to phenomenological modeling of the

glass transition is that of a fictive temperature, Tf . Unlike materials in thermodynamic

equilibrium, the thermodynamic state of a glass cannot be described in terms of the state

variables alone. Hence, Tool152 proposed the concept of a fictive temperature to allow

another degree of freedom by which to describe the nonequilibrium nature of the system.

Tool’s definition of a fictive temperature relates to the viscous arrest of long-range

molecular motion during the cooling of a glass-forming liquid. This arrest, which happens

at temperatures that are high compared to room temperature, leads to a glass structure
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that is not in equilibrium with its surroundings at a lower temperature. Often, the fictive

temperature is defined to be that physical temperature at which the glass structure would

be in equilibrium, if brought instantaneously to that temperature. However, this is a little

inaccurate. A better definition of fictive temperature is more property-specific and describes

the relaxation in the appropriate property of the glass. This is important since different

properties relax at different rates during glass transition. The fictive temperature can thus

be defined as the temperature from which the glass must be instantaneously quenched to

obtain a specific value of the property in question.146 On the V -T diagram (Figure 6.1),

the fictive temperature (Tf ) is often represented by the temperature where the extrapolated

solid and liquid cooling curves intersect. This value is actually the limiting value that the

fictive temperature can attain based on the definition above and is often called the glass

transition temperature Tg.146 The fictive temperature thus decreases from a value equal

to the physical temperature when the system is a liquid to the final value of Tg when the

system has solidified. In this context, the fictive temperature is not a measurable property,

unlike the glass transition temperature. Experimentally, the glass transition temperature

is often measured using a differential scanning calorimeter (DSC) or a dilatometer.66

On the V -T diagram, the slope of the solid and liquid curves represent the coef-

ficients of volume expansion of the respective states. In the glass transition region, the

volume change has an additional component, commonly considered as structural expansion,

to that of the solid’s (elastic) volume expansion. Taking the volume expansion of glass to

be isotropic, Tool152 described the change in length associated with a change in temperature
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as the sum of elastic thermal expansion and structural expansion,

L− L0
L0

= αg (T − T0) + αs (Tf − Tf,0) , (6.3)

where L and L0 are the instantaneous and initial lengths, αg is the coefficient of elastic

thermal expansion between temperatures T and T0 in the glassy state, and αs is a coefficient

of structural expansion between fictive temperatures Tf and Tf,0. If the glass is heated and

cooled through a thermal cycle that brings it back to its initial temperature, the elastic

expansion vanishes. However, the structure of the glass will have changed, leading to a

finite length (and free volume) change.

Tool initially proposed a model of structural relaxation where the rate of approach

to equilibrium is proportional to the departure from equilibrium.152 The relationship of

this model to viscoelastic stress relaxation is easy to see:

dTf
dt

=
T − Tf
τp

, (6.4)

where τp is the characteristic relaxation time of property p.

In this model Tool considered the relaxation time to depend on the viscosity, just

as it does in viscoelastic relaxation. Unfortunately this formulation did not fit his data

well. Tool therefore suggested,153 in effect, that the viscosity was a function of the fictive

temperature as well as the physical temperature:

η = η0 exp (−AT −BTf ) , (6.5)

178



where η0, A, and B are constants.

This simple phenomenological model by Tool captures the broad features observed

in glass relaxation, but described by only a single fictive temperature Tf . Tool’s own data

showed that a single Tf description is inadequate in the low temperature region. Following

up on this work, Ritland154 showed the limitations of Tool’s approach to calculating fictive

temperature. Since the glass transition behavior is represented as a single relaxation

process, the Tool model fails to effectively account for the effect of thermal history, as seen by

Ritland’s famous cross-over experiments comparing quenched versus rate-soaked samples.

This aspect of glass relaxation involving multiple relaxation times was demonstrated by

Macedo and Napolitano155 and by Spinner and Napolitano.156 It took nearly two decades

after Tool’s initial model for Narayanaswamy to make the next major improvement to a

phenomenological model of glass relaxation.

6.4.2 Narayanaswamy Model of Relaxation

Arguably the model of glass relaxation that has the widest application today was

proposed by Narayanaswamy in his classic 1971 paper,157 following a previously published

study with Gardon.158 In this work, Narayanaswamy provided a way to deal with the inher-

ently nonlinear nature of glass structural relaxation that was demonstrated by Napolitano

and coworkers.155, 156 This can be seen in the fact that the structural relaxation response

depends on both the magnitude and direction of temperature change (data of Hara and

Suetoshi159). In Narayanaswamy’s paper, this is expressed by the relation

M∗
p (t,∆T ) =

p− p2,∞
p2,0 − p2,∞

=
Tfp − T2
T1 − T2

, (6.6)
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where the nonlinearity is accounted for by including ∆T as an argument of the relaxation

response function M∗
p . The function M∗

p is normalized to unity at time t = 0 and to zero

at t = ∞; p is the value of a property at any time t corresponding to fictive temperature

Tfp; p2,0 and p2,∞ represent the initial and long-term property values; and ∆T = T1 − T2

represents a step change in temperature. Narayanaswamy hypothesized that the nonlin-

earity inherent to this process was simply due to the time dependence of the characteristic

time for structural relaxation of the property under consideration, τp. The dependence on

∆T is removed by taking the limit of the response function as the equilibrium temperature

is approached. However, this limit is applicable only in a very small temperature range

around the equilibration temperature, thus restricting its usefulness. Mathematically, this

is expressed as:

Mp (t) = lim
∆T→0

M∗
p (t,∆T ) . (6.7)

Narayanaswamy made some important assumptions, which lie at the heart of the

phenomenological nature of the model. These assumptions are:

1. The relaxation process can be expressed as the superposition of multiple relaxation

processes, along the lines of the Boltzmann superposition principle in linear viscoelas-

tic formulations.

2. Glass maintains thermorheological simplicity (TRS), i.e., the shape of the response

function is independent of the temperature range in which it is applied.

3. The intrinsic relation between the cause and effect of relaxation is linear. The non-

linearity arises due to the dependence of viscosity on structural relaxation as well as
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temperature.

4. The fictive temperature related to the relaxation behavior of a given property, Tfp,

is close to the fictive temperature for viscosity relaxation, Tfη. These two quantities

can thus be considered equal.

The nonlinearity was removed by considering a reduced time variable, ξ, such that

Mp (ξ) is linear:

Mp (ξ) =
p− p2,∞
p2,0 − p2,∞

=
Tfp − T2
T1 − T2

. (6.8)

In doing this, the earlier constraint around the applicability ofMp (t) in a small temperature

range is now removed, and the assumptions listed above essentially allow Equation (6.8) to

be applied across any temperature range.

The reduced time, ξ, is given by the expression

ξ =

Z t

0
φ
£
T, Tfp

¡
t0
¢¤
dt0, (6.9)

where

φ [T, Tfp (t)] =
ηB
η
. (6.10)

Here, φ is a normalized shift function that relates the viscosity at the current time t to a

reference viscosity ηB.

Invoking Tool’s phenomenological approach, Narayanaswamy rewrote Tool’s ear-
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lier expression for viscosity in a more familiar Arrhenius form:

ln

µ
ηB
η

¶
=

∙
−x∆H

RT
− (1− x)

∆H

RTfp

¸
, (6.11)

where ∆H is the activation barrier to relaxation, R is the gas constant, and the parameter

x needs to be adjusted to match experimental data. Thus, the viscosity is linked to the

structural relaxation, as well as to the temperature. This expression has no theoretical

justification, and it hence adds to the core of the phenomenological nature of the model.

With these expressions in place, the response of a property p to a change in tem-

perature can be expressed as

p (t)− p (0) = p (0)

∙
αpl (T − T0)− αps

Z ξ

0
Mp

¡
ξ − ξ0

¢ dt

dξ0
dξ0
¸
, (6.12)

where αpl is the coefficient of property change in the liquid state and αps = αpl − αpg, αpg

being the coefficient of property change in the glassy state. The property response depends

on two terms: the first term is the equilibrium response of the property after complete relax-

ation, and the second term is the instantaneous contribution due to incomplete relaxation.

The integral expression in the second term allows the Narayanaswamy model to capture

memory efforts during structural relaxation.

Applying Equation (6.12) to the change in fictive temperature during relaxation,

we obtain

Tfp = T +

Z ξ(T0)

ξ(T )
Mp

¡
ξ − ξ0

¢ dt

dξ0
dξ0 (6.13)

Thus, the fictive temperature is expressed as the sum of the physical temperature and the
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part of ∆T that is remembered in the glass structure. Substituting Equation (6.13) for

the memory integral in Equation (6.12), we regain the property-dependent definition of a

fictive temperature:

p (t)− p (0) = p (0) [αpl (Tfp − T0) + αpg (T − Tfp)] , (6.14)

i.e., the property changes as would a liquid from T0 to Tfp and a solid from Tfp to T . For a

change in free volume, this would correspond to an elastic thermal expansion in two stages

(liquid and solid).

In order to relate Narayanaswamy’s formulation to that of Tool, we can consider

some specific forms of the response functionMp. WhenMp = 0, as is the case for instanta-

neous relaxation in the liquid state, Tf = T . When the glass is instantaneously quenched

from a liquid state at a temperature T0 to a final state T1 ¿ Tg, Mp = 1 and Tf = T0. If

we assume Mp to represent a single relaxation process, then we get

Mp (ξ) = exp

µ
− ξ

τpr

¶
, (6.15)

where τpr represents τp in reduced time.

Thus, Equation (6.13) becomes

Tfp = T −
Z ξ

0
exp

µ
−ξ − ξ0

τpr

¶
dt

dξ0
dξ0. (6.16)
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Taking the derivative with respect to ξ, we obtain

dTfp
dξ

=
dT

dξ
− dT

dξ
+

1

τpr

Z ξ

0
exp

µ
−ξ − ξ0

τpr

¶
dt

dξ0
dξ0. (6.17)

Substituting Equation (6.12) into Equation (6.17), we obtain

dTfp
dξ

=
T − Tfp
τpr

. (6.18)

Since

dξ =
τp
τpr

dt, (6.19)

we have

dTfp
dt

=
T − Tfp

τp
. (6.20)

This is exactly the same expression that Tool proposed152 for structural relaxation. Thus,

the Narayanaswamy model is a generalization of Tool’s formulation that accounts for multi-

ple relaxation phenomena occurring simultaneously. In Narayanaswamy‘s model, the fictive

temperature is often represented as a weighted average of many different fictive temperature

components, each obeying Equation (6.20):

Tfp =
X
i

wiTfp,i. (6.21)

The weighting factors wi and the individual relaxation times τp,i need to be fitted to match

experimental data, in addition to the previously mentioned parameter x for viscosity weight-

ing. Once this parameterization has been done for a certain glass composition, the model
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can successfully capture the complexities of glass relaxation.

The success of Narayanaswamy’s model is evident from its extensive use by many

researchers in studying glass relaxation.148 The model can explain the cross-over phe-

nomenon seen in Ritland’s experiments,154 as well as other hysteresis effects in structural

relaxation.

The success of the Narayanaswamy-Tool approach lies partly in the phenomeno-

logical description of viscosity, as a weighted sum of Arrhenius contributions from the tem-

perature and the fictive temperature (Equation (6.11)). Although this has no theoretical

basis, it accurately fits both the case of equilibrium, when x = 1, as well as other exper-

imental data from many studies.148 Some studies ascribing thermodynamic descriptions

to the variation in viscosity show a qualitative agreement with the phenomenological form

given above. For example, Macedo and Litovitz160 propose a form of viscosity given by

η = η0 exp

µ
γ
Vc
Vf
+

Q

RT

¶
, (6.22)

where Vc is the core or occupied volume of the atoms, Vf is the free volume, Q is an

activation energy, and η0 and γ are constants. This uses a combination of the free volume

and Arrhenius approaches. Scherer161 proposed that the free volume can be expressed in

terms of the fictive temperature such that

η = η0 exp

Ã
γR Tfv

T1
βsdT

+
Q

RT

!
, (6.23)

where βs = βl − βg, and βl and βg are the volume thermal expansion coefficients of the
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liquid and glass, respectively.

In addition, a form of Equation (6.11) has been suggested by Mazurin146 using an

empirical fit to data:

η = η0 exp

∙
A

Tfp − T0
+

Q

R

µ
1

T
− 1

Tfp

¶¸
, (6.24)

where A is a constant. At equilibrium, this reduces to the familiar VFT expression for

viscosity in Equation (6.2).

In these expressions, an attempt has been made to link viscosity to both the

temperature and the glass structure using thermodynamic principles. Their resulting form

is very close to Tool’s assumption which had no theoretical basis. Thus, the judicious choice

of the form of the viscosity expression by Tool, and later by Narayanaswamy, allowed the

phenomenological model to qualitatively explain the physics of structural relaxation. In

this brief review, we have omitted various studies that relate to different forms of the

response function Mp. Various examples include the Kohlrausch-Williams-Watts stretched

exponential expression, the Prony series, and others.146 The form of the response function

does not interfere with the basic formulation of Narayanaswamy. We also omit work

challenging Narayanaswamy’s assumption on thermorheological simplicity,162, 163 which may

be important in eventually improving the phenomenological formulation. The topics we

have omitted are reviewed elsewhere.146
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6.5 Thermodynamic Models

Thermodynamic models of the glass transition offer the opportunity to discover

and understand the underlying physical principles and mechanisms involved in liquid su-

percooling and vitrification. In this section, we describe several such models and discuss

their inherent advantages and shortcomings.

6.5.1 Free Volume Model

Perhaps the simplest thermodynamic model of the glass transition is the free vol-

ume model of Turnbull and Cohen164 and of Cohen and Grest.165 The underlying idea of

this model is that the increase of the viscosity of a liquid as it is supercooled is a direct result

of a decrease in its free volume. Here, “free volume” is defined as an excess volume of the

supercooled liquid or glass with respect to the equilibrium crystal state. For a relaxation

time τ and available time ∆t, the volume V of a system may be found via

V − Vc
Vi − Vc

= exp (−∆t/τ) , (6.25)

where Vi is the initial volume of the system and Vc is the volume of the equilibrium crystal.

The relaxation time τ (Vf ) is a function of the free volume Vf of the system and is written

τ (Vf ) = τ0 exp

µ
V0
Vf

¶
, (6.26)
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where τ0 and V0 are constants. The free volume-dependent volume viscosity ηV (Vf ) of the

system is given by

ηV (Vf ) =
τ (Vf )

κ
, (6.27)

where κ is isothermal compressibility.

Given a cooling rate of B = ∆T/∆t, Equation (6.25) becomes

V − Vc
Vi − Vc

= exp

µ
− ∆T

BκηV (Vf )

¶
(6.28)

We may approximate Vi − Vc by

Vi − Vc ≈ Vcβf∆T , (6.29)

where βf is the thermal expansion coefficient of the free volume (may be the same as

βs = βl − βc), in order to obtain

V − Vc
Vcβf∆T

= exp

µ
− ∆T

BκηV (Vf )

¶
(6.30)

or

V = Vc

∙
1 + βf∆T exp

µ
− ∆T

BκηV (Vf )

¶¸
. (6.31)

In this manner, the model allows for the calculation of the volume of a system as it is cooled

or heated through the glass transition.

The free volume model has several major shortcomings, as enumerated by Gupta,166

that prevent it from providing a correct picture of the glass transition. One serious problem
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is that some liquids, such as silica,66 water,167 and lithium acetate,166 show an increase in

free volume when they are cooled in a certain temperature regime;∗ this is inconsistent with

the model, which assumes that free volume always decreases as a liquid is cooled. Also, the

free volume model implicitly assumes that Vf has been defined as a function of all relevant

state variables and the appropriate constants have been found to obtain the precise rela-

tionship between Vf and τ . This may be accomplished using approximate thermodynamic

techniques165 or using an empirical expression valid in a limited phase space.66 Thus, the

theoretical value of the free volume model is limited.

6.5.2 Gibbs-DiMarzio Model of an Ideal Glass Transition

Gibbs and DiMarzio169 developed a thermodynamic model that predicts a lower

limit to the glass transition temperature for a linear molecular chain polymer, this lower

limit corresponding to the Kauzmann temperature for the given material. The Gibbs-

DiMarzio model addresses the Kauzmann paradox by predicting an ideal glass transition at

the Kauzmann temperature, giving the “ground state” of the glass. This ideal glass tran-

sition corresponds to a perfect second-order Ehrenfest transition, leading to discontinuities

in heat capacity and other second-order thermodynamic properties. In this section, we

provide an overview of the Gibbs-DiMarzio model for the glass transition and discuss some

of its inherent limitations.

The Gibbs-DiMarzio model considers a linear, molecular polymer on a fixed lattice

in the canonical ensemble. The lattice points may be occupied by either “atoms” or “holes,”

∗It may be noted that Shelby168 has recently objected to this characterization of the silica cooling curve.
However, one indisputable example of liquid expansion on cooling is liquid water near its normal freezing
point. As water is cooled below 4◦ C and then supercooled below 0◦ C, both volume and viscosity increase
simultaneously.167 This is a clear example of where the free volume model breaks down.
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where an atom corresponds to one monomer unit and a hole indicates the absence of any

monomer at that lattice point. The system consists of nx polymer chains, each containing

x monomer units; the number of holes is designated by n0. The total energy of the system

is the sum of the intramolecular (polymer) energy and intermolecular (hole) energy. The

intramolecular energy is given by

E = f�2 (x− 3)nx + (1− f) �1 (x− 3)nx, (6.32)

where �1 and �2 are the energies corresponding to different possible bond orientations in the

polymer. The first energy, �1, corresponds to the primary chain backbone, and the second

energy, �2, is the “flexed” bond energy; f is the fraction of bonds in the flexed configuration.

The intermolecular energy is proportional to the number of holes in the system

and the Van der Waals energy of interaction. The total intermolecular energy is given by

Φ =
1

2
z0αn0S

0
x, (6.33)

where z0 is the coordination number of the “optimal” lattice in amorphous packing, α is

the Van der Waals energy per interaction, and S0x is fraction of non-bonded but nearest

neighboring monomers:

S0x =
[(z0 − 2)x+ 2]nx

[(z0 − 2)x+ 2]nx + z0nx
. (6.34)

The thermodynamic properties of the system may be calculated using the canonical
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partition function,

Q =
W=∞X
W=1
f,n0

W (f, n0) exp

∙
−(E +Φ)

kT

¸
(6.35)

=
W=∞X
W=1
f,n0

W (f, n0) ·

exp

"
− [f�2 (x− 3)nx + (1− f) �1 (x− 3)nx] + z0αn0S

0
x/2

kT

#
, (6.36)

where W (f, n0) is the total number of ways the nx polymers of length x can be packed

onto the lattice of xnx+n0 sites with f as the fraction of bonds in the flexed configuration.

Assuming an ideal coordination of z = z0, W is given by Flory’s expression

W =
(xnx + n0)!z

xnx
n
[(z−2)x+2]nx+zn0

2

o
! (z − 1)nx (z − 2)f(x−3)nx [(x− 3)nx]!

