A Thesis Presented to

The Faculty of Alfred University

ENGINEERING RETENTION DATA BASED ON QUALITATIVE ANALYSIS OF FIRSTYEAR SEMINAR (ENGR 160) REFLECTION ONE PAPERS

By

Justin C. Fossum

In Partial Fulfillment of the Requirements for The Alfred University Honors Program

May, 2018

Under the Supervision of:
Chair:
Dr. Danielle Gagne

Committee Members:

ACKNOWLEDGMENTS

I would like to thank Dr. Danielle Gagne, Dr. Amy Button, and Dr. Steven M. Pilgrim as well as all the other professors who have taught me and guided me over the past four years at Alfred University.

I would like to thank Tricia Debertolis, Dan Napalitano, Eliza Ordway, and Vicky Gabel for the spontaneous learning immersion breaks that helped keep me sane when the work load was too large.

I would also like to thank Jeff, Jackson, Amanda, Hanna, Brian and all my other friends for the support, motivation, and memories.

Of course I would like to my parents Carl Fossum, Wendy Fossum, Kevin Stange, and Olivia Stange for the love and support that allowed me to get where I am today.

Table of Contents

Acknowledgements I
Abstract IV
BACKGROUND 1
Introduction 1
Methods 1
Results and Discussions 4
Conclusion 16
REFERENCES R-i
APPENDIX A
Coding Rubric for "Why Alfred University" A-i
Coding Rubric for "Why Engineering" A-ii
Coding Rubric for "Why Now" A-iii
Coding Rubric for Anonymized, Starting Cohort,
Sex, Major, and Change in Major A-iv
Coding Rubric for Status, Pass Fall of First Year, and Wrote/Submitted 'Reflection One' A-v
Appendix B
C++ Code
Correlation Program B-i
Example Output from Correlation B-ii
Python Code
Major Change Data Program B-iii
Major Data Program B-xxii
Example Output from Major Change Data B-xxv
Example Output from Major Data B-xxvi
Sankey Chart Code Example B-xxvii
Appendix C
Additional "Why Alfred University" Figures C-i
Additional "Why Engineering" Figures C-iii
Additional "Why Now" Figures C-v
Additional Sankey Diagrams C-vii
Category Responses to the Three Questions Figures Separated by Major
Undecided C-ix
Mechanical Engineering C-xi
Renewable Energy Engineering C-xiii
Glass Science and Engineering C-xv
Bio-Material Engineering C-xvii
Material Science and Engineering C-xix
Ceramic Engineering C-xxi
School of Liberal Arts and Sciences C-xiii

Appendix D

Sample of Data Collected D-i

Appendix E

IPEDS Data Feedback Report 2017 - Alfred University ...E-i

Abstract

The research displayed in this thesis assesses whether there are any statistically significant reasons why perspective students have chose to attend Alfred University to study engineering in the year they did. Three questions were asked of 331 students in Reflection One essays that were written in ENGR 160; First-Year Seminar. The students were asked "why they chose Alfred University", "why they chose engineering" and "why they were seeking this education now". Through qualitative analysis, each type of response to one of the questions was given its own category. "Why they chose Alfred University" has 31 categories; "why they chose engineering" has 42 categories; "why they are seeking this education now" has 24 categories. An inter rater reliability of 90.1%, based on two independent coders, was achieved from a sample of the first 50 students from the entering class in 2015. The results are split into three types of groups: students that stayed at Alfred University, students that chose to leave Alfred University, and students that were asked to leave Alfred University. Each of the groups' answers are compared against each other to see if there are any predictors in an individual's response to the three questions that may indicate that specific group performance. The top five categories that Alfred University has control over that were answers to the question "Why Alfred University" are: Financial Benefit, Good Engineering School, Sports, Niche Major, and Networking Opportunities. Two of the top three categories that were answers to the question "Why Engineering" are enjoyed or exceled in the subjects of Mathematics, Science; Chemistry or Biology, Technology, and Physics or enjoyed the engineering classes offered at their high school. The highest responded category for answering the question "Why Now" suggests that this question lacks assessment value, i.e. should be discontinued. Student flow from declared major choices will also be assessed through a visual representation of data using Sankey diagrams.

BACKGROUND

Throughout the past four years at Alfred University, as at nearly all institutions, student retention has been a concern in the Inamori School of Engineering. The university tries to meet with every student that is leaving the university to see why they are leaving, but in the past not every student attended or could be contacted after the fact. In the two entering classes of 2015 and 2016, Alfred University lost 30 students just from within the Inamori School of Engineering with a projected loss of 15 students from the entering class of 2017. The demographics of the state and region apply additional pressure on enrollment, and enhanced retention would greatly benefit future students as well as the institutions financial strength.

Introduction

The methods below show how the 263 students that wrote Reflection Paper One were coded and analyzed. The analysis seeks to assess whether there are any statistically significant reasons why perspective students have chosen to come to Alfred University to study engineering in the year they did. Three questions were asked of students in Reflection One essays that were written in ENGR 160; First-Year Seminar. The students were asked "why they chose Alfred University", "why they chose engineering" and "why they were seeking this education now". If the student responded, they became a responder and their responses were coded into different categories for each question. All 331 students that have enrolled in First-Year Seminar were used to analyze the flow patterns of students declared major choice. Sankey diagrams helped make the flow data easily viewable and quick to understand where and how many students were moving.

Methods

Each essay was cleared of all responder data and given an anonymized number of FAXXYYY where XX is the year the student entered First-Year Seminar at Alfred University and YYY is the numerical order of the responder as found in that specific year's binder.