(n0)! [(xnx + n0) z/2]!2xnx (nx)! [(1− f) (x− 3)nx]! [f (x− 3)nx]!
. (6.37)

Since Flory’s expression may run from 0 to ∞ instead of 1 to ∞, Gibbs and DiMarzio

rewrite the partition function as

Q = Q0 −Q00, (6.38)

where

Q0 =
W=∞X
W=0
f,n0

W (f, n0) exp

∙
− [f�2 (x− 3)nx + (1− f) �1 (x− 3)nx] + zαn0Sx/2

kT

¸
(6.39)
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and

Q00 =
W=1X
W=0
f,n0

W (f, n0) exp

∙
− [f�2 (x− 3)nx + (1− f) �1 (x− 3)nx] + zαn0Sx/2

kT

¸
. (6.40)

Values of W less than unity do not correspond to any real states of the system and must

therefore be discarded.

Substituting Equation (6.37) into Equation (6.39) and factoring the partition func-

tion yields

Q0 =

⎧⎨⎩X
n0

(xnx + n0)!z
xnx

n
[(z−2)x+2]nx+zn0

2

o
! (z − 1)nx exp

¡
−zαn0Sx

kT

¢
(n0)! [(xnx + n0) z/2]!2xnx

⎫⎬⎭×⎧⎨⎩X
f

(z − 2)f(x−3)nx [(x− 3)nx]! exp
³
− [f�2(x−3)nx+(1−f)�1(x−3)nx]kT

´
(nx)! [(1− f) (x− 3)nx]! [f (x− 3)nx]!

⎫⎬⎭ (6.41)

= µ0λ0, (6.42)

where µ0 and λ0 represent the factors summed over n0 and f , respectively. The factor

λ0 is evaluated by recognizing that each term in the summation is a term of the binomial

expansion of [exp (−�1/kT ) + (z − 2) exp (−�2/kT )]nx multiplied by 1/ (nx)!; hence,

λ0 =
[exp (−�1/kT ) + (z − 2) exp (−�2/kT )]nx

(nx)!
. (6.43)

Gibbs and DiMarzio show that the Helmholtz free energy of the system where the

maximum degeneracy, W 0
max, is greater than unity may be approximated by

FT>T2 = −kT lnQ0. (6.44)
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This corresponds to the regime where µ0 and λ0 are dominated by single terms containing

n00max and f 0max, respectively. Since the maximum degeneracy, W 0
max, increases monotoni-

cally with temperature, we may state that Equation (6.44) is only valid for systems above

some critical temperature, T2. The temperature T2 corresponds to the point where W 0
max

equals unity. The partition function below T2 is approximated by the case whereW 0
max = 1,

giving

FT<T2 = −kT ln [Qmax (fT2)] . (6.45)

The two expressions for Helmholtz free energy in Equations (6.44) and (6.45) are

continuous at T = T2. In fact, Gibbs and DiMarzio show that while all “first-order” ther-

modynamic functions (including entropy, enthalpy, and volume) are described by different

analytical forms in the two temperature regimes, they are all continuous at the transition

temperature T = T2. However, their first temperature derivatives (the “second-order”

thermodynamic functions such as heat capacity and thermal expansion coefficient) are dis-

continuous at T = T2. Hence, the transition at T2 corresponds to an ideal second-order

thermodynamic transition, i.e., an ideal glass transition.

Thus, the Gibbs-DiMarzio model predicts a finite temperature T2 where all the

monomers and holes can only be arranged in one particular configuration. In other words,

the configurational entropy becomes zero at T2. This critical temperature corresponds

exactly to the Kauzmann temperature TK and represents a lower limit to the glass transi-

tion temperature of a system. An infinitely slowly cooled system would thus achieve the

“ground state” of amorphous packing at T = T2 and be unable to undergo any further

rearrangements of its structure.
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The Gibbs-DiMarzio model provides a thermodynamic explanation of the Kauz-

mann paradox by demonstrating that the configurational entropy of such an infinitely slowly

cooled system becomes zero at T2 = TK . Rather than demanding crystallization at the

Kauzmann temperature, the Gibbs-DiMarzio model simply reduces the number of possible

atomic arrangements to one. Hence, the configurational energy of a system is zero be-

tween the Kauzmann temperature and absolute zero. In accordance with the Third Law

of Thermodynamics, the system loses vibrational entropy as it is cooled from T = TK to

T = 0.

Of course, ordinarily cooled glasses undergo the glass transition at some temper-

ature greater than T2. Hence, no experimentally observable glass transition is an ideal

second-order thermodynamic transform as predicted by the Gibbs-DiMarzio model, and in

reality there is no sharp discontinuity of second-order thermodynamic variables at the glass

transition temperature. Because there is no time variable in the Gibbs-DiMarzio model, it

cannot be used to predict realistic glass transition range behavior.

There are several other major shortcomings of the Gibbs-DiMarzio model. The

most obvious is that the Gibbs-DiMarzio model uses equilibrium statistical mechanics to

describe a system which is certainly not in equilibrium. At the same time, there is no

mention of the “true” equilibrium structure of the system, i.e., that of the crystal. There is

an implicit assumption in the model that the system will never be able to achieve crystalline

order. This brings their conclusions of a “ground state” of amorphous packing and an “ideal

glass transition” into serious question.

Perhaps even more troubling is the assumption that the constituent particles and
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holes of a system must always occupy discrete sites on fixed lattice. The central argument

of Gibbs and DiMarzio rests on this unjustified assumption, which they use to break the

partition function into two pieces. The piecewise continuous expression for the partition

function leads directly to the discontinuity in second-order thermodynamic variables at T =

T2. In this sense, the expression used in the Gibbs-DiMarzio model lacks adequate physical

rigor, and its design achieves a desired result, viz., an ideal second-order thermodynamic

transition.

Despite its shortcomings, the Gibbs-DiMarzio model does provide for interesting

discussion about the nature of a system that would lead to an ideal glass transition. How-

ever, the inherent assumptions in the model severely limit both its theoretical and practical

applicability to studying the glass transition behavior of a realistic system.

6.5.3 Adam-Gibbs Model of Cooperative Relaxations

According to Gibbs and DiMarzio,169 the fluidity of a system depends directly on

the rate of disappearance of the configurational entropy. A system at the ideal glass tran-

sition temperature T2 has no more configurational entropy to lose, so the system becomes

frozen into the “ground state” of amorphous packing. This argument of entropy-dependent

flow was subsequently used by Adam and Gibbs170 to develop an entropy-based theory of

structural relaxation that describes the viscosity-temperature relationship of a liquid.

The central assumption of the Adam-Gibbs model is that a liquid consists of a

number of regions or subsystems that can cooperatively rearrange. Each region is com-

posed of a group of z molecules or monomers that can rearrange itself independently of

its environment in response of an enthalpy fluctuation in the system. As the liquid is
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supercooled the configurational entropy of the system is diminished and the size of the co-

operatively rearranging subsystems grows progressively larger. When the configurational

entropy becomes zero at T = T2, the system consists of just one cooperatively relaxing

region; at this point, there is no further freedom for the system to rearrange its structure,

and the system has zero fluidity (infinite viscosity).

The Adam-Gibbs model is derived based on the isothermal-isobaric partition func-

tion

∆ (z, P, T ) =
X
E,V

w (z,E, V ) exp

µ
− E

kT

¶
exp

µ
−PV
kT

¶
, (6.46)

where w is the degeneracy of the subsystem with energy E and volume V . The Gibbs free

energy of the system is given by G = −kT ln∆. If the summation in Equation (6.46) is

confined to only those values of E and V that allow a transition, we obtain a “restricted”

partition function ∆0 and a corresponding Gibbs free energy G0 = −kT ln∆0. The fraction

of subsystems that allow for rearrangement is given by

f =
∆0

∆
= exp

∙
−(G

0 −G)

kT

¸
. (6.47)

The probability of a cooperative transition is proportional to f and may be written as

p (T ) = A exp

µ
−zδµ
kT

¶
, (6.48)

where A is a frequency factor and δµ = (G0 −G) /z is the difference in chemical potential per

monomer between rearrangeable and non-rearrangeable subsystems. The average transition
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probability is therefore

hp (T )i =
∞X

z=z∗
A exp

µ
−zδµ
kT

¶
(6.49)

=
A exp (−z∗δµ/kT )
1− exp (−δµ/kT ) (6.50)

≈ hAi exp (−z∗δµ/kT ) , (6.51)

where z∗ is the lower limit to the sizes of the cooperative regions that have nonzero transition

probabilities.

Adam and Gibbs assume that the partition function of the supercooled liquid

can be rewritten as the product of independent configurational and vibrational partition

functions. The configurational partition function relates to the exploration of the various

minima in the potential energy landscape, and the vibrational partition function relates

to the thermal vibrations within one of these minima. If we let Ω (Epot, V,N) equal the

number of distinguishable potential energy minima of depth Epot in a system an N -molecule

system of volume V , the configurational entropy of the entire system can be written as

Sconf = k lnΩ (Epot, V,N) ≈ nsconf , (6.52)

where n is the number of cooperatively rearranging regions. Each of these regions is

assumed to be of identical size z and contribute sconf to the total configurational entropy

of the system. This additivity follows from the assumption that each of the cooperatively

rearranging regions is independent of its environment. Since in one mole of molecules there

are n = NA/z independent regions (NA equals Avogadro’s number), the minimum size of
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the cooperatively rearranging regions is given by

z∗ =
s∗confNA

Sconf
, (6.53)

where s∗conf ≈ k ln 2 is the configurational entropy of such a minimally sized region.

Substituting Equation (6.53) for z∗ into Equation (6.51), the average transition

probability is found to be

hp (T )i = hAi exp
µ
−
s∗confNAδµ

kTSconf

¶
(6.54)

= hAi exp
µ
− C

TSconf

¶
. (6.55)

Since the molecular relaxation time τ is inversely proportional to hp (T )i, we have the

important conclusion that

τ ∝ exp
µ

C

TSconf

¶
≈ exp

µ
C

T∆s

¶
, (6.56)

where ∆s is the difference in entropy between the supercooled liquid and the equilibrium

crystal configuration. Note that the molecular relaxation time becomes infinite in the limit

of ∆s→ 0.

The Adam-Gibbs model of cooperative relaxations has an important implication

for Angell’s classification of strong and fragile liquids.86—89 Strong liquids such as silica and

germania undergo very little change in short- and intermediate-range structure as they are

supercooled. This leads to a configurational entropy that is fairly independent of tempera-
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ture. On the other hand, fragile liquids such as o-terphenyl exhibit large changes in short-

and intermediate-range structure as they are supercooled. In this case, there is a strong

dependence of configurational entropy on the temperature of the system. Since viscosity

is directly proportional to molecular relaxation time, Equation (6.56) predicts Arrhenius

behavior for strong liquids and non-Arrhenius behavior for fragile liquids, consistent with

Angell’s classification criterion.

Although the Adam-Gibbs model of cooperative relaxations provides important

insights into the relationship between configurational entropy and the transport coefficients

of a supercooled liquid, it fails to provide a means for calculating the size of the cooperatively

rearranging regions.† At this point, the Adam-Gibbs model provides a useful conceptual

point of view.

6.5.4 Stillinger Model of Inherent Structures

The separation of configurational and vibrational contributions to the partition

function, as used in the Adam-Gibbs model of cooperative relaxations,170 is also a central

assumption of the Stillinger model of inherent structures.172—177 Stillinger’s model is based

on the idea presented by Goldstein178 that atomic motion in a supercooled liquids consists

of high-frequency vibrations in deep potential energy minima and less frequent transitions

to other such minima. The transport properties of the supercooled liquid are linked to the

ability of the atoms to flow among these various minima.

The Stillinger model considers a system of N particles confined to a volume V .

†Recently, Ngai171 has investigated the relationship between experimental calorimetric data and the size
of the cooperatively rearranging regions in the Adam-Gibbs model. There may still be hope for calculating
region size theoretically using molecular modeling and statistical mechanical techniques, assuming the regions
actually exist.
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The configurational coordinates of the system are denoted r1 · · · rN , and the total interaction

potential is given by U (r1 · · · rN ). The system potential has a lower bound proportional

to the number of particles, such that

U (r1 · · · rN) ≥ CN , (6.57)

where C is a constant. There is no upper bound on potential owing to the high repulsive

energy that exists at small separation distances. The potential energy U (r1 · · · rN) has to

be continuous and at least twice differentiable with respect of the configurational coordinates

r1 · · · rN .

In effect, U (r1 · · · rN) represents a multidimensional energy “landscape” with

many peaks and valleys. The Stillinger model divides this hypersurface into “basins,”

where each basin contains a single minimum in U . This minimum represents a mechan-

ically stable (or metastable) arrangement of the system’s particles, which is known as an

“inherent structure.” The basin itself is defined to be the locus of all points in the multidi-

mensional configuration space that “drain” to a particular minimum via steepest descent.

The number Ω of basins and inherent structures in the limit of large N is given by

lnΩ ≈ ln
¡
N !σN

¢
+ aN , (6.58)

where σ is a symmetry factor and a > 0 is a constant relating to the number density N/V .

The first term on the right-hand side of Equation (6.58) accounts for the symmetry of the

potential energy landscape with respect to r1 · · · rN , and the second term expresses the
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exponential increase in the number of distinguishable inherent structures with increasing

N .

The dynamics of the system moving between pairs of basins involves the transi-

tion states (first-order saddle points) between adjacent basins. There are generally on the

order of N different basins adjacent to any given basin in the multidimensional configu-

ration space; hence, there are on the order of N “exit channels” along which the system

can transition between inherent structures. The underlying assumption of the Stillinger

model is that while the energy landscape itself is independent of temperature, the way in

which the system samples its landscape is intimately connected with the temperature of the

system. Hence, the Stillinger model effectively assumes a separation of the partition func-

tion into independent configurational and vibrational components. (This assumption has

been numerically validated by Sciortino, Kob, and Tartaglia179 for the case of a supercooled

Lennard-Jones liquid.)

The implication is that at high temperatures the system is able to freely explore

the potential energy landscape since the vibrational energy generally exceeds the values

for ∆U . This corresponds to the case of a liquid with high fluidity. As the liquid is

supercooled, the number of available transitions decreases owing to the loss of vibrational

energy. Finally, the glassy state at low temperatures corresponds to the system getting

“stuck” in a single basin where ∆U is too high to overcome in laboratory time scales.

Stillinger conjectures that a good glass former would have a broader distribution of basin

energies than a simple liquid that easily crystallizes. With such a broader distribution,

there are more opportunities to become “stuck” in a basin with an amorphous configuration.
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Figure 6.12. Extrapolations of potential energy and configurational entropy below the glass
transition temperature, Tg, and Kauzmann temperature, TK , according to the Stillinger
model of inherent structures. Reproduced with permission from Stillinger.174

(The crystalline state corresponds to the inherent structure of absolute minimum energy,

U = CN .)

A consequence of the Stillinger model of inherent structures is that there is no

strict Kauzmann temperature where the system is forced into either crystallization or an

ideal glass transition. In fact, the notion of an ideal glass transition is not supported by the

Stillinger model, which assumes that the glass transition is an inherently smooth process

where the system configuration becomes gradually trapped in a local energy minimum.
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Figure 6.13. Example melting curve in the temperature-pressure plane. After Stillinger
and Debenedetti.183

Stillinger concluded that the “naive” extrapolation by Kauzmann of the thermodynamic

properties of supercooled liquids to low temperatures must be incorrect. He argues that

the proper extrapolations are as shown in Figure 6.12, where he shows smoothly decaying

potential energy and configurational entropy curves. Since the configurational entropy of

the glass reaches zero only at absolute zero, Stillinger concluded that there is no Kauzmann

paradox.‡

While Stillinger does not agree with the existence of a Kauzmann paradox, he

does concur with the notion of a Kauzmann temperature at which the entropies of two

‡This argument is supported by the recent experiment of Huang, Simon, and McKenna,180 who measured
the heat capacity of poly(α-methyl styrene) at low temperatures. They found no evidence of an ideal second-
order thermodynamic transition for this system, and they hence call into question the existence of an ideal
glass transition. Stillinger’s explanation is also supported by Tanaka,181 who uses similar reasoning as
Stillinger but in terms of a glass’s resistance to crystallization at low temperatures.
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Figure 6.14. Schematic representation of the potential energy landscape for (a) “strong”
and (b) “fragile” liquids. Reproduced with permission from Stillinger.174

different phases of a material become equal. In fact, Stillinger extends the concept of a

single Kauzmann temperature to a “Kauzmann curve” in the temperature-pressure plane

of a system.182, 183 Consider the Claussius-Clapeyron equation that describes the slope of

the melting curve in the temperature-pressure plane:

dpm (T )

dT
=

Sl − Sc
Vl − Vc

. (6.59)

Here, pm (T ) is the temperature-dependent melting pressure, and Sl,c and Vl,c are the molar
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entropies and volumes of the liquid and crystalline phases, respectively. Figure 6.13 shows

an example melting curve ABCDEF to demonstrate possible melting phenomena. The

“normal” melting scenario, in which the molar volume increases upon melting of a crystal,

occurs between points B and C. The intervals between C and D and between E and F

show the case where the molar volume decreases upon melting of a crystal, while again

heat is absorbed. This corresponds to the familiar case of ice melting to form liquid water.

The intervals between A and B and between D and E show the perhaps unfamiliar case

of inverse melting, in which an isobaric heating of the system causes the liquid to freeze

into the crystalline phase. Materials that exhibit inverse melting behavior include the

helium isotopes 3He and 4He at low temperatures and the polymeric substance poly(4-

methylpentene-1), denoted P4MP1.

Points B, D, and E in Figure 6.13 are all points of zero slope in the melting curve:

dpm (T )

dT
= 0 (B,D,E) . (6.60)

Since the difference in molar volumes, Vl−Vc, can never be infinite, these points must have

vanishing entropy change:

Sl − Sc = 0 (B,D,E) . (6.61)

Hence, pointsB,D, andE are all “Kauzmann points” occurring naturally in the temperature-

pressure plane, and the existence of these Kauzmann points does not depend upon or ne-

cessitate the existence of an ideal glass transition. Since the chemical potentials of the

coexisting liquid and crystal phases are equal, the Kauzmann points must also correspond
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to points of vanishing enthalpy, ∆H = T∆S. Stillinger and Debenedetti183 show that these

Kauzmann points lie on a general “Kauzmann curve,”

µ
dp

dT

¶
∆S=0

=
Cp,l − Cp,c

T (αlVl − αcVc)
, (6.62)

where Cp is heat capacity and α is the isobaric thermal expansion coefficient.

The Stillinger model also has implications for Angell’s classification of strong and

fragile liquids.86 The Arrhenius behavior of the shear viscosity of strong liquids indicates

that their potential energy landscape has a rather uniform roughness, as shown in Figure

6.14(a). In contrast, fragile liquids are likely to have a highly non-uniform topography in

their potential energy landscape, as indicated in Figure 6.14(b). At high temperatures a

fragile liquid is able to flow among basins with relatively low activation barriers, indicating

the rearrangement of a small number of molecules. As the fragile liquid is supercooled, it

samples deeper basins with a greater separation in the potential energy landscape. Thus,

flow between these basins requires the cooperative rearrangement of many molecules and

occurs less frequently than the higher temperature relaxations.

The Stillinger model of inherent structures offers important insights into the rela-

tion of the glass transition with the potential energy hypersurface of a system. However,

there are computational constraints which limit this model to a theoretical study of the

glass transition. The potential energy function U (r1 · · · rN) must be fully mapped out in

at least a 3N -dimensional space in order to determine the locations and energies of the

various basins, as well as the energy barriers between basins. Unfortunately, it is much too

computationally demanding to fully calculate this information for a large value of N . A
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hypercube modeling technique has been proposed by Kohen and Stillinger184 to partially

simplify the representation of U ; however, use of this technique has not been demonstrated

for any system with realistic interactions or any useful value of N . In addition, the de-

pendence of U on system volume V should be carefully considered.185 Also, the Stillinger

model does not specify in any detail the kinetics of flow among the various inherent struc-

tures. Stillinger’s discussion of this matter is purely hypothetical, and the relationship

between the potential energy hypersurface and viscous flow behavior is yet to be rigorously

proven.

Further Work on Inherent Structures

Several additional researchers have studied the Stillinger model of inherent struc-

tures. Büchner and Heuer186 sampled the potential energy landscape of a small system

of 20 to 160 particles that interact through a model Lennard-Jones potential. They were

able to determine which regions of the potential energy landscape were favorable at differ-

ent temperatures, and their quantitative results support Stillinger’s conjecture that deeper

potential energy wells are more often sampled at lower system temperatures.

Sastry187 performed a similar analysis for a binary system of 256 particles, also

interacting via a model Lennard-Jones potential. Using molecular dynamics, Sastry con-

firmed that a faster cooling rate led the system to converge to a higher energy state than

with a slower cooling rate. Sastry also found that a broader distribution of basin en-

ergies led to an increased fragility of the model liquid.188 Finally, Sastry computed the

configurational entropy of the binary Lennard-Jones system at low temperatures.189 He

found that the presence of local defects occurring in amorphous inherent structures forbids

207



the existence of an ideal glass transition. This result supports Stillinger’s comments on

the Kauzmann paradox, at least in the framework of a binary Lennard-Jones system and

Stillinger’s own model of inherent structures. Shell and coworkers190 provided additional

support for this finding through an analytical equation of state for a Lennard-Jones poten-

tial energy landscape, and similar computational modeling of a Lennard-Jones system was

performed by Keyes.191

Whereas Sastry employed molecular dynamics to determine the density of states

in a potential energy landscape, an alternative method using Monte Carlo sampling has

been proposed by Shell, Debenedetti, and Panagiotopoulos.192 This technique is more

computationally efficient than molecular dynamics, but since there is no explicit “time”

variable it does not follow the true dynamics of the system. A kinetic Monte Carlo approach

by Hernández-Rojas and Wales193 incorporates time by calculating transition rates between

neighboring basins. However; their approach only considers a very small sampling of the

potential energy landscape and does not provide an accurate representation the different

types of allowable transitions.

A random energy model by Keyes, Chowdhary, and Kim194 seeks to remove some

of this complexity by assuming a Gaussian distribution of basin energies. However, this

is found to be a vast oversimplification, even for a Lennard-Jones model. Shell and

Debenedetti195 investigated the impact of changing this distribution from Gaussian to bi-

nomial. The behavior of the systems is similar in both cases, but the Gaussian distribution

gave a slightly higher fragility. Similar work has been performed by Shulz.196 Finally, La

Nave and coworkers197 have derived an expression to compute the pressure of an inherent
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structure.

6.5.5 Other Thermodynamic Models

Thus far, our discussion of thermodynamic modeling of the glass transition has

focused on those models which have had the greatest influence on our thinking and in-

terpretation of the glass transition. In this section, we briefly describe several newer

thermodynamic models that offer different viewpoints on the glass transition.

Kivelson and Tarjus198 propose a theory of frustration-limited domains that is

similar to the Adam-Gibbs and Stillinger models. According to their model, as a liquid

is supercooled its constituent domains become “frustrated,” i.e., unable to relax to lower

energy configurations. Complete frustration of the supercooled liquid domains leads to a

transition to the glassy state.

A thermodynamic model by Speedy199 assumes that the free energy of a liquid

can be expressed in terms of the free energy of all the glasses that it rapidly samples. By

assuming that the heat capacity of all these possible glasses is identical, Speedy’s model

suggests the existence of a thermodynamic glass transition underlying the kinetics of struc-

tural relaxation. She also concludes that the fragility of a liquid is directly related to the

number of unique glassy structures it can form.

Mansfield200 developed an empirical thermodynamic model of the glass transition

that reproduces the known relaxation behavior of a supercooled liquid. However, it is not

based on fundamental physics and does not add any new insights into glass transition range

behavior.

209



Figure 6.15. Example system configuration in the two-dimensional tiling model. Repro-
duced with permission from Weber, Frederickson, and Stillinger.201

6.6 Kinetic Models

We now turn our attention to kinetic models of the glass transition, which focus

on the dynamics of structural relaxation in the supercooled liquid and glass transformation

ranges.

6.6.1 Tiling Model

The tiling model of Weber and Stillinger201, 202 is based on the Adam-Gibbs con-

cept of cooperatively rearranging regions. The tiling model considers a periodic two-

dimensional system divided into square tiles of various sizes. The smallest tile has the

normalized dimensions 1 × 1, and larger tiles are of the size j × j, where j is an integer.
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An example tile configuration is shown in Figure 6.15. Each tile represents one internally

homogeneous domain, and the boundaries between tiles represent locations of high energy

due to strained bonds, etc.

The potential energy of the system is

U = 2λ
X
j≥1

jnj , (6.63)

where λ is a normalized energy and nj is the number of j × j tiles in the system. The

absence of vacancies or overlaps imposes the constraint

X
j≥1

j2nj = N , (6.64)

where N is the total area of the system. The minimum energy configuration occurs when

the system consists of a single tile, thereby eliminating all of the high-energy boundaries.

Similarly, the maximum possible energy occurs when the system consists exclusively of 1×1

tiles. Therefore, we know that

2N−1/2 ≤ U

λN
≤ 2. (6.65)

The tiling model allows for two different types of transitions, aggregation and

boundary shift, and their corresponding reverse transitions, fragmentation and coalescence.

With aggregation, a square arrangement of p2 tiles of size q × q can join together to form

a single tile of size pq × pq. The reverse process can occur with fragmentation, in which a

large pq × pq tile is divided into p2 tiles of size q × q. A boundary shift transition occurs

when a (p+ 1) × (p+ 1) tile fragments into a p × p tile and an L-shaped array of 2p + 1
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unit squares. The reverse transition is coalescence.

The rate of aggregation is chosen as

ra = ν0α
2pq(p−1), (6.66)

where ν0 is the frequency of transition attempts and α is a rate parameter with the constraint

0 < α < 1. The reverse fragmentation rate follows from detailed balancing:

rf = ν0α
2pq(p−1) exp [−2λpq (p− 1) /kT ] . (6.67)

The rate of coalescence is

rc = ν0α
4p, (6.68)

and the rate of boundary shift is

rb = ν0α
4p exp (−4λp/kT ) . (6.69)

Clearly, it follows from Equation (6.63) that the average tile size should increase as

the temperature of the system is lowered. However, the rates of aggregation and coalescence

decrease with increasing tile size, and as time progresses it becomes increasingly difficult to

find tiles in the proper arrangement to allow for either of these transitions. This creates

a kinetic barrier in the progression toward a low-energy configuration of large tiles at low

temperature, and it introduces sluggish dynamics that eventually lead to a glass transition-

type behavior.
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Weber and Stillinger studied the relaxation behavior of the tiling model using

Monte Carlo simulations. They found that the energy autocorrelation function

φ (t) =
hU (t)U (0)i− hUi2

hU2i− hUi2
(6.70)

could be fit using a stretched exponential function of the Kohlrausch-Williams-Watts (KWW)

form:

φ (t) = exp
h
− (t/τ)b

i
, (6.71)

where τ and b are adjustable parameters. This form of a response function can be used

in the Narayanaswamy model of structural relaxation. The tiling model shows that even

a highly idealized formulation can still capture some of the underlying physics of a real,

complex system.

6.6.2 Mode-Coupling Theory

Mode-coupling theory refers to a set of techniques in nonequilibrium statistical

mechanics used to study the anomalous properties of certain transport coefficients. For

example, the viscosity of a fluid can be determined from the long time tail of a stress

correlation function, where the stress tensor couples naturally with a product of two fluid

velocity modes.203 Mode-coupling theory leads to a separation of time scales in which a

time correlation function is divided into separate rapidly and slowly decaying portions.

As applied to supercooled liquids, mode-coupling theory is based on the following

three notions:204
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1. Shear stress relaxation occurs primarily through diffusive motion.

2. Diffusivity is inversely related to viscosity.

3. Shear viscosity is proportional to the shear stress relaxation time.

The combination of the three above relations leads to a viscosity-feedback mech-

anism. This may be described by first writing shear viscosity η as the product

η = G∞τ , (6.72)

where G∞ is the instantaneous elastic shear modulus and τ is the shear relaxation time.

In the limit of slow structural relaxation, the shear relaxation time may be written as the

sum of (fast) vibrational and (slow) structural contributions such that

η ≈ G∞τvib +G∞c (T )D
−1 = η0 (T ) + b (T )D−1, (6.73)

where it is assumed that the structural relaxation time is inversely related to the diffusion

coefficient D, and b (T ) and c (T ) can be determined from microscopic theory. Using the

Stokes-Einstein relation,

D =
kT

6πaη
, (6.74)

where a is the molecular radius, we may rewrite the viscosity as

η = η0 (T ) +

∙
6πab (T )

kT

¸
η = η0 (T ) +B (T ) η. (6.75)

214



Therefore, we have

η =
η0 (T )

1−B (T )
. (6.76)

In other words, the viscosity controls the shear relaxation time and hence the viscosity itself.

With mode-coupling theory, vitrification is viewed as a transition from ergodic to

non-ergodic behavior§ in terms of the relaxation behavior of the density fluctuations.206, 207

The van Hove density-density correlation function167 is

Λ (r, t) = ρ−1 hρ (r, t) ρ (0, 0)i (6.77)

= N−1
*

NX
i=1

NX
j=1

Z
δ
£
r0 + r− ri (t)

¤
δ
£
r0 − rj (0)

¤
dr0
+

(6.78)

= N−1
*

NX
i=1

NX
j=1

δ [r+ rj (0)− ri (t)]
+
, (6.79)

where ρ is the bulk number density, ρ (r) is the number density at r, N is the number of

atoms in the system, and δ is the Dirac delta function. The Fourier transform of Λ (r, t)

with respect to spatial coordinates is

Fk (t) =

Z
Λ (r, t) exp (−ik · r) dr, (6.80)

and the static structure factor is Sk = Fk (0). In the ergodic (liquid) regime, Fk should

decay to zero in the limit of long time. However, after vitrification the system is non-ergodic

due to structural arrest; in this case the density fluctuations cannot be fully relaxed, so Fk
§It should be noted that a prior statistical mechanical model of Jäckle205 also viewed the glass transition

as a shift from ergodic to non-ergodic behavior, the non-ergodic glass having a finite residual entropy that
is dependent on both structural and vibrational properties. In the non-ergodic glassy regime, entire regions
of phase space become inaccessible due to structural arrest.167
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will decay to some finite value at long time. Therefore,

lim
t→∞

Fk (t) = 0, liquid, (6.81)

lim
t→∞

Fk (t) 6= 0, glass. (6.82)

We may write a differential equation for Fk (t) normalized to Sk as

Φ̈k (t) + ν0Φ̇k (t) + Ω
2
kΦk (t) +Ω

2
k

Z t

0
Γk
¡
t− t0

¢
Φ̇k
¡
t0
¢
dt0 = 0, (6.83)

where Φk (t) = Fk (t)S
−1
k , and Γk (t) is a memory function.207, 208 The damping constant

ν0 is

ν0 =

µ
kT

m

¶1/2
, (6.84)

where m is the mass of the molecule, and the characteristic frequency Ωk is given by

Ω2k = (kν0)
2 S−1k . (6.85)

The feedback mechanism in Equation (6.76) enters the theory through the depen-

dence of Γk (t) on Φk (t), which we may determine using Laplace transforms.208 Defining

the Laplace transform of Φk (t) as

Φk (z) = i

Z ∞

0
Φk (t) exp (izt) dt, (6.86)

and accounting for the initial conditions, Φk (0) = 1 and Φ̇k (0) = 0, we may rewrite
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Equation (6.83) as

Φk (z) = −
µ
z − Ω2k

z +Mk (z)

¶−1
, (6.87)

where

Mk (z) = iν0 +Ω
2
kΓk (z) , (6.88)

and Γk (z) is the Laplace transform of Γk (t).

In general, the dependence of Γk (t) on Φk (t) may be written in series form as

Γk (t) =

m0X
m=1

1

m!

X
k1,...,km

V (m) (k,k1, . . . ,km)Φk1 (t) · · ·Φkm (t) , (6.89)

where V (m) is called a vertex function,167 and m0 is the number of mode-couplings. For

example, the two-mode approximation of Bengtzelius, Götze, and Sjölander207 has

Γk (t) = (2π)
−3
Z

V (2)
¡
k,k0

¢
Φk0 (t)Φ|k−k0| (t) dk

0. (6.90)

The two-mode vertex function can be determined using a kinetic theory for dense atomic

liquids:

V (2)
¡
k,k0

¢
=

µ
ρkT

m

¶³
k̂ · k

´
c
¡
k0
¢
S
¡
k0
¢
S
¡¯̄
k− k0

¯̄¢
(6.91)

×
n³
k̂ · k

´
c
¡
k0
¢
+
h
k̂ ·
¡
k− k0

¢i
c
¡¯̄
k− k0

¯̄¢o
, (6.92)
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where k̂ = k |k|−1 and c (k) is the Fourier transform of the direct correlation function,

ρc (k) =
S (k)− 1
S (k)

. (6.93)

The static structure factor can be calculated by167

S (k) = 1 + 4πρ

Z
r2g (r) (kr)−1 sin (kr) dr (6.94)

where g (r) is the pair distribution function66 and can be obtained from knowledge of the

molecular interaction potentials.

Hence, we have outlined a (two-)mode-coupling model of the kinetics of super-

cooled liquids in which the only input is the static structure factor at a given density and

temperature. Rewriting the vitrification condition in the Laplace domain,208 we have

lim
z→0
Φk (z) = −

fk
z
, (6.95)

where fk is the non-ergodicity parameter. Combining this with Equations (6.87) and (6.88),

we may obtain the long time limit of the memory function:

Γk (t→∞) =
fk

1− fk
. (6.96)

Glassy states correspond to those temperature and density conditions that lead to nonzero

solutions for fk; zero solutions for fk pertain to the supercooled liquid.167

Therefore, mode-coupling theory yields a locus of points in the (ρ, T ) plane that
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correspond to sharp transitions from ergodic to non-ergodic behavior, which is associated

with an ideal glass transition.209 The problems with this approach are obvious: a sud-

den structural arrest is not physical, and the concept of an ideal glass transition does not

correspond to what is observed in experiment. Furthermore, vitrification does not necessi-

tate that the system should become non-ergodic. Subsequent extensions to mode-coupling

theory210—212 incorporating coupling between density and momentum fluctuations have re-

stored the ergodicity of the system at low temperatures via activated diffusion. This newer

version of the theory leads to a smooth glass transition; however, there is often large dis-

agreement among particular implementations of mode-coupling theory,213 and there exist

large discrepancies between the glass transition range behavior predicted by mode-coupling

theory and that observed in experiment.167

Whereas mode-coupling theory has been hitherto unsuccessful at predicting glass

transition range behavior (its original intent), it has shown remarkable success at describing

relaxations in supercooled liquids above the glass transition temperature.214—217 Mode-

coupling theory is able to make detailed prediction about relaxation dynamics on an in-

termediate time scale between the microscopic and hydrodynamic limits. In particular,

mode-coupling theory has successfully reproduced the non-Arrhenius behavior of viscosity

and diffusivity in a supercooled Lennard-Jones system.214 However, the mode-coupling

approach has the apparently unrealistic feature that the relaxation returns to exponen-

tial behavior in the limit of long time; there is no experimental evidence to support this

theoretical prediction.167

Finally, we note that the two-step relaxation process in mode-coupling theory is
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often confused with the so-called α and β processes of supercooled and glassy dynamics.167

The term “α relaxation” refers to cooperative relaxation of molecules that occurs on the

order of 1-10 seconds; “β relaxation” refers to the faster, non-collective motion that occurs

on the order of 10−5 seconds. Whereas the β relaxation curve is always Arrhenius, the α

relaxation curve becomes increasingly non-Arrhenius as the system is cooled toward the glass

transition temperature. In the framework of Stillinger’s model of inherent structures,174 α

relaxation involves the sampling of deep, separated potential energy minima; β relaxation

involves the sampling of contiguous minima with low transition energy. After vitrification,

α motion becomes suppressed but β motion still persists. As a glass is heated, the α process

becomes re-activated as cooperative molecular motions are once again possible. At high

temperatures the α and β processes become indistinguishable since all inherent structures

are readily accessible. Since mode-coupling theory also involves separate slow and fast

relaxation processes, it is common to label these two processes as “α” and “β” motions.

However, this notion is incorrect and confusing because in the high temperature regime

where mode-coupling theory is most applicable there is no distinction between exploration

of deep potential energy minima and the noncollective exploration of local minima.167

6.6.3 Molecular Dynamics

With molecular dynamics, each atom or molecule in a system is represented as a

point particle with a position and velocity. The interactions between particles are described

by a set of force fields that are determined by quantum mechanical calculations or with em-

pirical fitting. The system propagates forward in time by numerically integrating Newton’s

equations of motion. Unfortunately, accurate implementation of molecular dynamics re-
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quires time steps on the order of 10−15 seconds. If we consider a system of several thousand

particles, it is difficult to simulate times much longer than 10−7-10−6 seconds.218 Since the

α process involves relaxations on the order of 1-10 seconds, it is computationally infeasible

to simulate realistic glass transition behavior using molecular dynamics. Most attempts at

simulating the glass transition with molecular dynamics involve highly unrealistic quenching

schemes219, 220 and should be treated with great caution.

6.7 Conclusions

We have reviewed several phenomenological, thermodynamic, and kinetic models

of the glass transition. While none of these models offers a complete description of glass

transition range behavior, we may draw important conclusions from each:

• The Tool concept of a single fictive temperature153 is useful in contemplating the

nonequilibrium nature of glass, although Ritland154 has shown this picture to be

inadequate.

• The Narayanaswamy model of relaxation157 includes the possibility of multiple relax-

ation modes occurring on different time scales, thereby incorporating complex thermal

history.

• The free volume model164, 165 is based on a direct correlation between the fluidity of a

supercooled liquid and its free volume; however, this type of correlation is inadequate

and may need rethinking.166

• The Gibbs-DiMarzio model169 shows the type of conditions that would be necessary
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to achieve an ideal glass transition.

• The Adam-Gibbs model170 is based on the compelling notion of cooperative relax-

ations, but it does not address the issue of how to calculate the size of the cooperatively

rearranging regions.

• The Stillinger model of inherent structures174 relates structural relaxation to the sam-

pling of a potential energy landscape which is independent of temperature. This is the

most firmly grounded model discussed in this chapter; however, Stillinger addresses

neither the computation of this potential energy landscape nor the details of kinetic

modeling based on this approach.

• The highly idealized, two-dimensional tiling model201, 202 shows kinetics similar to that

of a real glass-forming liquid.