The responder's essays from the binder of 2015 were then read and each new response to one of the three questions, "Why Alfred University", "Why Engineering", and "Why Now", were recorded. After the first binder was completed, accounting for about 39% of the total responses, there were over 50 different categories. Those initial categories correlating to "Why Alfred University" were combined to give a coarser grain overview of type of responses.

Categories that were combined were Financial Benefit, Location, Size, Atmosphere, and Niche Major. Financial Benefit was comprised of sub-categories such as 'cheap for a private school', 'gave a good scholarship', 'got a nice financial aid package', and 'could afford the school without taking out loans'. Location included sub-categories such as 'wooded area where one could hike', 'away from the city', and 'enjoys being in the middle of nowhere'. Size included sub-categories relating to class sizes, campus population and distance from one end of campus to the other. Atmosphere was created by combining a mixture of friendly students, professors, and staff specifying that the smiling faces and feeling that students would not be just a number in a classroom. Niche Major resulted from responses that said Ceramic Engineering, Renewable Energy Engineering, and Glass Science and Engineering. The categories for "Why Engineering" and "Why Now" were left without combining categories, i.e., leaving a fine grain response list. The Coding Rubric for each of the three questions can be found in Appendix A.

Each responder was not restricted on number of categories, so any and all responses were recorded, making the total number of responses for any of the three questions larger than the population of the study.

As reported in the introduction, an inter rater reliability was achieved at 90.1%. Inter rater reliability is when another person does qualitative analysis with the same study and the same rubric that was initially created as seen in Appendix A. Amanda L. Clark was the inter rater for this study. Clark is a senior psychology major in her 8th semester of statistics. She has completed 4 qualitative studies as a lead and a few others as secondary opinion. Clark was given the 2015 responses binder and the Coding Rubrics for each of the three questions and completed anonymized responses FA15001 to FA15050 giving a sample size of 50.

An Excel and a C++ program written by Justin C. Fossum were used to determine the inter rater reliability. Fossum's data collection for FA15001 to FA15050 was put in a new sheet
of "Analysis Spreadsheet - Final" labeled 'Correl' and listed as ones or zeros, where the ones indicated a response that listed a category. Clark's Data was put into the same sheet as Fossum's data, but twos and zeros were listed where the twos indicated a response that listed a category. A new table was made that would calculate the difference between Clark's data and Fossum's data as seen in equation 1.

$$
\begin{equation*}
C-F=A \tag{1}
\end{equation*}
$$

Where C is Clark's data, F is Fossum's data and A is the corresponding answer.
The new table of data was then filled with twos, ones, zeros, and negative ones. The twos were representative of data that Clark had coded data and Fossum had not, the ones were representative of data that both coded by, the zeros showed where neither Clark nor Fossum coded data, and the negative ones were representative of where Fossum had coded data and Clark had not. To quickly analyze the new table data and calculate an inter rater reliability, a C++ program was created that inputted the tabulated data and transmitted the necessary data on screen for the user to see. The code and output for the C++ program can be found in APPENDIX B. The output example found in APPENDIX B is the third of four runs. Clark and Fossum met to discuss the large discrepancies in the way things were coded until greater consistency was achieved. Once consistency was achieved Fossum recoded the rest of the 2015 binder and then coded the 2016 and 2017 binders.

Once all the data was coded from every binder and all 268 responders were recorded, the total number of responses in each category was calculated. These totals were calculated for each year and for all three years combined. The data was also disaggregated to show trends by initial major as declared by the responders when they entered Alfred University. Those majors were defined as undefined/academic exploration, mechanical engineering, renewable energy engineering, glass science and engineering, bio-materials engineering, materials science and engineering, ceramic engineering, and any major in the college of Liberal Arts and Sciences. Three other main groups were made to try and detect if there are any predictors in the Reflection One essays. Group One were the students that decided to study a different major outside of engineering, but stay at Alfred University, Group Two were the students that chose to leave Alfred University, and Group Three were the students that were asked to leave Alfred University.

ReSUlTS and DISCUSSIONS

The sorted and coded data showed that there were some responses that had statistical significance in "Why Alfred University", "Why Engineering", and "Why Now". These responses were used to provide feedback to First-Year Seminar as well as suggestions to point the Inamori School of Engineering at Alfred University and admissions at Alfred University in the perceived correct direction to help attract and maintain students. It was also found that there are no predictors in any of the three groups that were created for students that stay at Alfred University but change majors out of engineering, students that chose to leave Alfred University, or students that were asked to leave Alfred University.

"Why Alfred University"

The top 26% of responses account for "Why Alfred University" accounted for 78.61% of the responses for the total data coded from the entering class of 2015, 2016, and 2017 and can be seen in Figure 1 as following the approach of Pareto ${ }^{[1]}$. Other figures relating to responses relating to "Why Alfred University" separated by entering class year can be found in APPENDIX C.

Figure 1: All Coded Data from Responses answering the Question of "Why Alfred University"

As seen in Figure 1, the top nine categories account for 26% of responses. They are Size, Financial Benefit, Good Engineering School, Distance to Home, Sports, Atmosphere, Niche Major, Location, and Networking Opportunities. Of these nine, there are only five that are in the control of the university in any way: Financial Benefit, Good Engineering School, Sports, Niche Major, and Networking Opportunities.

Starting at the beginning of the list is Financial Benefit. Students are coming to this small, centrally isolated, private/statutory college in Western New York because they can receive an education for a great price. Note that Alfred University has three distinct tuition rates that apply to respondents. The highest is for the college of Liberal Arts and Sciences; the middle is Undecided, Mechanical Engineering, Renewable Energy Engineering and non-in-state other Inamori School of Engineering; the lowest is in-state Bio-Materials Engineering, Ceramic Engineering, Glass Sciences Engineering and Material Science and Engineering. Many responders compared Alfred University's tuition to that of other SUNY schools throughout New York State. Advertising to potential students that Alfred University provides generous financial
aid packages can be a huge draw. The IPEDS Data Feedback Report of 2017 shows that the average award amount of Alfred University undergraduates was $\$ 17,976$ as shown in Figure E11. The full report is the entirety of Appendix E.

Although it is understood that the university cannot provide aid in excess of income as that is not a sustainable business model, it is suggested that Alfred University give as much financial aid help as they can to help acquire new students.

The second category that responders indicated was a reason for coming to Alfred University is the fact that the Inamori School of Engineering has good programs. The Ceramics Engineering program is known around the world. As for the Glass Engineering program, it is the only program of its kind in the nation. The Glass Engineering program along with the Renewable Energy Engineering program fit into the Niche Major. Nowhere else can students go and learn this material. The university needs to put time and money back into the programs that help put and help keep Alfred University on the map.

Sports play a large role in students' lives. Many prospective students aspire to play their sport while continuing in higher education. Maintaining a good sports program is an essential part of retaining students. Many football players in the entering class of 2017 that wrote Reflection One Paper mentioned that part of the reason they came to Alfred University was because the football program did so well in the 2016-2017 academic year.

The last category that was mentioned frequently was Networking Opportunities. The Career Development Center (CDC) does a wonderful job promoting events on-and-off campus that involves any companies or alumni. Verbal feedback from students talks about the different times that Alfred University has connected them to a job or internship/co-op. The CDC should maintain this involvement and continue to promote their services.

"Why Engineering"

The top 38% of responses account for "Why Engineering" accounted for 80.40% of the responses for the total data coded from the entering class of 2015, 2016, and 2017 and can be seen in Figure 2 as following the approach of Pareto ${ }^{[1]}$. Other figures relating to responses relating to "Why Engineering" separated by entering class year can be found in APPENDIX C.

Figure 2: All Coded Data from Responses answering the Question of "Why Engineering"

Two of the top three categories as to why students chose engineering are because they enjoyed or exceled in the subjects of Mathematics, Science; Chemistry or Biology, Technology, and Physics or they enjoyed the engineering classes offered at their high school. These two responses account for a total of 121 responses out of 495 which is just shy of 25%. The third of the top three categories has 46 out of 495 responses and was an absence of response. This is a very substantial non-response rate and suggests that modification of the evaluation instrument should be considered.

Figure 2 data shows explicit support as to why it is so important to show young students the STEM field and get them involved in engineering topics as early as possible. This is less in the control of the university, but if funds were available, Alfred University could help sponsor engineering programs in high schools. Alfred University could also revive prior externally funded STEM outreach if funds were limited. By sponsoring engineering classes or programs it not only introduces the students to the concepts of engineering it puts the name of Alfred University in in the forefront of their minds.

Other categories as to why responders chose to enter engineering may also indicate what the incoming students already know and still need to learn. The cumulative knowledge of
students has been changing and to produce good engineers, therefore maintaining the schools reputation, Alfred University needs to be aware of the shift in knowledge incoming students have. One means to do this is greater STEM outreach and contacts with 1-12 educators.
"Why Now"
The top 25% of responses of "Why Now" accounted for 81.00% of the responses for the total data coded from the entering class of 2015, 2016, and 2017 and can be seen in Figure 3 as following the approach of Pareto ${ }^{[1]}$. Other figures relating to responses relating to "Why Now" disaggregated by entering class year can be found in APPENDIX C.

Figure 3: All Coded Data from Responses answering the Question of "Why Now"
The first category, which is that responders did not answer the question, accounts for almost 60.93% of the responses. Of the remaining 23 categories, each one only accounts for an average of 1.69% of the responses and it can be seen in the graph that most of that is weighted in the next handful of categories.

This data suggests that continuing to ask the question of "Why Now" in Reflection One Papers would not be beneficial. There is a possibility that the order of which the three questions
are asked has an influence as to how many responders answer the last question. This curiosity can be reviewed more in future work, but it is the primary suggestion to remove the question "Why Now" from the Reflection One Papers. Alternatively, respondents could be asked a guided version of "Why Now"; however, there are well-documented self-confirmatory issues with guided questions.

Students that Left Engineering but Stayed at Alfred University

The first group that was created was to determine if there was one declared major over the others that were more likely to stay at Alfred University, but transfer out of engineering. It was also used to determine if there were any predictors in the Reflection One Papers from this group that would suggest a responder would be more likely fall into this group in their Alfred University career. There were a total of nine students that fit this category. As seen in Figure 4, the top four categories that answer the question "Why Alfred University" overlaps with the top nine categories in Figure 1.

Figure 4: All Data Coded from all Students who Left Engineering, but Stayed at Alfred University answering the Question "Why Alfred University" from cohorts of 2015 and 2016.

Figure 5: All Data Coded from all Students who Left Engineering, but Stayed at Alfred University answering the Question "Why Engineering" from cohorts of 2015 and 2016.

Figure 6: Original major of all Students that Left Engineering, but Stayed at Alfred University Separated by Major from cohorts of 2015 and 2016; $n=9$

There is no graph for Responses of Why Now for Students who Left the Engineering as every responder failed to answer that question.