• Mode-coupling theory204—208 is based on a viscosity-feedback mechanism and the sepa-

ration of fast and slow time scales. While it has not been successful at predicting glass

transition range behavior, it has been useful in describing relaxations in supercooled

liquids above the glass transition temperature.214—217
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Chapter 7

Nonequilibrium Statistical

Mechanical Model of the Glass

Transition

As we have seen, previous models of the glass transition include the phenom-

enological models of Tool153 and Narayanaswamy,157 which rely on experimental fitting

parameters and can thus provide for only a posteriori calculations of transition range be-

havior. The free volume model164, 165 is based on a direct correlation between the fluidity

of a supercooled liquid and its free volume; however, this type of correlation has been shown

to be inadequate.166 The thermodynamic models of Gibbs-DiMario169 and Adam-Gibbs170

give important insights into the nature of the glass transition, but the inherent assumptions

in these models unfortunately restrict their utility to real systems. Kinetic models such

as mode-coupling theory206, 207 show promise, but they have not been able to successfully
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reproduce glass transition range behavior.167

In this chapter, we propose a new model of structural relaxation in glass based

on nonequilibrium statistical mechanics203 and the Stillinger concept of inherent struc-

tures.172—177 Using this model, we demonstrate for the first time numerically the connection

between potential energy landscape and the fragility of a supercooled liquid.

7.1 Model Derivation

Consider a system of N atoms or molecules with coordinates r1 · · · rN . Based

on the Stillinger model of inherent structures,172—177 the total interaction potential of the

system is a function of its coordinates,

U (r1 · · · rN) ≥ CN , (7.1)

where C is a constant. The lower bound on potential energy corresponds to the minimum

energy configuration of a crystalline structure; there is no upper bound owing to the high

repulsive energy that exists at small separation distances. The potential energy U (r1 · · · rN)

is continuous and at least twice differentiable with respect of the configurational coordinates

r1 · · · rN .

In effect, U (r1 · · · rN) represents a 3N -dimensional energy landscape with many

peaks and valleys. The Stillinger model divides this hypersurface into basins, where each

basin contains a single minimum in U . This minimum represents a mechanically stable

(or metastable) arrangement of the system’s particles, which is known as an “inherent

structure.” The basin itself is defined to be the locus of all points in the multidimensional

224



configuration space that “drain” to a particular minimum via steepest descent. The number

Ω of basins and inherent structures in the limit of large N is given by

lnΩ ≈ ln
¡
N !sN

¢
+ aN , (7.2)

where s is a symmetry factor and a > 0 is a constant relating to the number density N/V .

The first term on the right-hand side of Equation (7.2) accounts for the symmetry of the

potential energy landscape with respect to r1 · · · rN , and the second term expresses the

exponential increase in the number of distinguishable inherent structures with increasing

N .

The dynamics of the system moving between pairs of basins involves the transition

states (first-order saddle points) between adjacent basins. The underlying assumption of

the Stillinger model is that while the potential energy landscape itself is independent of

temperature, the way in which the system samples this landscape depends directly on its

kinetic energy, and thus the temperature of the system. At high temperatures, the system

has ample kinetic energy to flow freely between basins; this corresponds to the case of

a liquid with high fluidity. As the liquid is supercooled, the number of available basin

transitions decreases owing to the loss of kinetic energy. Finally, the glassy state at low

temperatures corresponds to the system getting “stuck” in a single basin where the potential

energy barrier for a transition is too high to overcome in laboratory time scales. In this

way, the Stillinger model effectively assumes a separation of the partition function into

independent configurational and vibrational components.

Based on the above Stillinger model, we may construct an Ω×Ω potential energy
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matrix,

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U11 U12 U13 · · · U1Ω

U21 U22 U23 · · · U2Ω

U31 U32 U33 · · · U3Ω

...
...

...
. . .

...

UΩ1 UΩ2 UΩ3 · · · UΩΩ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7.3)

where the diagonal elements (Uαα) are the inherent structure energies and the off-diagonal

elements (Uαβ, α 6= β) are the transition energies from basin α to basin β. The matrix U

is symmetric by construction (Uαβ = Uβα). In order to capture all “memory” effects that

can occur in a glassy system, we have the initial condition of an equilibrium liquid at the

melting temperature Tm. From equilibrium statistical mechanics, the initial phase space

distribution for any basin α is

feqα =
1

Q
exp

µ
−Uαα

kTm

¶
, (7.4)

where k is Boltzmann’s constant and Q is the partition function

Q =
ΩX

α=1

exp

µ
−Uαα

kTm

¶
. (7.5)

In addition, we know that
ΩX

α=1

feqα = 1. (7.6)
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Rewriting the above three expressions in matrix notation, we have

feq =
1

Q
exp

Ã
− P̂U

kTm

!
; (7.7)

Q = Trace

(
exp

Ã
− P̂U

kTm

!)
; (7.8)

Trace {feq} = 1; (7.9)

where P̂ is the tetradic projection operator defined by

P̂jk,lm = δjkδjlδkm (7.10)

such that ³
P̂U

´
jk
=
X
l,m

Pjk,lmUlm = δjkUjj . (7.11)

In other words, P̂U returns a new matrix containing just the diagonal elements of U; since

P̂ is a projection operator, P̂ P̂U = P̂U.

As we cool the equilibrium liquid into the supercooled liquid and glassy regimes,

the relaxation time (i.e., the time it takes to reach equilibrium) exceeds the experimental

measurement time. We are interested in calculating the phase space distribution of the

system as it relaxes, which may be accomplished using nonequilibrium statistical mechanical

techniques.

Since the phase space distribution function is a conserved quantity, i.e.,

Trace {f (t)} = 1 (7.12)
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for all time t, its evolution in time is governed by the Liouville equation,

∂

∂t
f (t) = −L̂f (t) ; f (0) = feq, (7.13)

where L̂ is the Liouville operator defined in terms of a Poisson bracket with the system

Hamiltonian:

L̂ = [H, ]P.B. =
∂H

∂p
· ∂

∂q
− ∂H

∂q
· ∂

∂p
. (7.14)

Equation (7.13) has the exact solution

f (t) = e−tL̂feq, (7.15)

where e−tL̂ is a new operator that propagates the phase space distribution forward in time.

Ultimately, what we care about is not f (t) but the evolution of some experimen-

tally measurable property A used to monitor the relaxation process, such as volume, heat

capacity, or any other thermophysical property of interest. The phase space average of A

at any time t is simply

hA (t)i = Trace {f (t) ·A} = Trace
n
e−tL̂feq ·A

o
. (7.16)

This is the “Schrödinger” picture in which the time dependence is accounted for in the

phase space distribution function. Taking the adjoint gives us the equivalent “Heisenberg”

picture:

hA (t)i = Trace
n
feq · etL̂A

o
= Trace {f ·A (t)} . (7.17)
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We have thus derived an exact solution for the general problem of glass transition

range behavior. However, this depends on having full knowledge of the system Hamiltonian

in order to evaluate the Poisson bracket in Equation (7.14), which may be computationally

infeasible. The kinetics may be simplified by writing a master equation for each basin,

d

dt
fα (t) =

ΩX
β 6=α

Kβα [T (t)] fβ (t)−
ΩX

β 6=α
Kαβ [T (t)] fα (t) , (7.18)

which preserves the detailed balance condition of Equation (7.12). The rate parameters

Kαβ,βα are defined parametrically in terms of an arbitrary cooling path, T (t), and form a

matrix:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K12 K13 · · · K1Ω

K21 0 K23 · · · K2Ω

K31 K32 0 · · · K3Ω

...
...

...
. . .

...

KΩ1 KΩ2 KΩ3 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.19)

Unlike U, K is not a symmetric matrix (Kαβ 6= Kβα).

The master equations have been defined without any reference to the underlying

kinetic model. If we assume the system is always in a state of local equilibrium, i.e., the

system can always be described in terms of an inherent structure of Φ, the rate of transition

from basin α to basin β is approximately

Kαβ [T (t)] ≈
ωα
2π
exp

∙
−(Uαβ − Uαα)

kT (t)

¸
, (7.20)
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where ωα is the frequency factor according to transition state theory (TST). Of course, a

more accurate model of Kαβ may be substituted for Equation (7.20) without changing the

underlying formulation of Equation (7.18).

7.2 Master Equation Dynamics

The set of Ω master equations can be solved by defining a transition matrix W

with elements

Wβα = Kβα − δβα

ΩX
γ 6=α

Kαγ . (7.21)

With this definition, Equation (7.18) can be rewritten in matrix notation as

d

dt
f (t) =W [T (t)] f (t) . (7.22)

This can be solved by discretizing the temperature function T (t) into a stepwise func-

tion where T (t) = T is constant within each step. Within each temperature step W is

independent of time, so we can write

d

dt
f (t) =Wf (t) . (7.23)

Following a similar approach as Wales,225 the solution to Equation (7.23) can be found by

exploiting the detailed balance condition

Kαβf
eq
α = Kβαf

eq
β , (7.24)
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where feqα and feqβ denote equilibrium values of fα and fβ at the current temperature. This

detailed balance condition can be used to construct a new symmetric transition matrix W̃

according to

W̃βα =

s
feqβ
feqα

Wβα =

s
feqβ
feqα

⎛⎝Kβα − δβα

ΩX
γ 6=α

Kαγ

⎞⎠ . (7.25)

From Equation (7.24) we know that

s
feqβ
feqα

=

s
Kαβ

Kβα
. (7.26)

The elements of W̃ simplify to

W̃βα =

s
Kαβ

Kβα

⎛⎝Kβα − δβα

ΩX
γ 6=α

Kαγ

⎞⎠ , (7.27)

or

W̃βα =

⎧⎪⎪⎨⎪⎪⎩
p
KαβKβα, α 6= β

−
PΩ

γ 6=αKαγ , α = β

. (7.28)

Thus, W̃ is manifestly symmetric, and defining

f̃α =
fαp
feqα
, (7.29)

we can rewrite Equation (7.23) as

d

dt
f̃ (t) = W̃f̃ (t) . (7.30)
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We can diagonalize W̃ using a similarity transformation,

u−1W̃u = λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λΩ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.31)

Thus, we can rewrite Equation (7.30) as

u−1
d

dt
f̃ (t) = u−1W̃uu−1f̃ (t) . (7.32)

The unitary matrix u is defined by

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V
(1)
1 V

(2)
1 · · · V

(Ω)
1

V
(1)
2 V

(2)
2 · · · V

(Ω)
2

...
...

. . .
...

V
(1)
Ω V

(2)
Ω · · · V

(Ω)
Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

µ
V(1) V(2) · · · V(Ω)

¶
, (7.33)

where V(α) is an eigenvector of W̃ satisfying

W̃V
(α)
= λαV

(α). (7.34)

Defining

F (t) = u−1f̃ (t) , (7.35)

232



Equation (7.32) reduces to

d

dt
F (t) = λF (t) . (7.36)

This has the solution

Fα (∆t) = F 0αe
λα∆t, (7.37)

where F 0α is the value of Fα at the beginning of the temperature step and the temperature

step has a duration of ∆t. Transforming back to the f̃α variables,

f̃α (∆t) =
ΩX

β=1

uαβF
0
βe

λβ∆t. (7.38)

From Equation (7.29), we have

fα (∆t) =
p
feqα

ΩX
β=1

uαβF
0
βe

λβ∆t. (7.39)

The quantity F 0β can be found by

F 0β =
ΩX

γ=1

u−1βγ f̃γ =
ΩX

γ=1

u−1βγ
fγp
feqγ
. (7.40)

Since u is a unitary matrix, u−1βγ = uγβ, and

F 0β =
ΩX

γ=1

uγβ
fγp
feqγ
. (7.41)

Therefore,

fα (∆t) =
p
feqα

ΩX
β=1

uαβe
λβ∆t

ΩX
γ=1

uγβ
fγp
feqγ
. (7.42)
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Using the detailed balance relation of Equation (7.26), we have the solution

fα (∆t) =
ΩX

β=1

uαβe
λβ∆t

ΩX
γ=1

s
Kγα

Kαγ
uγβfγ. (7.43)

Please note that this solution is for a single temperature step with a duration of ∆t. Equa-

tion (7.43) should be applied iteratively for all temperature steps in order to calculate the

full time evolution of the phase space distribution f .

7.3 Dependence of Fragility on Potential Energy Landscape

According to Angell’s criterion,86—89 glass-forming liquids may be classified as ei-

ther “strong” or “fragile” depending on their observed dependence of viscosity η on tem-

perature. Strong liquids exhibit a behavior that is close to the Arrhenius form,

η = η0 exp

µ
∆H

kT

¶
, (7.44)

where ∆H is an activation barrier to flow and η0 is a constant. When the logarithm of

viscosity is plotted as a function of inverse temperature,86 strong liquids will show a near-

straight-line relationship. Examples of strong liquids include silica (SiO2) and germania

(GeO2). Fragile liquids, on the other hand, exhibit a large departure from this straight-line

relationship. Examples of fragile liquids include o-terphenyl, heavy metal halides, and

calcium aluminosilicates.

Experiments have shown strong evidence for a correlation between the fragility of

a supercooled liquid and the degree to which its relaxation kinetics depart from a simple

234



“Strong” Landscape

(a)

“Fragile” Landscape

(b)

“Strong” Landscape

(a)

“Fragile” Landscape

(b)

Figure 7.1. Model one-dimensional (a) “strong” and (b) “fragile” potential energy
landscapes.
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Figure 7.2. Values of the arbitrary property A for each of the nine basins in the “strong”
and “fragile” landscapes of Figure 7.1.
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Figure 7.3. Calculated relaxation behavior of the “strong” energy landscape in Figure
7.1(a). The relaxation curve fits almost perfectly to a single exponential.

exponential decay.221 Strong liquids, i.e., those exhibiting the Arrehenius viscosity behav-

ior of Equation (7.44), also exhibit near-exponential relaxation kinetics. Fragile liquids

generally show a large departure from both of these behaviors, i.e., fragile liquids have a

distribution of relaxation times with different weights for each relaxation mode.

Stillinger174 and Angell88 have proposed a connection between the fragility of a

glass-forming liquid and the topography of its potential energy landscape. Based on the

properties of strong and fragile liquids, they have conjectured that a strong liquid should

have a rather uniform topography throughout the available phase space. In contrast, fragile

liquids are likely to have a highly non-uniform topography. At high temperatures a fragile

liquid is able to flow among basins with relatively low activation barriers, indicating the

rearrangement of a small number of molecules. As the fragile liquid is supercooled, it
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Figure 7.4. Calculated relaxation behavior of the “fragile” energy landscape in Figure
7.1(b). The relaxation curve fits very well to a sum of two exponentials.

samples deeper basins with a greater separation in the potential energy landscape. Thus,

flow between these basins requires the cooperative rearrangement of many molecules and

occurs less frequently than the higher temperature relaxations. While very insightful, this

proposal of Stillinger and Angell has not hitherto been proven theoretically or demonstrated

numerically.

Using the nonequilibrium statistical mechanical model derived in Section 7.1, we

demonstrate for the first time numerically this connection between the topography of a

potential energy landscape and the fragility of the system. We consider the idealized one-

dimensional landscapes shown in Figure 7.1. Figure 7.1(a) shows the energy landscape

of the “strong” system, which has a mostly uniform distribution of inherent structure and

transition energies. A single deeper minimum is chosen so that the system will undergo
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Figure 7.5. Qualitative relaxation behavior of “strong” vs. “fragile” energy landscapes in
the supercooled regime. Units are arbitrary.

relaxation when changing temperature. The “fragile” landscape, shown in Figure 7.1(b),

contains a wider distribution of inherent structure energies. Both the strong and fragile

landscapes have nine basins and assume periodic boundary conditions.∗ In order to isolate

the impact of inherent structure energies, all of the transition energies are chosen to be

equal. Using these idealized one-dimensional systems, we compute the evolution of an

arbitrary property A in time. Each basin has a particular value of A associated with it; as

shown in Figure 7.2, we assume A to be proportional to the depth of the basin itself.

Figures 7.3 and 7.4 plot the ensemble average of A as a function of time, hA (t)i,
∗The particular basin and transition energies have been chosen arbitrarily and do not affect the qualitative

differences between “strong” and “fragile” systems. In the case shown here, the difference in basin energies
is on the order of 0.1 eV, and the transition energies are on the order of 1 eV. Using a frequency factor of
10 GHz, relaxation occurs over a time scale of many years.
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Figure 7.6. The “strong” landscape from Figure 7.1(a), with uneven transition energies.
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Figure 7.7. Qualitative relaxation behavior of the potential energy landscape in Figure 7.6.
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assuming the systems are quenched from a high equilibrium temperature (1000 K) to room

temperature and are allowed to relax in the limit of long time. Figure 7.3 shows that relax-

ation of the “strong” landscape of Figure 7.1(a) fits almost perfectly to a single exponential

function:

hA (t)istrong −Aeq_strong = 0.5317 exp

µ
− tyears
1.785

¶
, (7.45)

where Aeq_strong is the equilibrium value of A for the strong system at room temperature

and tyears is time in years. In contrast, the fragile relaxation shown in Figure 7.4 exhibits

a significant departure from this type of simple exponential decay. The fragile curve fits

well to a sum of two exponentials:

hA (t)ifragile −Aeq_fragile = 0.3799 exp

µ
− tyears
1.026

¶
+ 0.4924 exp

µ
−tyears
20.17

¶
. (7.46)

Thus, the fragile landscape experiences two distinct relaxation modes with a factor of almost

20 difference between their respective relaxation times. The difference between strong and

fragile relaxations is even more apparent when plotted on a logarithmic scale, as shown

qualitatively in Figure 7.5.

These results give compelling numerical support for the argument of Stillinger and

Angell that a strong liquid should have a more uniform potential energy topography than

that of a fragile liquid. One final question is whether the strong landscape in Figure 7.1(a)

can be made fragile by introducting a distribution of transition energies, such as in Figure

7.6. Figure 7.7 shows that such a landscape does exhibit a high degree of fragility. Thus,

a system can be made fragile through non-uniform inherent structure or transition state
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energies.

7.4 Conclusions

We have derived a new model of structural relaxation in glass based on nonequi-

librium statistical mechanics and the Stillinger model of inherent structures. Using this

model and an idealized one-dimensional system, we have numerically demonstrated the

connection between the topography of a potential energy landscape and its corresponding

fragility. Our model should provide for the accurate computation of glass properties from

fundamental physics, accounting for the full effects of both composition and thermal history.

Several challenges remain in order to apply our model to a real glass-forming system, most

notably the computation of inherent structure and transition state energies for a realistic

system in 3N -dimensional space. This problem is addressed in the ensuing chapters.
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Chapter 8

Eigenvector-Following Technique

for Mapping Energy Landscapes

The investigation of energy landscapes is of critical importance to many of the most

challenging problems in chemical physics, including the study of molecular clusters,222—225

biomolecules,225 supercooled liquids,167, 177 and structural glasses.225—227 An energy land-

scape itself consists of many peaks and valleys in a multidimensional configuration space.

Energy minima correspond to mechanically stable configurations of the system, and are

often termed “inherent structures.”176 Transitions between minima govern such impor-

tant properties as reaction kinetics, protein folding dynamics, and glass transition range

behavior.225 While it is straightforward to locate energy minima using geometry optimiza-

tion,228, 229 the search for transition points has proved much more challenging.225, 229

A transition point is formally defined as a stationary point where precisely one of

the eigenvalues of the Hessian matrix is negative.225 Thus, a transition point corresponds
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to an energy maximum in one eigendirection and an energy minimum in all other eigendi-

rections. Many methods for finding transition states have been proposed based on an

eigenvector-following technique, in which the second derivatives of the energy function are

used to construct a Hessian matrix.222, 225, 229—235 The eigenvector-following technique is

useful for finding likely transitions from a particular minimum to adjacent minima without

having a priori knowledge of these neighboring minima. This technique is particularly

relevant in kinetic Monte Carlo236 and other types of dynamic simulations involving energy

landscapes.

Previous eigenvector-following methods have employed a Lagrange formalism in

order to constrain the walk from an energy minimum to a transition point. While initial

techniques employed just a single Lagrange multiplier,230—235 a significant improvement by

Wales222 made use of a separate Lagrange multiplier for each eigendirection.

In this chapter, we present an extension of the Wales eigenvector-following tech-

nique using a simplified choice of Lagrange multipliers based on rigorous geometrical ar-

guments. We also provide a clear derivation of the eigenvector-following technique in

the Lagrange formalism. We then outline an algorithm for implementing our simpli-

fied eigenvector-following method and show applications with the two-dimensional Cerjan-

Miller230 and Adams235 landscapes. The technique is shown to be remarkably robust, even

with large step sizes.
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8.1 Derivation

Consider a 3N-dimensional potential energy landscape,

U = U (x1, x2, . . . , x3N ) , (8.1)

with the generalized position coordinates x1, x2, . . . , x3N . If the potential of the system at

an initial position x0i , where i = 1, 2, . . . , 3N , is given by U
¡
x0i
¢
, then we may approximate

the potential at a new position xi = x0i + hi using the Taylor series expansion,

U (xi) ≈ U
¡
x0i
¢
+

3NX
j=1

∂U

∂xj

¯̄̄̄
xi,j=x0i,j

hj +
1

2

3NX
i=1

3NX
j=1

hi
∂2U

∂xi∂xj

¯̄̄̄
xi,j=x0i,j

hj . (8.2)

This can be written in matrix notation as

U (x) ≈ U
¡
x0
¢
+ g>h+

1

2
h>Hh, (8.3)

where the position vectors are given by

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

x3N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; x0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x01

x02

...

x03N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.4)
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and the displacement vector h = x− x0 is

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2

...

h3N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.5)

The gradient vector g and 3N × 3N Hessian matrix H, evaluated at x = x0, are given by

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂U
∂x1

∂U
∂x2

...

∂U
∂x3N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x=x0

(8.6)

and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2U
∂x21

∂2U
∂x1∂x2

· · · ∂2U
∂x1∂x3N

∂2U
∂x2∂x1

∂2U
∂x22

· · · ∂2U
∂x2∂x3N

...
...

. . .
...

∂2U
∂x3N∂x1

∂2U
∂x3N∂x2

· · · ∂2U
∂x23N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x=x0

, (8.7)

respectively. The Hessian matrix is symmetric by construction.

8.1.1 Newton-Raphson Method

In an unconstrained system, the Newton-Raphson method can be used to locate a

stationary point in the energy landscape.228 Based on Equation (8.2), a stationary point

must satisfy
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∂U

∂hk
= 0 =

3NX
j=1

∂U

∂xj

¯̄̄̄
xj=x0j

δjk +
3NX
i=1

3NX
j=1

δik
∂2U

∂xi∂xj

¯̄̄̄
xj=x0j

hj , (8.8)

or, more compactly,

0 = gk +
3NX
j=1

Hkjhj . (8.9)

In matrix notation, we have

0 = g+Hh, (8.10)

so that the Newton-Raphson step is given by

h = −H−1g. (8.11)

We now define bk and Vk as the eigenvalues and associated eigenvectors of the

symmetric Hessian matrix,

HVk = bkVk, (8.12)

where the eigenvectors are normalized and satisfy V>
j Vk = δjk. Since the eigenvectors Vk

form a complete set, we can express the gradient vector as

g =
3NX
k=1

FkVk. (8.13)
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Substituting this expression into Equation (8.11), we obtain

h = −H−1
3NX
k=1

FkVk (8.14)

= −
3NX
k=1

Fk
bk
Vk. (8.15)

The change in energy after taking the Newton-Raphson step is

U (x)− U
¡
x0
¢
= ∆U = g>h+

1

2
h>Hh. (8.16)

Substituting in Equations (8.13) and (8.15), we obtain

∆U =

⎡⎣ 3NX
j=1

FjV
>
j

⎤⎦"− 3NX
k=1

Fk
bk
Vk

#
+
1

2

"
−

3NX
k=1

Fk
bk
V>

k

#
H

⎡⎣− 3NX
j=1

Fj
bj
Vj

⎤⎦ (8.17)

= −
3NX
j=1

3NX
k=1

FjFk
bk

δjk +
1

2

3NX
j=1

3NX
k=1

FjFk
bk

δjk, (8.18)

which simplifies to

∆U = −
3NX
j=1

F 2j
2bj
. (8.19)

Hence, a positive eigenvalue bj > 0 leads to a decrease in energy along the associated Vj

eigendirection, and a negative eigenvalue bj < 0 leads to an increase in energy along its

associated eigendirection.
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Figure 8.1. Model one-dimensional landscapes. The Newton-Raphson method always
drives the system toward a stationary point.

Newton-Raphson in One Dimension

In order to understand the implications of the Newton-Raphson method, let us

consider the simple one-dimensional landscapes in Figure 8.1. In one dimension, the

Newton-Raphson step in Equation (8.15) simplifies to

h = −F
b
= −

∂U
∂x

¯̄
x=x0

∂2U
∂x2

¯̄̄
x=x0

, (8.20)
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and the change in energy in Equation (8.19) becomes

∆U = −F
2

2b
= −

¡
∂U
∂x

¯̄
x=x0

¢2
2 ∂2U

∂x2

¯̄̄
x=x0

. (8.21)

Consider the point A in Figure 8.1, where the gradient ∂U/∂x is negative and the

curvature ∂2U/∂x2 is positive. Based on Equation (8.20), this leads to a positive Newton-

Raphson step, h > 0, driving the system to the right of A and toward the minimum in energy.

Appropriately, the change in energy associated associated with the Newton-Raphson step,

given by Equation (8.21), is negative. If we take a Newton-Raphson step starting from

point B, we see that ∂U/∂x > 0 and ∂2U/∂x2 > 0. Hence the Newton-Raphson step from

point B is leftward, again driving the system toward the minimum in energy. Hence, the

sign of ∆E depends only on the sign of the curvature, ∂2U/∂x2: a positive curvature leads

to a decrease in the energy of the system, and a negative curvature leads to an increase in

energy.

Performing a similar analysis for points C and D in Figure 8.1, we see the Newton-

Raphson step again drives that system toward a stationary point, but in this case it is a

maximum rather a minimum in energy. This is in agreement with Equation (8.21), which

predicts an increase in energy when starting from a point of negative curvature. Finally,

if we consider a step from point E or F, we see that the Newton-Raphson method drives

the system toward any type of stationary point–it need not be an absolute minimum or

maximum in energy.
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8.1.2 Lagrange Approach

A transition point is a stationary point where exactly one eigenvalue of the Hessian

matrixH is negative. In other words, a transition point corresponds to an energy maximum

in one direction and an energy minimum in all other directions. Whereas the Newton-

Raphson method finds any type of stationary point, we wish to constrain ourselves to

just these first-order transition points. Following the approach of Wales,222 we define the

Lagrange function

L = −U (x) + 1
2

3NX
i=1

λi
¡
h2i − c2i

¢
(8.22)

= −U
¡
x0i
¢
−

3NX
j=1

∂U

∂xj

¯̄̄̄
xj=x0j

hj −
1

2

3NX
i=1

3NX
j=1

hi
∂2U

∂xi∂xj

¯̄̄̄
xj=x0j

hj +

1

2

3NX
i=1

λi
¡
h2i − c2i

¢
, (8.23)

where ci are the desired step sizes in the various directions and λi are Lagrange multipliers.

Taking the derivative of L with respect to an arbitary step hk, we obtain

∂L
∂hk

= 0 = −
3NX
j=1

∂U

∂xj

¯̄̄̄
xj=x0j

δjk −
3NX
i=1

3NX
j=1

δik
∂2U

∂xi∂xj

¯̄̄̄
xj=x0j

hj +
3NX
i=1

λihiδik, (8.24)

which simplifies to

0 = −gk −
3NX
j=1

Hkjhj + λkhk. (8.25)

In matrix notation, we have

0 = −g −Hh+ λh, (8.26)
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where λ is a diagonal matrix given by

λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.27)

Solving for h in Equation (8.26) we have

h = (λ−H)−1 g, (8.28)

and substituting Equation (8.13) for the gradient, we obtain

h = (λ−H)−1
3NX
k=1

FkVk. (8.29)

Thus, the Lagrange step is given by

h =
3NX
k=1

Fk
λk − bk

Vk. (8.30)
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The associated change in energy is

∆U = g>h+
1

2
h>Hh (8.31)

=

⎡⎣ 3NX
j=1

FjV
>
j

⎤⎦" 3NX
k=1

Fk
λk − bk

Vk

#
+

1

2

"
3NX
k=1

Fk
λk − bk

V>
k

#
H

⎡⎣ 3NX
j=1

Fj
λj − bj

Vj

⎤⎦ , (8.32)

which simplifies to

∆U =
3NX
j=1

F 2j
λj − bj

+
1

2

3NX
j=1

F 2j bj

(λj − bj)
2 (8.33)

=
3NX
j=1

F 2j

³
λj − bj

2

´
(λj − bj)

2 . (8.34)

Hence, the sign of the energy change in a particular eigendirection Vj depends on both the

eigenvalue bj and the choice of Lagrange multiplier λj .

Lagrange Approach in One Dimension

Let us again consider the simple one-dimensional landscapes in Figure 8.1 in order

to understand the role of the Lagrange multipliers in Equations (8.30) and (8.34). In one

dimension, these equations reduce to

h =
F

λ− b
=

∂U
∂x

¯̄
x=x0

λ− ∂2U
∂x2

¯̄̄
x=x0

, (8.35)

252



and

∆U =
F 2
¡
λ− b

2

¢
(λ− b)2

=
F 2
³
λ− 1

2
∂2U
∂x2

¯̄̄
x=x0

´
³
λ− ∂2U

∂x2

¯̄̄
x=x0

´2 . (8.36)

If we want to minimize energy, then λ− b/2 < 0, or λ < b/2. Starting from point

A, we wish to have h > 0 in order to move in the appropriate direction. Since the gradient

is negative at this point, Equation (8.35) leads to the condition λ− b < 0, or λ < b. Since

b > 0 at point A, we must therefore choose λ < b/2 in order to satisfy both conditions.

Let us now suppose that we wish to minimize energy starting from point B. The

same condition, λ < b/2, holds from Equation (8.36). From Equation (8.35), we have the

condition λ < b since F > 0 and we wish to have h < 0 from this point. Since we are still

in the regime of b > 0, we must again choose λ < b/2 in order to both decrease energy and

move in the leftward direction. Hence, the condition λ < b/2 for energy minimization is

the same for both points A and B.

Suppose now that we wish to maximize energy starting from point A. From Equa-

tion (8.35), we have λ− b/2 > 0, or λ > b/2. From Equation (8.35), we have λ− b > 0, or

λ > b. Since b > 0, we must have the condition λ > b. A similar analysis starting from

point B gives the same result.

Now let us consider points C and D, where b < 0. For energy minimization we

obtain the condition λ < b, and for energy maximization we have λ > b/2. Thus, for any

arbitrary value of b, we may walk “downhill” on the energy landscape with λ < − |b| and

“uphill” with λ > |b|.
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A Simplified Choice of Lagrange Multipliers

Let us now return to our N -dimensional energy landscape. We may rewrite

Equation (8.34) as a summation of energy changes in the various eigendirections:

∆U =
3NX
j=1

∆Uj , (8.37)

where

∆Uj =
F 2j

³
λj − bj

2

´
(λj − bj)

2 . (8.38)

Suppose we wish to find a transition point by maximizing energy in a particularVi direction

while minimizing energy in all of the orthogonal Vj 6=i directions. It follows from our

analysis in Section 8.1.2 that a choice of λi > |bi| and λj < − |bj | would guarantee a step

in the correct direction. However, it specifies neither the particular values of λi,j nor the

magnitude of the step.

We may simplify our analysis by assuming that a transition point search always

starts from a local minimum in the energy landscape. This is also the most practical case

to consider from an applications point of view, since we are typically interested in finding

the transition energy between two stable configurations, e.g., “reactant” and “product” in

chemical kinetics or two “inherent structures” using Stillinger’s terminology.176 A minimum

in the potential energy landscape has the property bk > 0 for all k = 1, 2, . . . , N . As we

walk on the potential energy landscape from the minimum to a transition point, we are

essentially walking uphill along a “valley” or “streambed.” If the direction of our walk up

the streambed is Vi and the step size is sufficiently small, we should have bj > 0 for all
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j 6= i and be near the energy minima in the Vj 6=i directions along the entire walk. In the

case of an infinitesimal step size, we would exactly follow the streambed; however, due to

finite step sizes, we may have slight deviations from the streambed. These deviations may

be corrected by an appropriate choice of λj 6=i, which is accomplished by finding the nearest

stationary point in the ∆Ej 6=i contribution:

∂∆Uj 6=i
∂λj 6=i

= 0 = −
2F 2j 6=i

(λj 6=i − bj 6=i)
3

µ
λj 6=i −

bj 6=i
2

¶
+

F 2j 6=i

(λj 6=i − bj 6=i)
2 , (8.39)

leading to

2
³
λj 6=i − bj 6=i

2

´
λj 6=i − bj 6=i

= 1. (8.40)

Therefore, we have

λj 6=i = 0. (8.41)

The choice of λj 6=i = 0 reduces our Lagrange approach to exactly the Newton-Raphson

method in all Vj 6=i eigendirections, and it is in agreement with our previous condition of

λj 6=i < bj 6=i/2 for energy minimization with bj 6=i > 0. Note that if we accidentally step

outside of the regime where bj 6=i > 0, a negative λj 6=i < bj 6=i should be chosen. (This also

indicates that the chosen step size in the Vi eigendirection is too large–so large that we

have effectively stepped out of the streambed and started climbing hills in an orthogonal

direction.)

The magnitude of the step size along the Vi eigendirection is given by

h2i = c2i =
F 2i

(λi − bi)
2 . (8.42)
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This leads to the condition

λi = bi ±
¯̄̄̄
Fi
ci

¯̄̄̄
. (8.43)

Since λi > bi is required for energy maximization with bi > 0, we choose

λi = bi +

¯̄̄̄
Fi
ci

¯̄̄̄
(8.44)

for this case. This is also the appropriate choice of λi for bi = 0. The step sizes cj 6=i in

the other directions are fixed by cj 6=i = |Fj/bj |. The total step size is thus

h>h =
F 2i

(λi − bi)
2 +

3NX
j=1,j 6=i

F 2j
b2j
. (8.45)

If we are close to the energy minima in the Vj 6=i eigendirections, then Fj 6=i ≈ 0 such that

h>h ≈ F 2i
(λi − bi)

2 = c2i . (8.46)

Any deviation from h>h = c2i is a result of having finite values of F
2
i6=j .

As we progress up the streambed, eventually we will pass through an inflection

point where bi becomes negative. The condition for energy maximization with bi < 0 is

λi > bi/2. Since in this case the nearest stationary point is the transition point of interest

with exactly one negative eigenvalue bi, the most efficient choice of Lagrange multiplier is

λi = 0, corresponding again to the Newton-Raphson step of Equation (8.15). Thus in the

case of bi < 0, the step size ci is determined by the Newton-Raphson method.

Finally, we note that the first step from the initial minimum point must follow a
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different scheme than that given by Equation (8.42) since Fi = 0. In this case, we choose

a simple step of magnitude ci in the Vi eigendirection. There should be no components of

h in the other Vj 6=i eigendirections since we also have Fj 6=i = 0 and wish to remain in the

streambed.

8.2 Algorithm

We now provide an algorithm for implementing the above Lagrange approach for

finding transition states.

1. Find a local minimum in the potential energy landscape using steepest descent or

another geometry optimization method.225, 228 Compute the Hessian matrix and

determine its eigenvalues and normalized eigenvectors. Choose the eigenvector Vi

corresponding to the direction of interest, typically that of the “softest mode,” i.e.,

that corresponding to the smallest eigenvalue. Higher-order modes can be chosen

to locate other transition states adjacent to the current energy minimum. These

transition points are likely to be of higher energy than that corresponding to the

softest mode.

2. Step in the direction of the eigenvector Vi of interest using a desired magnitude ci.

This initial step h should have no components from the other Vj 6=i eigendirections.

When mapping out a complete list of transition points, a second search should be

initiated in the opposite −Vi direction.

3. Compute the gradient g and Hessian H at the new point, and determine the eigenval-
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ues and normalized eigenvectors of the new Hessian matrix. The eigenvectors form

the columns of a 3N × 3N unitary matrix:

U =

µ
V1 V2 · · · V3N

¶
. (8.47)

4. Compute the vector F = U>g, where

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

...

F3N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.48)

5. Choose the eigenvalue bi of interest, typically the smallest.

6. If the magnitude of bi is less than some threshold bth, then we are near an inflection

point in U . In this regime, our step should be dominated by the first derivative of

U , e.g., the gradient vector. Determine the largest value of Fk and its corresponding

eigenvectorVk. Step in the direction of Vk along the upward gradient using a desired

magnitude ck. This displacement should have no contributions from the other Vj 6=k

eigendirections. Proceed to step 9.

7. If |bi| > bth, choose the eigenvectorVi corresponding to bi. Set the Lagrange multipli-

ers λj 6=i = 0 corresponding to the Newton-Raphson step for all directions orthogonal

to Vi. If bi ≥ 0, choose λi = bi + |Fi/ci|, where ci is the desired step size in the Vi

direction. If bi < 0, choose λi = 0. (Note that the choice of λj 6=i = 0 assumes that
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we are sufficiently close to the “streambed” of the potential energy landscape such

that bj 6=i > 0. If bj 6=i ≤ 0, the desired step size ci is probably too large. This can be

corrected by either choosing a smaller value of ci or by choosing λj 6=i < bj 6=i.)

8. Compute the step

h =
NX
k=1

Fk
λk − bk

Vk, (8.49)

and update the system coordinates appropriately.

9. Repeat steps 3-8 until converged at a transition point. The criterion for convergence

is |Fi| < �, where � is chosen to reflect the desired level of precision.

We note that some previous techniques have incorporated a dynamically variable

maximum step size, which may be combined with a trust radius.225 In our algorithm, the

step size in the bi ≥ 0 regime is controlled by the ci parameter, which is user-definable.

However, in the bi < 0 regime the step size is governed entirely by the values of Fi and bi in

order to choose an optimum step toward the transition point. We also note that for large

atomistic systems, it may be undesirable to compute or diagonalize the Hessian matrix.