The data above reveals that there is no reliable predictor as to why students left the Inamori School of Engineering but stayed at Alfred University. Future work in this category should be normalizing the data to see if the mass numbers of students that were undecided, mechanical engineers, or renewable energy engineers influenced the results. It is important to note that the major data seen in Figure 6 is not weighted.

Students that Chose to Leave Alfred University

The second of the three groups aggregated data was to determine if there was one major over the others that was more likely to choose to leave Alfred University and to see if there were any predictors in the Reflection One Papers. There were a total of 21 students that fit this category.

Figure 7: All Data Coded from all Students that Left Alfred University by Choice answering the Question "Why Alfred University" from cohorts of 2015 and 2016.

Figure 9: All Data Coded from all Students that Left Alfred University by Choice answering the Question 'Why Now" from cohorts of 2015 and 2016.

Figure 8: All Data Coded from all Students that Left Alfred University by Choice answering the Question 'Why Engineering' from cohorts of 2015 and 2016.

Figure 10: Original major of all Data Coded from all Students that Left Alfred University by Choice

Separated by Major from cohorts of 2015 and 2016; $\mathrm{n}=21$

The data above reveals that there is no reasonable predictor as to why students chose to leave Alfred University. Future work in this category should be normalizing the data to see if the mass numbers of students that were mechanical engineers influenced the results. Anecdotal information suggests that Mechanical Engineering, as the most general engineering program at the university, enrolls the least committed students. This is consistent, but not necessarily casual. It is important to note that the major data seen in Figure 10 is not weighted.

Students that Were Asked to Leave Alfred University

The last of the three groups that were created was to determine if there was one major over the others that were more likely to be asked to leave Alfred University and to see if there were any predictors in the Reflection One Papers. There were a total of ten students that fit this category.

Figure 11: All Data Coded from all Students that
Were Asked to Leave Alfred University by answering the Question "Why Alfred University" from cohorts of 2015 and 2016.

Figure 12: All Data Coded from all Students that Were Asked to Leave Alfred University answering the Question "Why Engineering" from cohorts of 2015 and 2016.

Figure 13: All Data Coded from all Students that Were Asked to Leave Alfred University answering the Question "Why Now" from cohorts of 2015 and 2016.

Figure 14: Original major of all Data Coded from all Students that Were Asked to Leave Alfred University Separated by Major from cohorts of

2015 and 2016; $\mathbf{n = 1 0}$

The data above reveals that there is no reasonable predictor as to why students chose to leave Alfred University. Future work in this category should be normalizing the data to see if the mass numbers of students that were mechanical engineers influenced the results. For the years coded, all students involuntarily separated were male. Whether this is results from greater immaturity, self-selectors, or other causes is unknown. It is important to note that the major data seen in Figure 14 is not weighted.

Flow of Majors
Sankey charts are descriptive diagrams designed specifically to show flow ${ }^{[2]}$. They clearly represent how objects, or people in this case, move because the width of the connecting line is directly proportional to the flow quantity.

The Sankey charts below show the students' sex, as registered by Alfred University, in the first node and show the flow into what the students initial major was during their first semester. The second node flows into the third node which is the declared major of that student
as of January 2018. The flor from the third node to the fourth node shows the separation out into the students' sex from their currently declared major. Note that all students mix at each node, i.e., the incoming width of "female" to "renewable" is merely coincidently the same as the outgoing width to college of Liberal Arts and Sciences in Figure 15.

The data collected to generate the Sankey diagrams seen in Figure 15, Figure 16, and Figure 17 was collected from the Major Change Data Program found in Appendix B.

Figure 15: Major Flow for the entering class of 2015. The second node is as of Fall 2015 and the third node as of January 2018. n=127

The data collected in Figure 15 show the tendencies of students from the entering class of 2015 over a two-and-a-half year period.

The largest percentage 'leak' of students into the unknown node, which comprises all the students that left Alfred University and that there was no more data on, comes from bio-materials engineering. From Figure 15, the largest numerical 'leak' is mechanical engineering. Future work should normalize the data to determine the largest 'leak' as seen in Figure 15.

Figure 16: Major Flow for the entering class of 2016. The second node is as of Fall 2016 and the third node as of January 2018. n=106

The data collected in Figure 16 show the tendencies of students from the entering class of 2016 over a one-and-a-half year period.

The largest percentage 'leak' of students into the unknown node comes from materials science engineering. By looking at Figure 16 mechanical engineering yields the largest numerical 'leak'. The differing behavior of 2015 Bio-Materials Engineering and 2016 BioMaterials Engineering is striking. In 2016 overall, and Bio-Materials especially, there is much less differing making for a cleaner diagram than that of 2015. Future work should normalize the data to determine the largest 'leak' as seen in Figure 16.

Figure 17: Projected Major Flow for the entering class of 2017. The second node is as of Fall 2017 and the third node is Fall 2019. n=98

Figure 17 was created using the data collected from the flow patterns of the entering classes of 2015 and 2016. The data sets were combined and averaged to project the outcome of the entering class of 2017 two years in the future.

The largest numerical 'leak' of students into the unknown node at Figure 17 is mechanical engineering but this may be the 'leak' percentage.

Additional Sankey diagrams can be found in Appendix C.