In this case, hybrid techniques exist for estimating the smallest Hessian eigenvalues and

corresponding eigenvectors.225

One final consideration for atomistic systems is that translation or rotation of the

entire simulation cell leads to zero Hessian eigenvalues, making inversion of the Hessian

matrix impossible. However, this problem may be avoided by either changing to a minimal

set of internal coordinates225 or using an eigenvalue-eigenvector solver that does not rely

on explicit matrix inversion, such as the excellent Template Numerical Toolkit.237
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Figure 8.2. Contour plot of the two-dimensional Cerjan-Miller function of Equation (8.50),
using a = 1, b = 1

2 , and c = 1. Starting from the minimum at (x, y) = (0, 0), we find the
transition points at (±1, 0) using a step size of (a) 0.1, (b) 0.2, (c) 0.5, and (d) 1.0. Solid
lines indicate an initial step in the +y direction, and dashed lines indicate an initial step in
the −y direction.

8.3 Examples

As a first example of the above algorithm, let us consider the two-dimensional

Cerjan-Miller energy function,230

UCM (x, y) =
¡
a− by2

¢
x2e−x

2
+

c

2
y2. (8.50)
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Figure 8.3. Contour plot of the two-dimensional Adams function of Equation (8.51). Start-
ing from the minimum at (x, y) = (0, 0), we find the two transition points at (2.4104, 0.4419)
and (−0.1985,−2.2793). The initial step size is chosen to be 2.0, and the initial step is
taken in opposite directions along the softest mode.

The minimum energy is located at the origin, and the two transition points are located

symmetrically at (x, y) = (±1, 0). In order to provide a difficult test for our algorithm, we

choose a = 1, b = 1
2 , and c = 1, which gives the softest mode in the y direction. Figure

8.2 shows a contour plot of the Cerjan-Miller function with transition point searches shown

for four different step sizes: 0.1, 0.2, 0.5, and 1.0. Choosing an initial step in the +y

direction, all four cases converge upon the left transition point at (−1, 0). If the opposite

−y direction is chosen for the initial step, then the algorithm converges symmetrically to
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the right transition point at (1, 0). Figure 8.2 shows that a shorter step size leads to a more

direct path to the transition point, but it can be less efficient since a greater number of steps

are required. The fact that even the relatively large step size of 1.0 leads to convergence

illustrates the robustness of the algorithm, even when the initial step is chosen in what is

essentially the “wrong” direction. Note that in all four cases shown in Figure 8.2, the step

size is determined solely by the Newton-Raphson method after leaving the regime where

bi ≥ 0.

For a second example, we consider the Adams function,235

UA (x, y) = 2x
2 (4− x) + y2 (4 + y)− xy

h
6− 17e− 1

4(x
2+y2)

i
. (8.51)

Starting from the minimum at the origin, we locate the two transition points at (2.4104, 0.4419)

and (−0.1985,−2.2793). Results are shown in Figure 8.3 using an initial step size of 2.0.

The two transition points are found by starting in opposite directions along the softest

mode. The first transition point at (2.4104, 0.4419) is found in seven steps, and the second

transition point at (−0.1985,−2.2793) is found in only four steps, a vast improvement over

prior eigenvector-following techniques.235

8.4 Conclusions

We have derived an eigenvector-following technique for locating transition points

in an energy landscape. Our method is based on maximizing energy in one eigendirection

of interest while simulataneously minimizing energy in all orthogonal directions. We have

outlined an algorithm for implementation of this technique and demonstrated its robustness
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using the two-dimensional Cerjan-Miller landscape. This method for locating transition

points should be useful in computing reaction kinetics and transition probabilities in a

wide range of fields, including the study of molecular clusters, biomolecules, and structural

glasses.
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Chapter 9

Potential Energy Landscapes of

Chalcogen Clusters

The investigation of potential energy landscapes is of critical importance to many

of the most challenging problems in chemical physics, including the study of molecular clus-

ters,222—225 biomolecules,225 supercooled liquids,167, 177 and structural glasses.225—227 The

potential energy of a system of N particles can be written in terms of a 3N -dimensional

hypersurface,

U = U (r1, r2, . . . , rN ) , (9.1)

where r = (r1, r2, . . . , rN) ∈ R3N are the position vectors of the N particles. The U

hypersurface itself contains a multitude of local minima, each of which corresponds to a

mechanically stable configuration of the system, termed an “inherent structure.”176 The

set of 3N -dimensional hyperspace configurations that “drains” to a particular minimum

via steepest descent is known as a “basin.”176 The study of a potential energy landscape
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is facilitated by mapping the continuous U hypersurface to a discrete set of minima {α}.

Thus, basins are mapped to their corresponding inherent structures: R3N → {α}.

In this chapter, we describe the potential energy landscapes of small chalcogen

clusters (Se3-Se8, SnSe8−n, and SenTe8−n) using the eigenvector-following technique derived

in Chapter 8. We employ the ab initio potentials from Part I of this thesis, which include

two-, three-, and effective four-body interactions and have been shown to provide a very

good description of chalcogenide glass structure. Following the approach of Becker and

Karplus,238 we construct disconnectivity graphs showing the potential energy minima and

transition states of the chalcogen clusters. The disconnectivity graphs are labeled to show

the associated configurations of the inherent structures and transition states. Finally,

we comment on the relationships between the underlying interatomic potentials and the

resulting inherent structures.

9.1 Traversing the Landscape

Thorough mapping of a potential energy landscape involves locating both minima

and the intermediate transition points. We employ a recursive procedure for traversing the

energy landscape, as depicting by the flow chart in Figure 9.1. First, an initial minimum is

found using steepest descent. Then, our eigenvector-following technique is used to locate

transition points in the positive and negative eigendirections of the eigenmodes of interest.

In this work, we use a step size of ci = 0.025 Å, a gradient tolerance of � = 0.001 eV/Å, and

an eigenvalue threshold of bth = 0.01 eV/Å2. We search for transition states recursively

from each minimum along the positive and negative eigendirections of the four softest modes.
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Figure 9.1. Flow chart of the recursive algorithm for traversing a potential energy landscape.

Transition points are typically located within about 30 steps from a given minimum. The

recursion depth is varied in order to find more or fewer transition states and minima. The

recursive paths of traversal through the landscape are terminated when encountering a

minimum or transition point that has already been found or when the maximum recursion

depth has been reached for a given path.

We construct the disconnectivity graph for a given cluster using the minimum

recursion depth that appropriately captures the various inherent structures of the clusters.
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The resulting disconnectivity graph is “pruned” to remove many of the degeneracies that

inevitably result when mapping the potential energy landscapes of atomic clusters. Em-

phasis is placed on the lower-energy inherent structures and their corresponding transition

states. Disconnectivity graphs are generated using software by Mark A. Miller,239 and

molecular structures are plotted with XCrysDen240 using the color key in Table XIV.

9.2 Mapping of Small Selenium Clusters (Se3-Se7)

We map the potential energy landscapes of Se3-Se8 clusters using the above algo-

rithm together with our ab initio potentials from Part I. Plots of the two- and three-body

interaction potentials are shown in Figures 9.2 and 9.3. A complete description of these

potentials can be found in Part I.

9.2.1 Se3

The potential energy landscape of the Se3 cluster provides a good introduction to

the concept of a disconnectivity graph. The left-hand side of Figure 9.4 shows the total

interaction potential of Se3 as a continuous function of bond angle, assuming an equilibrium

separation distance of 2.1735 Å between two pairs of atoms. In such a small cluster, it may

be possible to identify all of the inherent structures and transition states from a continuous

potential energy function. In the case of Se3 there are three local minima, labeled A, C,

and E, corresponding to the three inherent structures of the cluster. The global minimum

occurs at point C and corresponds to a bond angle of about 117◦. The potential energy

function itself is very shallow around this minimum, allowing for a high degree of bond
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Figure 9.2. Two-body interaction potential for selenium.
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Figure 9.3. Three-body interaction potential for selenium as a function of bond angle,
assuming an equilibrium separation distance of 2.1735 Å between two pairs of atoms.
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Figure 9.4. Potential energy landscape of the Se3 cluster. The left-hand side shows potential
energy plotted as a continuous function of bond angle, and the right-hand side shows the
corresponding disconnectivity graph.

flexibility. A second minimum, of slightly higher energy, occurs at point A around 65◦.

This corresponds to a closed, triangular configuration of atoms. The third local minimum

at point E has a much higher energy and corresponds to a straight-line configuration. The

Se3 cluster has two transition points: one between A and C and the other between C and

E. The former, labeled B, occurs at a bond angle of 84◦, and the latter transition point,

labeled D, occurs at about 169◦.

The corresponding disconnectivity graph for Se3 is shown on the right-hand side

of Figure 9.4. The vertical axis gives the potential energy of the system, and the horizontal

axis refers to an arbitrary configuration space. The three minima of Se3 are represented by

the terminal nodes, A, C, and E, placed at their corresponding energy levels. The horizontal
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positioning of the nodes is arbitrary and chosen to show clearly the connections between

the various minima. These connections are provided by the transition nodes, B and D.

Transition node B connects minima A and C, and transition node D connects minimum E

collectively with A and C.

A disconnectivity graph has the advantage of allowing for a clear description of

inherent structures and transition states without having to plot in full 3N -dimensional

space. Disconnectivity graphs are also useful for determining what transitions are possible

with different levels of total energy. For example, if our Se3 cluster in Figure 9.4 has -5.5

eV of energy, it must be in either of the basins corresponding to minima A or C. Since this

amount of energy is less than that of transition point B, a transition between basins A and

C would not be possible. On the other hand, if the Se3 cluster has a total energy of -4.3 eV

(between points D and E), the system may occupy any of the three basins, with transitions

freely allowed between the A and C basins.

The existence of both open and closed triangular structures for Se3 is in good agree-

ment with experimental cluster measurements.14, 241 However, existence of the straight-line

configuration E has not been seen experimentally. This is not surprising since it occurs at

a much higher energy than both A and C; moreover, the adjacent transition point D has

only slightly higher potential than E. Thus, configuration E should be a very short-lived

structure. The previous semi-empirical modeling of Oligschleger14 identified the inherent

structures A and C, but not E. Oligschleger et al. did not identify the transition points in Se3

or any of the other selenium clusters since their primary interest was in the configurations

of the overall minima.
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Figure 9.5. Disconnectivity graph for Se4 and plots of the identified minimum energy
structures and transition states.

9.2.2 Se4

As indicated by the disconnectivity graph in Figure 9.5, the potential energy land-

scape of Se4 has a much richer topography than that of Se3. The global minimum A is a

kinked chain of four selenium atoms with bond angles of about 117◦. There are multiple

points A in the disconnectivity graph, indicating a high number of degenerate structures

with this configuration. The inherent structure with the second-lowest potential energy is

the closed configuration of point B, a parallelogram with interior angles of about 65◦ and

115◦. The higher-energy inherent structures consist of chains incorporating increasingly
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less favorable bond angles. Inherent structure C, occurring with a high degree of degen-

eracy, is a four-atom chain with one bond angle of 117◦ and the other of 65◦; the dihedral

angle is 108◦. Point D is a variation on this theme, with a slightly less favorable dihedral

angle of 132◦. Point E is another variation, this time incorporating a less favorable 180◦

bond angle. The degeneracies of D and E have been suppressed in the disconnectivity

graph, as have other higher energy minima (such as a straight-line configuration of all four

atoms).

Transitions between degenerate states C can be accomplished by a change in dihe-

dral angle to 180◦, as indicated by point F in Figure 9.5. However, in order to switch the

65◦ and 117◦ bonds of inherent structure C, i.e., to go between the two sets of degenerate

minima in the disconnectivity graph, the system must pass through transition point H,

which involves breaking one of the bonds. (It is a lower activation barrier to break one of

the bonds than to change bond angles while remaining fully bonded.) The C structure can

transition into a parallelogram by passing through transition point G, which also involves

breaking one bond. All other transitions occur through point I, which involves breaking

the single Se4 cluster into two Se2 clusters. It is interesting to note than even transitions

between degenerate A minima involve bond breakage. Thus, it is much easier to transition

among the various C degenerate structures than those corresponding to the global minimum

A.

There is little experimental data on the structure of Se4 clusters. The semi-

empirical modeling of Oligschleger14 predicts a square as the minimum energy configuration.

However, the more realistic ab initio potentials for selenium predict the parallelogram of
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Figure 9.6. Disconnectivity graph for Se5 and plots of the identified minimum energy
structures and transition states.

point B in Figure 9.5, which incorporates more favorable bond angles. Moreover, our global

minimum is found to be not a closed configuration, but rather a chain with bond angles

of 117◦. The energy cost of having one less bond in the chain configuration is more than

offset by allowing all of the bond angles to assume the most favorable value of 117◦.

9.2.3 Se5

As shown in Figure 9.6, the global minimum of Se5 is a regular pentagon corre-

sponding to point A in the disconnectivity graph. The interior bond angles of 108◦ are
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near the shallow minimum of 117◦, shown in Figure 9.4 for the three-body cluster. The

second most favorable inherent structure of Se5 is the open chain configuration B in Figure

9.6, with all bond angles equal to 117◦. As with other chain configurations, B has a high

degree of degeneracy. The next most favorable configuration, labeled C, is a five-atom

chain incorporating one 65◦ and two 117◦ angles. Other chain structures are also possible

but have a significantly higher potential energy. For clarity, these have been omitted from

the disconnectivity graph in Figure 9.6.

Inherent structures D and E have nearly identical energy. Structure D involves

one three-coordinated selenium atom, with all bond angles equal to 117◦. Point E is the

“envelope” geometry proposed by Oligschleger14 as the minimum energy configuration of

Se5. The envelope structure is a closed configuration with two interior angles of 117◦, two

of 70◦, and one of 132◦. (Oligschleger reports an envelope structure with four bond angles

of 100◦ and one of 87◦.) While the envelope configuration is indeed a local minimum in

the Se5 potential energy landscape, it is much less favorable than the regular pentagon of

inherent structure A.

Transitions between degenerate chains B can be accomplished with a change in

torsion, as indicated by point F in Figure 9.6. This is also true of transitions between

degenerate chains C, which occur through transition point H. The activation energy required

for these isostructural transitions is much less than that required for transitions between

any two non-degenerate inherent structures. Transitions among the degenerate envelope

configurations E can be accomplished with minimal energy through transition point G. It

is also possible to transition between closed configurations A and E without breaking any
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Figure 9.7. Disconnectivity graph for Se6 and plots of the identified minimum energy
structures and transition states.

bonds. All other transitions, including those between chain and ring structures and between

non-degenerate chain structures, involve bond breakage. As indicated by transition points

I, J, and K, this can occur along several different routes.

The five-atom selenium cluster represents a cross-over for when a closed structure

becomes most favorable. While open chain configurations are most favorable for Se3 and

Se4, Se5 and, as we shall see soon, Se6-Se8 clusters all have a closed ring geometry as their

global minimum in energy.
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9.2.4 Se6

The potential energy landscape of Se6, shown by the disconnectivity graph in

Figure 9.7, is rich with inherent structures and transition points. The global minimum,

labeled A, is a regular hexagon. This is not surprising, given the favorable bond angle of

120◦. Two other closed inherent structures, B and F, also exist but are less favorable. The

B geometry consists of five atoms bonded in a plane with bond angles of 112◦. The sixth

atom is out-of-plane and closes the ring with an interior angle of 70◦. Inherent structure F

is a “canoe” with two 72◦, two 122◦, and two 120◦ interior angles. The minimum energy

configuration proposed by Oligschleger14 is a variation on inherent structure B, but with a

second atom out-of-plane. This is not found to be a favorable inherent structure using our

ab initio potentials.

The most favorable chain structure of Se6 is that of point C in Figure 9.7, which

incorporates all 117◦ bond angles. Other chain structures, such as E and G, incorporate less

favorable bond angles. Inherent structures D and H both incorporate all 117◦ bonds, but

at the cost of having one or two three-coordinated selenium atoms, respectively.

Transitions between closed geometries A and B are allowed through point I, which

has only slightly higher energy than the local minimum B. It is not favorable for A or B

to transition to the third closed configuration F without bond breakage, as indicated by

transition points R and N, respectively. We have seen in the case of the Se4 landscape that

transitions within degenerate chain structures are much easier if the chains incorporate a

65◦ angle. This is also true for Se6, where there is little activation barrier to move from

minimum E to transition point K. Transitions between A and E through point L are also
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Figure 9.8. Disconnectivity graph for Se7 and plots of the identified minimum energy
structures and transition states.

possible while keeping the Se6 cluster intact. Transitions from D to A, B, or E can be

accomplished through ring structure P. Other transitions favor a fragmentation of the Se6

cluster into smaller pieces.

9.2.5 Se7

The global minimum of the Se7 potential energy landscape is the ring structure

indicated by point A in Figure 9.8, which incorporates bond angles of about 120◦. The

atoms are not in-plane with each other. The next most favorable configuration of Se7,

labeled B, is a regular hexagon with the seventh atom bonded at 117◦ angles to one of the
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six atoms in the hexagon, resulting in one three-coordinated atom. Inherent structure C

has an only slightly higher energy and consists of six atoms bonded at 119◦ angles, nearly

in a plane. The seventh atom closes the ring from out-of-plane, incorporating a bond angle

of 65◦. The remaining inherent structures are variations on the familiar chain motif. As

usual, the energy of the chains increases as less favorable angles are incorporated into the

structure.

Transitions between ring structures A and C are possible with chain I as an inter-

mediate state. Transitions between inherent structures B and C are possible via the ring

transition state J. Isostructural transitions among the degenerate G chains can occur with

minimal energy though point O or through the less favorable transition state P. Other

transition states include the chain structures L and M and the higher-energy fragmented

states Q, R, and S.

The semi-empirical modeling of Oligschleger predicts a “chair” configuration as

the most stable configuration of Se7. This is similar to our inherent structure C in Figure

9.8, but with two additional atoms out-of-plane. Since inherent structure A incorporates

more favorable angles, it is more likely to be the true global minimum for Se7.

9.3 Elemental Clusters (S8, Se8, and Te8)

Disconnectivity graphs for S8, Se8, and Te8 clusters are found in Figures 9.9-9.11.

The global energy minimum in all three cases is the familiar “crown” structure, which is

experimentally well-known for both S8?, 57, 58 and Se8.14, 241 While there is no experimental

data on the Te8 cluster, it is not surprising that it should also adopt the crown configuration
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Figure 9.9. Disconnectivity graph for S8 and plots of the identified inherent structures and
transition states.

as its lowest energy state. In all three cases, ring structures have consistently lower energy

than chain configurations. Ring structures are especially stable in the Se8 cluster, where

there are several variations on the crown motif. Overall, the seven ring configurations of

Se8 (labeled A-G in Figure 9.10) are shown to be significantly more favorable than Se8 chains

(H-J). Transitions among many of the Se8 rings are possible through several ring transition

states (K-N), and the chain transition state O allows for transition among all seven distinct

types of Se8 rings. Transitions between chains and rings and between the various types

of chains are possible through fragmented states (P-R). As shown in Table XV, Se8 has

a lower potential energy per atom than any of the Se3-Se7 clusters, indicating that Se8 is
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Figure 9.10. Disconnectivity graph for Se8 and plots of the identified inherent structures
and transition states.

more favorable overall than the smaller clusters.

There are fewer distinct rings in both S8 and Te8 than in Se8, with the sulfur cluster

having only two available ring formations. This is due to the S-S-S triple having a difference

of about 0.8 eV between energy minima at the large bond angle (∼118◦) as compared to

the less favorable small bond angle (∼65◦), while in Se-Se-Se these minima are comparable.