CONCLUSION

In conclusion, the assessment of the Reflection Paper One Essays written in ENGR 160 showed that the top five categories that Alfred University has control over were answers to the question "Why Alfred University" are Financial Benefit, Good Engineering School, Sports, Niche Major, and Networking Opportunities. It also showed that two of the top three categories that were answers to the question "Why Engineering" are enjoyed or exceled in the subjects of Mathematics, Science; Chemistry or Biology, Technology, and Physics or they enjoyed the engineering classes offered at their high school. Additionally it showed that the highest
responded category for answering the question "Why Now" suggests that continuing to ask students why they came to school provides no benefit. Lastly is showed that there are no predictors in an individual's response to the three questions that may indicate specific group affiliation (Students that Left Engineering but Stayed at Alfred University, Students that Chose to Leave Alfred University, or Students that Were Asked to Leave Alfred University). The groups were students that stayed at Alfred University, students that chose to leave Alfred University and students that were asked to leave Alfred University.

Future work on this data would be to normalize the information and graph the information again to see if mechanical engineering students influenced the category responses for all three questions "Why Alfred University", "Why Engineering", and "Why Now". Mechanical Engineering students accounted for 122 of the 331 students used in this study. Data should also be collected and graphed for each semester to better understand and watch the flow of student majors throughout their time at Alfred University. This flow information was done in a Sankey diagram and it is a suggested method because it provides substantial insight. The data collected in the switch of students major from semester to semester does not have to be limited to the Inamori School of Engineering, and it could be applied to view data from the whole university with nodes at each semester or year. Sankey diagrams with improved nodes would provide the university visual information to see and track key decision points in each major, i.e., where students chose to leave that major or the university.

References

1. "Pareto Chart." American Society for Quality. http://asq.org/learn-about-quality/cause-analysis-tools/overview/pareto.html, 1 Jan. 2018. Web. 30 Apr. 2018.
2. "Sankey Diagram." Google.
https://developers.google.com/chart/interactive/docs/gallery/sankey, 23 Feb. 2017. Web. 30 Apr. 2018.

Appendix A

Coding Rubric for "Why Alfred University"

1. Financial Benefit
2. Size
3. Atmosphere
4. Connections with Professors
5. Job Opportunities
6. Niche Major
7. Opportunities Given to Students
8. Honors Program
9. Amount of Clubs
10. HEOP
11. Curriculum
12. Facilities
13. Sports
14. Beauty of Campus
15. Distance to Home
16. Large Feeling
17. Good Engineering School
18. Felt a Sense of Belonging
19. Location
20. Networking Opportunities
21. Knew a "Current" Student
22. Random Selection
23. Correct Major
24. Only School Accepted into
25. Not Answered
26. Accepted Previous Credits
27. Recommended by an Alumni
28. Felt Most Like Home
29. Application Fee Waived
30. Music Department
31. Last Option
32. Admissions Contacted More
33. Nothing else Worked Out
34. Close to Swain for Skiing

Coding Rubric for "Why Engineering"

1. Not Answered
2. Enjoyed Learning How Stuff Worked
3. Enjoyed Math, Science, Technology, or Physics Classes
4. Wanted More Knowledge
5. Wanted to be Able to Give Back
6. Enjoyed Building
7. Enjoyed Designing
8. Felt a Calling
9. Enjoyed Engineering classes in High School
10. Makes Good Money
11. Wanted to Make a Difference
12. Wants to Design New Products
13. Wants to Improve Old Products
14. Other Topics Are Not as Interesting
15. Wants to be an Inventor
16. Logical Choice
17. Interest in Cars
18. Interest in Guns
19. Alfred Had a Good Engineering Program
20. Involves Problem Solving
21. Not Good With English
22. Want to Learn Something Applicable to Future
23. Job Opportunities
24. Wanted Something With Hands on Experience
25. Wanted to Since Young
26. Reputation
27. Wants to Build Something that Helps People
28. Benefit for Self
29. Job Security
30. Wants to Work With Prosthetics
31. Enjoys Manipulating Materials
32. Knows an Engineer
33. Wanted to Combine Creative Mind with Intellectual Mind
34. Enjoys Being Challenged
35. Wants to Protect Solders by Working for Military
36. Parents Suggested it
37. Found it Interesting
38. Wants to Cure Cancer
39. Wants to Work in Research and Development while still getting hands Dirty
40. Interested in Planes and Space
41. Had a Good Technology Education Teacher
42. Had a Unique Skill Set

Coding Rubric for "Why Now"

1. Just Graduated High School and	12. Wanted to Keep Playing Sports
College Was The Next Step	13. Needed a New Start
2. First Year of College is Review of	14. College is a Necessity
Senior Year of High School	15. Time to Try College Again
3. Didn't Want to Forget Anything	16. Take Opportunity that Parents Did Not
4. Not Answered	Have
5. Wanted to Learn More as Soon as	17. Felt Stuck after Entering Workforce so
Possible	Wanted a Higher Education
6. Wanted an Education Faster to	18. Not Continuing Education Was Not an
Enter Workforce Faster	Option

7. Wanted to Get Out of Current

Living Arrangements
8. Wants to be Part of the New Technology Development
19. Wants to make Positive Change
20. Wants to be Financially Stable
21. Cares about Education
22. Influence from Parents
9. Best to Start as Soon as Possible
10. Took a Gap Year and Now Wants an Education
11. Next Step to Achieve Dream
23. Wanted to take advantage of Peak Learning Opportunity
24. Didn't Want to Take a Gap Year and Lose Motivation to Continue Education

Coding Rubric for Anonymized

This will be FAYYXXX where YY is the start year (15,16 or 17), and XXX is the sequential number of which the papers are ordered.