Hence Se8 rings can involve combinations of large and small bond angles, whereas favorable

ring formations of S8 involve only angles near the 118◦ minimum. Moreover, the large angle

minimum for Se-Se-Se is significantly broader than that of S-S-S, allowing for greater bond

angle flexibility in the Se8 structures. Therefore, a much greater variety of ring structures
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Figure 9.11. Disconnectivity graph for Te8 and plots of the identified inherent structures
and transition states.

is allowed in Se8 as compared to S8.

The tellurium cluster has four rings, an intermediate number between S8 and

Se8. Like S8, Te8 has no rings containing the small bond angle (∼65◦); however, in this

case the explanation relates to the relative strength of the two- and three-body interaction

potentials. The two-body interaction potential for Te-Te is about 0.5 eV/atom weaker than

that of Se-Se and nearly 1 eV/atom weaker than that of sulfur. However, the three-body

potential of Te-Te-Te is comparable to that of Se-Se-Se at the small angle minimum. For

larger clusters such as Te8, the repulsive three-body contribution therefore dominates over

the attractive two-body contributions at the 65◦ angle, making rings containing these small

angles unfavorable. Likewise, tellurium chains with 65◦ angles are not present in Figure
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Table XV. Lowest Energy Values of Selenium Clusters

Cluster Minimum Potential (eV/atom)
Se3 −2.04
Se4 −2.36
Se5 −2.74
Se6 −2.86
Se7 −2.93
Se8 −3.05

9.11. The potential energies of all Te8 inherent structures are much higher than both S8

and Se8 owing to tellurium’s weaker two-body binding energy.

The lowest-energy chain configurations in both S8 and Te8 are much closer in

energy to their corresponding ring states than for Se8. While S8 and Se8 each have one

chain transition state, the transition states in Te8 are all rings or fragments. The chain

transition state H for S8 in Figure 9.9 includes a 65◦ angle and allows for transitions among

the various degenerate states of chain C. All of the transition points between non-degenerate

states of S8 involve bond breakage, unlike Se8 and Te8 where several ring transition states

are possible.

9.4 SenTe8−n Clusters

We plot disconnectivity graphs for Se6Te2, Se4Te4, and Se2Te6 in Figures 9.12-9.14,

respectively. As with the elemental clusters, the “crown” structure is the global minimum

in energy for SenTe8−n. However, we may note one key difference between the Se2Te6 crown

and the crown structures of Se4Te4 and Se6Te2. Whereas the selenium and tellurium atoms

are segregated from each other in the Se4Te4 and Se6Te2 crowns, the two selenium atoms
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Figure 9.12. Disconnectivity graph for Se6Te2 and plots of the identified inherent structures
and transition states.

in Se2Te6 crown are separated by a tellurium atom. In fact, this trend is continued for

almost all of the inherent structures in the SenTe8−n clusters. While heteropolar bonding

is kept to a minimum in Se4Te4 and Se6Te2, it tends to be maximized in Se2Te6.

This very interesting result is similar to a result obtained in our Monte Carlo

simulations of bulk SexTe1−x glass structure, where we found that heterogenous SexTe1−x

glasses are almost entirely phase separated at the chain level for x > 0.2. However, at low

values of x selenium was found to be highly soluble in the tellurium matrix. The usual

preference for homopolar bonding in selenium-tellurium mixtures is apparent from the two-

body interaction potentials, since the strength of the heteropolar Se-Te bond is weaker than
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Figure 9.13. Disconnectivity graph for Se4Te4 and plots of the identified inherent structures
and transition states.

the average of the homopolar Se-Se and Te-Te bonds. However, this does not explain the

preference for heteropolar bonding at low concentration of selenium.

This result in SexTe1−x glasses may be elucidated by considering the inherent

structures of the Se2Te6 cluster in Figure 9.14. Since it is impossible to have an Se-Se-Se

group in Se2Te6, the available three-body combinations of atoms involving selenium are

Se-Se-Te, Se-Te-Te, Se-Te-Se, and Te-Se-Te. Of these, the three-body repulsion at 118◦

of Se-Se-Te is the strongest, more than compensating for the stronger binding energy of

the Se-Se pair. As a result, inherent structures in Se2Te6 favor heteropolar Se-Te-Se and

Te-Se-Te bonding. A similar argument can be made to explain the solubility of a small
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Figure 9.14. Disconnectivity graph for Se2Te6 and plots of the identified inherent structures
and transition states.

concentration of selenium atoms in a predominantly telluride glass.

Another interesting result is that the Se4Te4 cluster has significantly more ring

formations than both Se2Te6 and Se6Te2. Since the selenium and tellurium atoms in

the Se4Te4 rings are completely segregated, they all contain Se-Se-Se and Te-Te-Te triples,

which have a higher degree of bond flexibility around the large angle (∼118◦) minimum

than the heterogeneous Se-Te-Se, Te-Se-Te, Se-Se-Te, and Se-Te-Te triples. As a result,

Se4Te4 is able to form a greater number of distinct ring configurations. However, none of

these rings include any small angle (∼65◦) bonding. This is due to the same reason that

small angle bonds are absent in the elemental Te8 cluster: the repulsion due to three-body

interaction at 65◦ outweighs the attractive potentials of the two-body interaction.

285



Figure 9.15. Disconnectivity graph for Se6S2 and plots of the identified inherent structures
and transition states.

9.5 SenS8−n Clusters

Disconnectivity graphs for Se6S2, Se4S4, and Se2S6 clusters are shown in Figures

9.15-9.17. As with the other chalcogen clusters, the SenS8−n clusters all have the “crown”

configuration as the global minimum in energy. However, unlike the case of SenTe8−n, the

SenS8−n rings are able to include small angle (∼65◦) bonding since the two- plus three-

body interactions at 65◦ are not as unfavorable for the sulfur-selenium triples as for the

selenium-tellurium triples.

The SenS8−n clusters show an interesting trend with respect to segregation. Whereas

the sulfur and selenium atoms in the inherent structures of Se4S4 are mostly segregated,
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Figure 9.16. Disconnectivity graph for Se4S4 and plots of the identified inherent structures
and transition states.

both Se6S2 and Se2S6 clusters favor heteropolar bonding. The segregation in Se4S4 can be

explained in terms of the two-body interactions. Since the S-Se bond strength is less than

the average of the S-S and Se-Se bond strengths, homopolar bonding is generally prefer-

able. However, three-body effects cause heteropolar bonding to be favorable in the Se6S2

and Se2S6 clusters. Since the three-body potentials at the 118◦ minimum are greater for

S-S-Se and Se-Se-S than for S-Se-S and Se-S-Se, heteropolar bonding becomes favorable.

This does not affect the preference for segregation in Se4S4 since both the S-S-S and Se-Se-

Se triples have a low three-body potential around 118◦. These results for SenS8−n clusters

help explain the preference for homopolar bonding in SexS1−x glasses with x ≈ 0.5, while

heteropolar bonding becomes preferable for both high and low x.
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Figure 9.17. Disconnectivity graph for Se2S6 and plots of the identified inherent structures
and transition states.

The preference for S-Se-S and Se-S-Se triples in Se6S2 also contributes to a greater

variety of ring structures allowable in this cluster since both the S-Se-S and Se-S-Se three-

body potentials are fairly broad around at 118◦ minimum. This is not the case in Se2S6

due to the narrowness of the S-S-S three-body minimum. Furthermore, there are no ring

transition states present in Se2S6.

9.6 Conclusions

We have presented a thorough description of the potential energy landscapes of

small chalcogen clusters using ab initio potentials and our eigenvector-following approach for
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locating transition states. Whereas chain structures are found to be most favorable for Se3

and Se4 clusters, ring structures are dominant in Se5-Se8. The “crown” structure serves as

the global energy minimum for all of the eight-body chalcogen clusters under investigation.

Ring structures are generally more favorable than chains, but the number of favorable rings

depends on the nature of the three-body interactions. Segregation in heterogeneous clusters

is due to two-body effects but can be overcome by appropriate three-body interactions.

Isostructural transitions between degenerate states can often be accomplished with little

activation energy. Transitions between highly dissimilar inherent structures can involve

the breaking and reforming of one or more bonds.

Inherent structures in these chalcogen clusters can provide insights into the struc-

ture of bulk chalcogen glasses. In particular, the solubility of selenium in a heterogeneous

SexTe1−x glass with small x can be explained by analogy to the SenTe8−n clusters, where

heteropolar bonding is preferred for small n. In this case, Se-Te-Se and Te-Se-Te triples

are preferred over Se-Se-Te due to the more favorable three-body interactions around bond

angles of 118◦. Analogous results for SenS8−n clusters explain the preference for homopolar

bonding in SexS1−x glasses with x ≈ 0.5, while heteropolar bonding becomes preferable for

both high and low x.

289



Chapter 10

Mapping of Enthalpy Landscapes

Recently, there have been many studies involving potential energy landscapes

of molecular clusters,222—225 biomolecules,225 supercooled liquids,167, 177 and glassy sys-

tems.225—227 Potential energy landscapes do not allow for changes in the volume of a system

and are thus inadequate for understanding structural relaxation in inorganic glasses. A re-

cent study by Middleton and Wales227 introduced the concept of an enthalpy landscape and

applied it to a model glass system under isobaric conditions. Exploration of an enthalpy

landscape allows for changes in both particle positions and the total volume of the system.

In order to separate the thermal and configurational components of energy, the enthalpy

landscape is computed at absolute zero. This zero temperature landscape corresponds

to an underlying surface that is sampled by a system at finite temperature in an isobaric

ensemble.

In this chapter, we derive a new eigenvector-following technique for locating min-

ima and transition points in an enthalpy landscape. Our derivation is based on our previ-
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ous study of potential energy landscapes (Chapter 8), in which we used steepest descents

to find minima and an eigenvector-following method to locate first-order transition points.

However, for bulk systems with periodic boundary conditions, the method of steepest de-

scent has convergence issues due to the tortuosity of the enthalpy landscape. To this

end, we present a recursive algorithm for mapping enthalpy landscapes that incorporates

eigenvector-following methods for locating both minima and transition points.

Our new eigenvector-following technique includes two steps at each iteration in

order to independently vary system volume and relative atomic positions. The justification

for this approach is discussed in Sections 10.1-10.3, and the split-step technique itself is

presented in Sections 10.4-10.5. A recursive algorithm for mapping enthalpy landscapes is

provided in Section 10.6. Using this algorithm, we partially map the enthalpy landscape

of a bulk selenium system and compute a preliminary volume-temperature diagram.

10.1 The Difficulty of Enthalpy Landscapes

The zero temperature enthalpy landscape of an N -particle system is

H = E (x1, x2, . . . , x3N , V ) + PV , (10.1)

where the potential (i.e., configurational) energy E is a function of 3N position coordinates,

x1, x2, . . . , x3N , and the volume V of the simulation cell. The pressure P of the system

is constant. The enthalpy landscape therefore has a dimensionality of 3N + 1, minus any

constraints.

If the enthalpy of the system with initial positions x0i , where i = 1, 2, . . . , 3N , and
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initial volume V 0 is given by H
¡
x0i , V

0
¢
, then we may approximate the enthalpy at a new

position xi = x0i + hi and new volume V = V 0 + hV using the Taylor series expansion,

H (xi, V ) ≈ H
¡
x0i , V

0
¢
+

3NX
i=1

∂H
∂xi

¯̄̄̄
xi=x0i ,V=V

0

hi +
∂H
∂V

¯̄̄̄
xi=x0i ,V=V

0

hV

+
1

2

3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,V=V

0

hj +
1

2

∂2H
∂V 2

¯̄̄̄
xi=x0i ,V=V

0

h2V

+
1

2

3NX
i=1

hi
∂2H
∂xi∂V

¯̄̄̄
xi=x0i ,V=V

0

hV

+
1

2

3NX
i=1

hV
∂2H
∂V ∂xi

¯̄̄̄
xi=x0i ,V=V

0

hi. (10.2)

For computational convenience, it is desirable to give all 3N +1 coordinates the dimensions

of length. If we assume a cubic volume of V = L3, the enthalpy can be rewritten as

H = E (x1, x2, . . . , x3N , L) + PL3, (10.3)

such that

H (xi, L) ≈ H
¡
x0i , L

0
¢
+

3NX
i=1

∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi +
∂H
∂L

¯̄̄̄
xi=x0i ,L=L

0

hL

+
1

2

3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,L=L

0

hj +
1

2

∂2H
∂L2

¯̄̄̄
xi=x0i ,L=L

0

h2L

+
1

2

3NX
i=1

hi
∂2H
∂xi∂L

¯̄̄̄
xi=x0i ,L=L

0

hL

+
1

2

3NX
i=1

hL
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi. (10.4)
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This can be written in matrix notation as

H (q) ≈ H
¡
q0
¢
+ g>h+

1

2
h>Hh, (10.5)

where the position vectors are given by

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

x3N

L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; q0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x01

x02

...

x03N

L0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10.6)

and the displacement vector h = q− q0 is

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2

...

h3N

hL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.7)

The gradient vector g and the (3N + 1)× (3N + 1) Hessian matrix H, evaluated at q = q0,

293



are given by

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂x1

∂H
∂x2

...

∂H
∂x3N

∂H
∂L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q=q0

(10.8)

and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2H
∂x21

∂2H
∂x1∂x2

· · · ∂2H
∂x1∂x3N

∂2H
∂x1∂L

∂2H
∂x2∂x1

∂2H
∂x22

· · · ∂2H
∂x2∂x3N

∂2H
∂x2∂L

...
...

. . .
...

...

∂2H
∂x3N∂x1

∂2H
∂x3N∂x2

· · · ∂2H
∂x23N

∂2H
∂x3N∂L

∂2H
∂L∂x1

∂2H
∂L∂x2

· · · ∂2H
∂L∂x3N

∂2H
∂L2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q=q0

, (10.9)

respectively.

In our previous derivation of an eigenvector-following technique for potential en-

ergy landscapes (Chapter 8), the Hessian matrix H contained second derivatives with re-

spect to position coordinates xi only. Since the position coordinates are independent of

each other,

∂2E

∂xi∂xj
=

∂2E

∂xj∂xi
, (10.10)

so the Hessian matrix is symmetric. In the case of an enthalpy landscape, the Hessian ma-

trix has one additional row and column including derivatives with respect to the simulation

cell length L. The chief difficulty in extending our potential energy approach to enthalpy

landscapes is that the position and length coordinates are not truly independent of each
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other. When implementing a change in length for a bulk system with periodic boundary

conditions, it is standard to scale the atomic positions according to

∂xi
∂L

=
xi
L
. (10.11)

Therefore,

∂2H
∂L∂xi

=
3NX
j=1

∂xj
∂L

∂

∂xj

∂H
∂xi

=
3NX
j=1

xj
L

∂2H
∂xj∂xi

, (10.12)

and

∂2H
∂xi∂L

=
∂

∂xi

3NX
j=1

∂xj
∂L

∂H
∂xj

=
3NX
j=1

xj
L

∂2H
∂xi∂xj

+
1

L

∂H
∂xi

. (10.13)

Thus,

∂2H
∂xi∂L

=
∂2H
∂L∂xi

+
1

L

∂H
∂xi

, (10.14)

and the Hessian matrixH for an enthalpy landscape is not symmetric. This poses a problem

in computing the eigenvalues and eigenvectors of H, since most eigenvector solvers assume

a symmetric matrix; those that allow for asymmetric matrices are much less efficient than

symmetric eigenvector solvers. In addition, an asymmetric matrix can lead to complex

eigenvalues.

Fortunately, we can take advantage of the relationship in Equation (10.14) to
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symmetrize the Hessian. Substituting Equation (10.14) into (10.4), we obtain

H (xi, L) ≈ H
¡
x0i , L

0
¢
+

3NX
i=1

∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi +
∂H
∂L

¯̄̄̄
xi=x0i ,L=L

0

hL

+
1

2

3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,L=L

0

hj +
1

2

∂2H
∂L2

¯̄̄̄
xi=x0i ,L=L

0

h2L

+
1

2

3NX
i=1

hi

µ
∂2H
∂L∂xi

+
1

L

∂H
∂xi

¶¯̄̄̄
xi=x0i ,L=L

0

hL

+
1

2

3NX
i=1

hL
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi, (10.15)

which simplifies to

H (xi, L) ≈ H
¡
x0i , L

0
¢
+

3NX
i=1

µ
1 +

hL
L

¶
∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi +
∂H
∂L

¯̄̄̄
xi=x0i ,L=L

0

hL

+
1

2

3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,L=L

0

hj +
1

2

∂2H
∂L2

¯̄̄̄
xi=x0i ,L=L

0

h2L

+
3NX
i=1

hL
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi. (10.16)

This can be rewritten in matrix notation as

H (q) ≈ H
¡
q0
¢
+

µ
1 +

hL
L

¶
g>h+

1

2
h>H0h, (10.17)
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where H0 is the symmetrized Hessian

H0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2H
∂x21

∂2H
∂x1∂x2

· · · ∂2H
∂x1∂x3N

∂2H
∂L∂x1

∂2H
∂x1∂x2

∂2H
∂x22

· · · ∂2H
∂x2∂x3N

∂2H
∂L∂x2

...
...

. . .
...

...

∂2H
∂x1∂x3N

∂2H
∂x2∂x3N

· · · ∂2H
∂x23N

∂2H
∂L∂x3N

∂2H
∂L∂x1

∂2H
∂L∂x2

· · · ∂2H
∂L∂x3N

∂2H
∂L2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q=q0

. (10.18)

In order to choose appropriate steps in the xi and L dimensions, we define the

Lagrange function

L = −H (x,L) + 1
2

3NX
i=1

λi
¡
h2i − c2i

¢
+
1

2
λL
¡
h2L − c2L

¢
(10.19)

= −H
¡
x0i , L

0
¢
−

3NX
i=1

µ
1 +

hL
L

¶
∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi −
∂H
∂L

¯̄̄̄
xi=x0i ,L=L

0

hL

−1
2

3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,L=L

0

hj −
1

2

∂2H
∂L2

¯̄̄̄
xi=x0i ,L=L

0

h2L

−
3NX
i=1

hL
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

hi +
1

2

3NX
i=1

λi
¡
h2i − c2i

¢
+
1

2
λL
¡
h2L − c2L

¢
, (10.20)

where ci,L are the desired step sizes in the various directions and λi,L are Lagrange multi-

pliers. Taking the derivative of L with respect to an arbitary step hk and setting it equal
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to zero, we obtain

∂L
∂hk

= 0 = −
3NX
i=1

µ
1 +

hL
L

¶
∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

δik −
3NX
i=1

hi
L

∂H
∂xi

¯̄̄̄
xi=x0i ,L=L

0

δkL

− ∂H
∂L

¯̄̄̄
xi=x0i ,L=L

0

δkL −
3NX
i=1

3NX
j=1

hi
∂2H

∂xi∂xj

¯̄̄̄
xi,j=x0i,j ,L=L

0

δjk

− ∂2H
∂L2

¯̄̄̄
xi=x0i ,L=L

0

hLδkL −
3NX
i=1

hL
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

δik

−
3NX
i=1

hi
∂2H
∂L∂xi

¯̄̄̄
xi=x0i ,L=L

0

δkL +
3NX
i=1

λihiδik + λLhLδkL, (10.21)

which can be simplified as

0 = −
3NX
i=1

µ
1 +

hL
L

¶
giδik −

3NX
i=1

hi
L
giδkL − glδkL

−
3N+1X
i=1

3N+1X
j=1

hiH
0
ijδjk +

3N+1X
i=1

λihiδik; (10.22)

0 = −gk −
hL
L

3NX
i=1

giδik −
δkL
L

3NX
i=1

gihi −
3N+1X
i=1

H 0
ikhi + λkhk. (10.23)

Unfortunately, the solution to Equation (10.23) is difficult to obtain since the equations for

hi and hL are coupled. This is actually a specific example of a more general optimization

problem where the coordinates do not have a simple relationship but rather are related via

partial derivatives.