Ex: FA15098 - Belongs in the 2015 binder in the $98^{\text {th }}$ spot.

Coding Rubric for Starting Cohort
0. 2015
2. 2017

1. 2016
.

Coding Rubric for Sex

0. Female	1. Male

Coding Rubric for Major
0. Undecided/Academic Exploration
6. Ceramic Engineering

1. Mechanical Engineering
2. School of Liberal Arts and Sciences
3. Renewable Energy Engineering
4. College of Professional Studies
5. Glass Science and Engineering
6. School of Art and Design
7. Bio-Materials Science and Engineering
8. School of Business
9. Materials Science and Engineering
10. Unknown

Coding Rubric for Change in Major
0. No

1. Yes

Coding Rubric for Status
2. Left Alfred University (No more Data)
0. Still in Engineering at Alfred

University

1. Transferred to another school within Alfred University

Note: Coded two's marked in yellow were students that were asked to leave Alfred University

Coding Rubric for Pass Fall of First Year
0. Did not Pass

Note: Any student that was listed as

1. Passed incomplete was coded as a zero.

Coding Rubric for Wrote/Turned in 'Reflection One'
0. No

1. Yes

ApPEndix B

C++ Code

Correlation Program (Coded in Microsoft Developer 95)

```
// This is a C++ file to figure out my current correlation of my Inter Rater Data
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
void main() {
    int agreed=0,ir_dis=0,me_dis=0,i,test,total_dis,total;
    double percent;
    ifstream f_in("Correlation.txt", ios::in);
    for(i=0; i<4800; i++) {
        f_in>>test;
        if(test==0) {
            continue;
        } else if(test==1) {
            agreed++;
        } else if(test==-1) {
            me_dis++;
        } else if(test==2) {
            ir_dis++;
        }
    }
    total_dis=ir_dis+me_dis;
    total=total_dis+agreed;
    percent=(agreed/double(total))*100;
    cout<<"The agreed percentage is: "<<percent<<endl;
    cout<<"The total number of entries is: "<<total<<endl;
    cout<<"The total number of Inter Rater Disagreements is: "<<ir_dis<<endl;
    cout<<"The total number of My Disagreements is: "<<me_dis<<endl;
    cout<<"The total number of agreed entries is: "<<agreed<<endl;
}
```


Example Output from Correlation

```
C:\Users\fossu\Debug>Correlation.exe
The agreed percentage is: 65
The total number of entries is: }30
The total number of Inter Rater Disagreements is: 85
The total number of My Disagreements is: 20
The total number of agreed entries is: }19
```


Python Code (Coded in PyCharm Community Edition 2017.2.3)

Major Change Data Program

- The 2015, 2016 and 2017 Major Change Data Programs were the same with the exception of saying the corresponding year in the "with open" statement. The code shown is from 2015 Major Change Data Program.

```
author
            _
                ='fossum'
with open('2015 major Data With Sex Separation.txt', 'r+', encoding='utf-8') as a:
    print(a.name)
    female undecided = 0
    female undecided to undecided = 0
    female_undecided_to_mechanical = 0
    female-undecided_to-renewable = 0
    female_undecided_to_glass = 0
    female_undecided_to_bio = 0
    female_undecided to-materials = 0
    female_undecided_to_ceramic = 0
    female undecided to las = 0
    female_undecided_to_cps = 0
    female_undecided_to_soad = 0
    female_undecided_to_sob = 0
    female_undecided_to_unknown = 0
    male undecided = 0
    male-undecided to undecided = 0
    male_undecided_to_mechanical = 0
    male undecided to renewable = 0
    male_undecided_to_glass = 0
    male_undecided_to_bio = 0
    male undecided to materials = 0
    male_undecided_to_ceramic = 0
    male undecided to las = 0
    male_undecided-to-cps = 0
    male_undecided_to_soad = 0
    male_undecided to sob = 0
    male_undecided_to_unknown = 0
    female_mechanical = 0
    female mechanical to undecided = 0
    female_mechanical_to_mechanical = 0
    female_mechanical_to_renewable = 0
    female mechanical to glass = 0
    female_mechanical_to_bio = 0
    female mechanical to materials = 0
```

```
female_mechanical_to_ceramic = 0
female_mechanical_to_las = 0
female_mechanical_to_cps = 0
female - mechanical to soad = 0
female_mechanical_to_sob = 0
female_mechanical_to_unknown = 0
male_mechanical = 0
male_mechanical_to_undecided = 0
male_mechanical_to_mechanical = 0
male_mechanical_to_renewable = 0
male_mechanical_to_glass = 0
male_mechanical_to_bio = 0
male_mechanical_to_materials = 0
male_mechanical_to_ceramic = 0
male-mechanical_to-las = 0
male_mechanical_to_cps = 0
male_mechanical_to_soad = 0
male_mechanical_to_sob = 0
male_mechanical_to_unknown = 0
female renewable}=\mp@subsup{=}{}{-
female_renewable_to_undecided = 0
female_renewable_to_mechanical = 0
female_renewable_to_renewable = 0
female_renewable_to_-glass = 0
female_renewable_to_bio = 0
female_renewable_to_materials = 0
female_renewable_to_ceramic = 0
female_renewable_to_las = 0
female_renewable_to_cps = 0
female_renewable_to_soad = 0
female_renewable_to_sob = 0
female_renewable_to_unknown = 0
male_renewable = 0
male_renewable to undecided = 0
male_renewable_to_mechanical = 0
male_renewable_to_renewable = 0
male_renewable_to_glass = 0
male_renewable_to_bio = 0
male_renewable_to_materials = 0
male_renewable_to_ceramic = 0
male_renewable_to_las = 0
male_renewable_to_cps = 0
male_renewable_to_soad = 0
male_renewable_to_sob = 0
male_renewable_to_unknown = 0
female_glass =-0
female_glass_to_undecided = 0
female_glass_to_mechanical = 0
female_glass_to_renewable = 0
female_glass_to_glass = 0
female_glass_to_bio = 0
female_glass_to_materials = 0
female glass to ceramic = 0
female_glass_to_las = 0
female_glass_to_cps = 0
female_glass_to_soad = 0
female_glass_to_sob = 0
female_glass_to_unknown = 0
male_glass =-0
male_glass_to_undecided = 0
male_glass_to_mechanical = 0
male_glass_to_renewable = 0
male_glass to_glass = 0
```

```
male_glass_to_bio = 0
male_glass_to_materials \(=0\)
male_glass_to_ceramic \(=0\)
male_glass_to_las \(=0\)
male_glass_to_cps \(=0\)
male_glass_to_soad \(=0\)
male_glass_to_sob \(=0\)
male_glass_to_unknown \(=0\)
female_bio \(=0\)
female_bio_to_undecided \(=0\)
female_bio_to_mechanical \(=0\)
female bio-to_renewable \(=0\)
female_bio_to_glass = 0
female_bio_to_bio \(=0\)
female \({ }^{-}\)bio \({ }^{-}\)to materials \(=0\)
female_bio_to_ceramic \(=0\)
female_bio_to_las \(=0\)
female_bio_to_cps \(=0\)
female_bio_to_soad \(=0\)
female_bio_to_sob \(=0\)
female_bio_to_unknown \(=0\)
male_bio = 0
male bio to undecided \(=0\)
male_bio_to_mechanical \(=0\)
male_bio_to_renewable \(=0\)
male_bio_to_glass \(=0\)
male_bio_to_bio \(=0\)
male_bio_to_materials \(=0\)
male_bio_to_ceramic \(=0\)
male_bio_to_las \(=0\)
male_bio_to_cps \(=0\)
male_bio_to_soad \(=0\)
male_bio_to_sob \(=0\)
male \({ }^{-}\)bio \({ }^{-} \mathrm{to}^{-}\)unknown \(=0\)
female_mātērials \(=0\)
female_materials_to_undecided \(=0\)
female_materials_to_mechanical \(=0\)
female_materials_to_renewable \(=0\)
female_materials_to_glass = 0
female_materials_to_bio \(=0\)
female_materials_to_materials \(=0\)
female_materials_to_ceramic \(=0\)
female_materials_to_las \(=0\)
female_materials_to_cps \(=0\)
female-materials \({ }^{-}\)to-soad \(=0\)
female_materials_to_sob \(=0\)
female_materials_to_unknown \(=0\)
male_māterials \(={ }^{-} 0\)
male_materials_to_undecided \(=0\)
male_materials_to_mechanical \(=0\)
male_materials_to_renewable \(=0\)
male_materials_to_glass = 0
male_materials_to_bio \(=0\)
male_materials_to-materials \(=0\)
male_materials_to_ceramic \(=0\)
male materials \({ }^{-}\)to-las \(=0\)
male_materials_to_cps \(=0\)
male_materials_to_soad \(=0\)
male_materials_to_sob \(=0\)
male_materials_to_unknown \(=0\)
female_ceramic \({ }^{-}=\overline{0}\)
female_ceramic_to_undecided \(=0\)
female ceramic to mechanical \(=0\)
```

```
female_ceramic_to_renewable = 0
female_ceramic_to_-glass = 0
female_ceramic_to_bio = 0
female ceramic to materials = 0
female_ceramic_to_ceramic = 0
female_ceramic_to_las = 0
female_ceramic_to_cps = 0
female_ceramic_to_soad = 0
female_ceramic_to_sob = 0
female_ceramic_to_unknown = 0
male_ceramic = 0
male_ceramic_to_undecided = 0