10.2 A General Statement of the Problem

Suppose we want to minimize the function f (a, b), where the coordinates a and

b have no simple holonomic constraint, α (a, b) = 0, but are related through the partial
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derivatives:

∂a

∂b
= c (a, b) ;

∂b

∂a
= 0. (10.24)

One solution of this problem involves decoupling of the a and b coordinates, which can be

accomplished by introducing a new ā = p (a, b) coordinate, where ā satisfies

∂ā

∂b
= 0. (10.25)

The problem then becomes determination of the restrictions on p (a, b) such that Equation

(10.25) is satisfied.

The total differential of ā is

dā =
∂ā

∂b

¯̄̄̄
a

db+
∂ā

∂a

¯̄̄̄
b

da, (10.26)

such that

∂ā

∂b
=

∂ā

∂b

¯̄̄̄
a

+
∂ā

∂a

¯̄̄̄
b

∂a

∂b
= 0. (10.27)

Hence,

∂ā

∂a

¯̄̄̄
b

c (a, b) = − ∂ā

∂b

¯̄̄̄
a

. (10.28)

Taking the special case where c (a, b) and p (a, b) are separable:

c (a, b) = q (a)w (b) ; p (a, b) = r (a) s (b) . (10.29)
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Therefore,

s (b)
∂r (a)

∂a

¯̄̄̄
b

q (a)w (b) = −r (a) ∂s (b)
∂b

¯̄̄̄
a

. (10.30)

Since there is no holonomic constraint between a and b, Equation (10.30) can be split into

separate equations of a and b:

q (a)
∂r (a)

∂a
= r (a) ; (10.31)

s (b)w (b) = −∂s (b)
∂b

. (10.32)

These equations become

∂ ln r (a)

∂a
=

1

q (a)
; (10.33)

∂ ln s (b)

∂b
= −w (b) , (10.34)

and yield the solutions

r (a) = exp

µZ
1

q (a)
∂a

¶
; (10.35)

s (b) = exp

µ
−
Z

w (b) ∂b

¶
. (10.36)

Thus, the coordinates can be decoupled by choosing

ā = exp

µZ
1

q (a)
∂a−

Z
w (b) ∂b

¶
. (10.37)
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10.3 Application to Enthalpy Landscapes

In our case, the function f (a, b) is the enthalpy function H (xi, L), where a simple

holonomic relation between xi and L is not present. To see this point, consider a bulk system

of atoms. If the length of the system changes, all of the xi coordinates scale according to

Equation (10.11), but displacement of a single atom does not produce a measurable change

in L. Thus, we have

∂xi
∂L

= xi ·
1

L
;
∂L

∂xi
= 0. (10.38)

From Equation (10.37), we introduce the new coordinates x̄i as

x̄i = exp

µZ
1

xi
∂xi −

Z
1

L
∂L

¶
, (10.39)

which simplifies to

x̄i = C
xi
L
=

xi
L
, (10.40)

where the constant of integration C is set to unity. The normalized positions x̄i are

independent of changes in L since

∂x̄i
∂L

=
∂

∂L

¡
xiL

−1¢ = xi
L2
− xi

L2
= 0. (10.41)

With this notation, the enthalpy landscape can be expressed as

H = E (x̄1, x̄2, . . . , x̄3N , L) + PL3, (10.42)
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and the Lagrange problem simplifies to

H (q̄) ≈ H
¡
q̄0
¢
+ ḡ>h̄+

1

2
h̄>H̄h̄, (10.43)

where the overbars denote use of the normalized x̄i coordinates. In principle, the step

vector h̄ can be calculated following the same procedure as for potential energy landscapes

since the x̄i and L coordinates are decoupled. However, this involves computation of first

and second derivatives of enthalpy with respect to the normalized x̄i coordinates rather than

the natural xi coordinates. Since xi and L have units of length, the elements, eigenvalues,

and eigenvectors of the Hessian matrix would all have the same units. While in principle

this is not an issue, it eases implementation since it is more computationally convenient to

compute derivatives and the step vector in terms of the unnormalized coordinates xi. This

can be accomplished using a split-step eigenvector-following technique described in the next

Section.

10.4 Split-Step Eigenvector-Following Technique

The split-step eigenvector-following technique consists of iteratively stepping through

the enthalpy landscape toward a minimum or transition point. Each iteration involves two

steps:

1. Step of the simulation box length L while maintaining constant normalized positions

x̄i.

2. Step of the positions xi while maintaining constant L.
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Step of box length (hL) with fixed
normalized particle positions.

Step of particle positions (hi)
with fixed box length.

Do we meet the criteria
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or transition point?

Done

No

Yes

Step of box length (hL) with fixed
normalized particle positions.

Step of particle positions (hi)
with fixed box length.

Do we meet the criteria
for having reached a minimum

or transition point?

Done

No

Yes

Figure 10.1. Flow chart of the split-step eigenvector-following technique for locating minima
and transition points.

This procedure is shown graphically in Figure 10.1. In the first step of the

iteration, the enthalpy can be written in terms of a Taylor series expansion:

H
¡
x̄0i , L

¢
≈ H

¡
x̄0i , L

0
¢
+

∂H
∂L

¯̄̄̄
x̄i=x̄0i ,L=L

0

hL +
1

2

∂2H
∂L2

¯̄̄̄
x̄i=x̄0i ,L=L

0

h2L. (10.44)

We can now write a Lagrange function in one dimension:

LL = −H
¡
x̄0i , L

0
¢
− ∂H

∂L

¯̄̄̄
x̄i=x̄0i ,L=L

0

hL

−1
2

∂2H
∂L2

¯̄̄̄
x̄i=x̄0i ,L=L

0

h2L +
1

2
λL
¡
h2L − c2L

¢
. (10.45)
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Taking the derivative with respect to hL yields

∂LL
∂hL

= 0 = − ∂H
∂L

¯̄̄̄
x̄i=x̄0i ,L=L

0

− ∂2H
∂L2

¯̄̄̄
x̄i=x̄0i ,L=L

0

hL + λLhL. (10.46)

Defining

FL =
∂H
∂L

¯̄̄̄
x̄i=x̄0i ,L=L

0

=

µ
∂E

∂L
+ 3PL2

¶
x̄i=x̄0i ,L=L

0

(10.47)

and

bL =
∂2H
∂L2

¯̄̄̄
x̄i=x̄0i ,L=L

0

=

µ
∂2E

∂L2
+ 6PL

¶
x̄i=x̄0i ,L=L

0

, (10.48)

we have

hL =
FL

λL − bL
. (10.49)

The change in enthalpy ∆HL for such a step hL is

∆HL =
F 2L

³
λL − bL

2

´
(λL − bL)

2 . (10.50)

Hence, the sign of the enthalpy change depends on both bL and the choice of Lagrange

multiplier λL.

The second step involves changes in the particle positions xi with a fixed box

length L. In this case, the gradient and second derivative terms reduce to

∂H
∂xi

=
∂E

∂xi
;

∂2H
∂xi∂xj

=
∂2E

∂xi∂xj
. (10.51)
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Therefore, this step is exactly the same as with our previous analysis for potential energy

landscapes in the canonical ensemble. The position step vector is given by

hx =
3NX
i=1

Fi
λi − bi

Vi, (10.52)

where bi and Vi are the eigenvalues and associated eigenvectors of the symmetric 3N × 3N

Hessian matrix H,

HVi = biVi, (10.53)

and Fi is defined by

g =
3NX
i=1

FiVi. (10.54)

The change in enthalpy associated with the position step vector h is

∆Hx = ∆Ex =
3NX
i=1

F 2i

³
λi − bi

2

´
(λi − bi)

2 . (10.55)

Again, the sign of the enthalpy change in a particular eigendirection Vi depends on both

the eigenvalue bi and the choice of Lagrange multiplier λi.

10.5 Choice of Lagrange Multipliers

In order to locate transition points and minima in the enthalpy landscape, we must

make an appropriate choice of Lagrange multipliers. In this section, we specify a suitable

choice of Lagrange multipliers for both cases.
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10.5.1 Locating Transition Points

A transition point is defined as a stationary point where exactly one of the eigen-

values of the Hessian matrix is negative. Thus, a transition point corresponds to an

enthalpy maximum in one eigendirection and an enthalpy minimum in all other eigendirec-

tions. With the split-step technique, the single negative eigenvalue may be any one of bi

or bL. Treating the length dimension as the (3N + 1)th dimension, as in Equation (10.6),

the eigenvector corresponding to bL = b3N+1 is

VL = V3N+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.56)

As such, we may rewrite the total change in enthalpy as a summation of enthalpy

changes in each of the 3N + 1 eigendirections:

∆H =
3N+1X
i=1

∆Hi, (10.57)

where

∆Hi =
F 2i

³
λi − bi

2

´
(λi − bi)

2 . (10.58)

Suppose we wish to find a transition point by maximizing enthalpy in a particular Vi

eigendirection while minimizing in all of the orthogonalVj 6=i directions. The eigendirection
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Vi of interest may be associated with either changes in position or length. Due to the split-

step nature of our approach, the eigenvector cannot have components of both position and

length simultaneously. It follows from our previous analysis in Chapter 8 that a choice of

λi > |bi| and λj < − |bj | would guarantee a step in the correct direction towards a transition

point. However, this specifies neither the particular values of λi,j nor the magnitude of the

step.

We may simplify our analysis by assuming that a transition point search always

starts from a local minimum in the enthalpy landscape. This is also the most practical case

to consider from an applications point of view, since we are typically interested in finding

the transition enthalpy between two stable configurations, e.g., two “inherent structures”

using Stillinger’s terminology.176 A minimum in the enthalpy landscape has the property

bk > 0 for all k = 1, 2, . . . ,N . As we walk on the enthalpy landscape from the minimum

to a transition point, we are essentially walking uphill along a “valley” or “streambed.” If

the direction of our walk up the streambed is Vi and the step size is sufficiently small, we

should have bj > 0 for all j 6= i and be near the enthalpy minima in the Vj 6=i directions

along the entire walk. In the case of an infinitesimal step size, we would exactly follow

the streambed; however, due to finite step sizes, we may have slight deviations from the

streambed. These deviations may be corrected by an appropriate choice of λj 6=i, which is

accomplished by finding the nearest stationary point in the ∆Hj 6=i contribution:

∂∆Hj 6=i
∂λj 6=i

= 0 = −
2F 2j 6=i

(λj 6=i − bj 6=i)
3

µ
λj 6=i −

bj 6=i
2

¶
+

F 2j 6=i

(λj 6=i − bj 6=i)
2 , (10.59)
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leading to

2
³
λj 6=i − bj 6=i

2

´
λj 6=i − bj 6=i

= 1. (10.60)

Therefore, we have

λj 6=i = 0. (10.61)

The choice of λj 6=i = 0 reduces our Lagrange approach to exactly the Newton-Raphson

method in all Vj 6=i eigendirections, and it is in agreement with our previous condition of

λj 6=i < bj 6=i/2 for minimization with bj 6=i > 0. Note that if we accidentally step outside

of the regime where bj 6=i > 0, a negative λj 6=i < bj 6=i should be chosen. (This also in-

dicates that the chosen step size in the Vi eigendirection is too large–so large that we

have effectively stepped out of the streambed and started climbing hills in an orthogonal

direction.)

The magnitude of the step size along the Vi eigendirection is given by

h2i = c2i =
F 2i

(λi − bi)
2 . (10.62)

This leads to the condition

λi = bi ±
¯̄̄̄
Fi
ci

¯̄̄̄
. (10.63)

Since λi > bi is required for enthalpy maximization with bi > 0, we choose

λi = bi +

¯̄̄̄
Fi
ci

¯̄̄̄
(10.64)

for this case. If bi = 0, we are at an inflection point and can simply take a step along Vi
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in the uphill direction.

As we progress up the streambed, eventually we will pass through an inflection

point where bi becomes negative. The condition for enthalpy maximization with bi < 0 is

λi > bi/2. Since in this case the nearest stationary point is the transition point of interest

with exactly one negative eigenvalue bi, the most efficient choice of Lagrange multiplier is

λi = 0, corresponding again to the Newton-Raphson step. Thus in the case of bi < 0, the

step size ci is determined by the Newton-Raphson method.

Finally, we note that the first step from the initial minimum point must follow a

different scheme than that given by Equation (10.62) since Fi = 0 for all i. In this case,

we choose a simple step of magnitude ci in the Vi eigendirection. There should be no

components of h in the other Vj 6=i eigendirections since we also have Fj 6=i = 0 and wish to

remain in the streambed.

10.5.2 Locating Minima

The steepest descent method fails to find minima in the tortuous enthalpy land-

scape of a bulk system within a reasonable computation time. Thus, we may modify the

above eigenvector-following approach with a different choice of Lagrange multipliers in order

to locate minima accurately. In order to find a minimum, we wish to minimize enthalpy in

all eigendirections. Therefore, from Equations (10.57) and (10.58) we see that for bi > 0,

a choice of λi = 0 ensures enthalpy minimization. For all bi < 0, we require λi < bi/2. If

we assume a step size of ci in the Vi direction, then

ci =

¯̄̄̄
Fi

(λi − bi)

¯̄̄̄
. (10.65)
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Figure 10.2. Flow chart of the recursive algorithm for mapping an enthalpy landscape.

Therefore, we choose

λi = bi −
¯̄̄̄
Fi
ci

¯̄̄̄
. (10.66)

Finally, if bi = 0, we are at an inflection point. In this case, we can simply take a step along

Vi in the downhill direction. We have found this technique to be much more effective than

steepest descent for finding minima in a bulk system.
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10.6 Recursive Algorithm for Mapping the Enthalpy Land-

scape

A recursive algorithm for mapping an enthalpy landscape using split-step eigenvector-

following is given in Figure 10.2. The actual split-step eigenvector-following technique is

executed every time a new minimum or transition point needs to be found. The split-step

technique itself is outlined in Figure 10.1 and executed iteratively according to the following

procedure:

1. If finding a transition point, choose the eigendirection of interest to follow. This may

be along the parallel or antiparallel directions of the softest mode, or along any of the

harder modes of interest.

2. Execute a change in the length L of the simulation cell while maintaining constant

normalized positions x̄i. Compute the first and second derivatives of enthalpy with

respect to length, FL and bL, and choose a Lagrange multiplier according to the criteria

put forth in Section 10.5. Change the simulation cell length in three dimensions by

the resulting step hL.

3. Change the atomic positions xi while maintaining constant L. Compute the gradient

g and Hessian H, and determine the eigenvalues and normalized eigenvectors of the

Hessian matrix. The eigenvectors form the columns of a 3N × 3N unitary matrix:

U =

µ
V1 V2 · · · V3N

¶
. (10.67)
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Compute the vector F = U>g, where

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

...

F3N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.68)

Select the Lagrange multipliers λi according to the criteria in Section 10.5 and compute

the step vector h. Update the atomic positions accordingly.

4. Repeat steps 2-3 until converged at a minimum or transition point. The criteria for

convergence are: (a) |Fi| < �, where � is chosen to reflect the desired level of precision;

and (b) all bi > 0 for a minimum or exactly one bi < 0 for a transition point.

10.7 Partial Enthalpy Landscape of Selenium

We have implemented this algorithm and tested it for a 64-atom selenium system

with periodic boundary conditions using our ab initio potentials from Part I. The split-step

eigenvector-following technique was able to correctly find both minima and transition states

in the Se64 enthalpy landscape. Two example minima and the connecting transition state

are shown in Figure 10.3. A partial disconnectivity graph of the Se64 enthalpy landscape is

shown in Figure 10.4, showing a total of 70 minima and their connecting transition points.

The disconnectivity graph was generated using software by Mark A. Miller.239
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Figure 10.3. Example minima and transition point in the enthalpy landscape of Se64,
assuming periodic boundary conditions.
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Figure 10.4. Partial enthalpy landscape of a 64-atom selenium system, assuming periodic
boundary conditions.
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10.8 Volume-Temperature Diagram for Selenium

We use the partial enthalpy landscape of Figure 10.4, together with our glass

transition model of Chapter 7, to compute a preliminary volume-temperature diagram for

selenium, as shown in Figure 10.5 assuming linear cooling. The transition frequencies ωα

in Equation (7.20) are computed from the corresponding eigenvalues bα by

ωα =

r
bα
m
, (10.69)

where m is the atomic mass.

While the molar volumes in Figure 10.5 are not yet quantitatively accurate due to

the small sampling of inherent structures (the liquid at 500 K should be about 19.5 cm3/mol,

and the glass at 300 K should be closer to 18.5 cm3/mol79), the glass transition does occur

in the correct temperature range for selenium. In addition, we observe the correct trend

that a faster cooling time (1 ns in Figure 10.5) yields a glass with a higher molar volume

than a slower cooling time (2 ns). The slopes of the two volume-temperature curves are

nearly identical in the glassy regime, indicating similar thermal expansion coefficients for

the two glasses. Finally, Figure 10.6 shows that selenium glass does not retrace its cooling

path upon reheating. This figure also shows that reheating and subsequent recooling lead

to a different final molar volume of the glass. A more thorough mapping of the enthalpy

landscape is necessary in order to compute a quantitatively accurate volume-temperature

diagram for selenium.
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Figure 10.5. Computed volume-temperature diagram of selenium.
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Figure 10.6. Volume-temperature diagram of selenium showing reheating and subsequent
recooling. The final glass volume is less than that of the initially cooled glass.
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10.9 Conclusions

In conclusion:

• We have derived the first-ever set of ab initio potentials for chalcogenide systems,

including two-, three-, and effective four-body terms.

• We have developed Molsym, a flexible object-oriented platform for classical atomistic

simulations.

• Using the Metropolis Monte Carlo technique and our ab initio derived potentials, we

have computed the structure of elemental, binary, and ternary chalcogenide glasses.

• We have investigated rigidity percolation, elasticity, and incipient plasticity in chalco-

genide glasses at the atomistic level.

• We have shown the first-ever support of the Phillips-Thorpe theory of topological

constraints based on ab initio physics.

• We have derived a new model of glass transition range behavior based on nonequilib-

rium statistical mechanics and an inherent structure approach.

• We have demonstrated for the first time the connection between energy landscape

topology and supercooled liquid fragility.

• We have developed new eigenvector-following techniques for locating minima and tran-

sition states in potential energy and enthalpy landscapes.

• We have mapped the inherent structures and transition states of elemental and het-

erogeneous chalcogen clusters.

316



• Using our ab initio derived potentials, split-step eigenvector-following technique, and

new model of the glass transition, we have computed the first-ever volume-temperature

diagram of a glass-forming system without any experimental inputs.

Future work will focus on the statistics of enthalpy landscapes for glass-forming

systems in order to compute quantitatively accurate volume-temperature diagrams for re-

alistic glass-forming systems.
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