male_ceramic_to_mechanical = 0
male_ceramic_to_renewable = 0
male_ceramic_to_glass = 0
male_ceramic_to_bio = 0
male_ceramic_to_materials = 0
male_ceramic_to_ceramic = 0
male_ceramic_to_las = 0
male_ceramic_to_cps = 0
male_ceramic_to_soad = 0
male_ceramic_to_sob = 0
male ceramic to unknown = 0
female_las =-0
female_las_to_undecided = 0
female_las_to_mechanical = 0
female_las_to_renewable = 0
female_las_to_glass = 0
female_las_to_bio = 0
female_las_to_materials = 0
female_las to_ceramic = 0
female_las_to_las = 0
female_las_to_cps = 0
female-las_to-soad = 0
female_las_to_sob = 0
female_las_to_unknown = 0
male_l\overline{as}=-
male_las_to_undecided = 0
male_las_to_mechanical = 0
male_las_to_renewable = 0
male_las_to_glass = 0
male_las_to_bio = 0
male_las_to_materials = 0
male_las_to_ceramic = 0
male_las_to_las = 0
male_las_to_cps = 0
male_las_to_soad = 0
male_las_to_sob = 0
male_las_to_unknown = 0
female_cps = 0
female cps to undecided = 0
female_cps_to_mechanical = 0
female_cps_to_renewable = 0
female_cps_to_glass = 0
female_cps_to_bio = 0
female_cps to-materials = 0
female_cps_to_ceramic = 0
female_cps_to_las = 0
female_cps_to_cps = 0
female_cps_to_soad = 0
female_cps_to_sob = 0
female_cps_to_unknown =0
male_cps = 0
```

```
male_cps_to_undecided = 0
male_cps_to_mechanical \(=0\)
male_cps_to_renewable \(=0\)
male_cps_to_glass = 0
male_cps_to_bio = 0
male_cps_to_materials = 0
male_cps-to-ceramic \(=0\)
male_cps_to_las = 0
male_cps_to_cps \(=0\)
male_cps_to_soad \(=0\)
male_cps_to_sob \(=0\)
male cps to unknown \(=0\)
female_soad \(=0\)
female_soad_to_undecided \(=0\)
female \({ }^{-}\)soad \(^{-}\)to \(^{-}\)mechanical \(=0\)
female_soad_to_renewable \(=0\)
female_soad_to_glass = 0
female_soad_to_bio \(=0\)
female_soad_to_materials \(=0\)
female_soad_to_ceramic = 0
female_soad_to_las \(=0\)
female_soad_to_cps = 0
female_soad_to_soad \(=0\)
female_soad_to_sob \(=0\)
female_soad_to_unknown \(=0\)
male_soad \(=-0\)
male_soad_to_undecided \(=0\)
male_soad_to_mechanical = 0
male_soad_to_renewable \(=0\)
male_soad_to_glass = 0
male_soad_to_bio \(=0\)
male_soad_to_materials \(=0\)
male_soad_to_ceramic = 0
male_soad_to_las \(=0\)
male_soad_to_cps \(=0\)
male_soad_to_soad = 0
male_soad_to_sob \(=0\)
male_soad_to_unknown \(=0\)
female_sob = 0
female_sob_to_undecided \(=0\)
female_sob_to_mechanical \(=0\)
female_sob_to_renewable \(=0\)
female_sob_to_glass \(=0\)
female_sob_to_bio = 0
female_sob_to_materials \(=0\)
female_sob_to_ceramic \(=0\)
female_sob_to_las \(=0\)
female_sob_to_cps \(=0\)
female_sob_to_soad = 0
female_sob_to_sob \(=0\)
female_sob_to_unknown \(=0\)
male_sob = 0
male sob to undecided \(=0\)
male_sob_to_mechanical \(=0\)
male_sob_to_renewable \(=0\)
male_sob_to_glass \(=0\)
male_sob_to__bio \(=0\)
male_sob_to_materials = 0
male_sob_to_ceramic \(=0\)
male_sob_to_las \(=0\)
male_sob_to_cps \(=0\)
male_sob_to_soad \(=0\)
male_sob_to_sob \(=0\)
```

```
male sob to unknown = 0
female uñknōwn = 0
female_unknown_to_undecided = 0
female unknown to mechanical = 0
female_unknown_to_renewable = 0
female_unknown_to_glass = 0
female-unknown to bio = 0
female_unknown_to_materials = 0
female_unknown_to_ceramic = 0
female_unknown_to_las = 0
female_unknown_to_cps = 0
female_unknown_to_soad = 0
female_unknown_to_sob = 0
female_unknown_to_unknown = 0
male unknown =- 0
male_unknown_to_undecided = 0
male_unknown_to_mechanical = 0
male_unknown_to_renewable = 0
male_unknown_to_glass = 0
male_unknown_to_bio = 0
male_unknown_to_materials = 0
male_unknown_to_ceramic = 0
male_unknown_to_las = 0
male_unknown_to_cps = 0
male_unknown_to_soad = 0
male_unknown_to_sob = 0
male_unknown_to_unknown = 0
count = 1
a.seek(0)
for line in a:
    sex = line.strip('\r\n').split('\t')
    if sex[0] == "0":
        if sex[1] == "0":
            female undecided += 1
            if sex[2] == "0":
            female_undecided_to_undecided += 1
            elif sex[2] == "1":
                            female_undecided_to_mechanical += 1
        elif sex[2] == "2":
            female_undecided_to_renewable += 1
        elif sex[2] == "3":
            female undecided to_glass += 1
        elif sex[2] == "4":
            female_undecided_to_bio += 1
        elif sex[2] == "5":
                            female_undecided_to_materials += 1
        elif sex[2] == "6":
            female_undecided_to_ceramic += 1
        elif sex[2] == "7":
            female undecided to_las += 1
        elif sex[2] == "8":
            female_undecided_to_cps += 1
        elif sex[2] == "9":
            female_undecided_to_soad += 1
        elif sex[2] == "10":
            female undecided_to_sob += 1
        elif sex[2] == "11":
            female_undecided_to_unknown += 1
        elif sex[1] == "1":
            female_mechanical += 1
            if sex[2] == "0":
                            female_mechanical_to_undecided += 1
        elif sex[2] == "1":
```

```
        female mechanical to mechanical += 1
    elif sex[2] == "2":
        female_mechanical_to_renewable += 1
    elif sex[2] == "3":
        female_mechanical_to_glass += 1
    elif sex[2] == "4":
        female mechanical to bio += 1
    elif sex[2] == "5":
        female mechanical to materials += 1
    elif sex[2] == "6":
        female_mechanical_to_ceramic += 1
    elif sex[2] == "7":
        female_mechanical_to_las += 1
    elif sex[2] == "8":
        female mechanical to cps += 1
    elif sex[2] == "9":
        female_mechanical_to_soad += 1
    elif sex[2] == "10":
        female_mechanical_to_sob += 1
    elif sex[2] == "11":
        female_mechanical_to_unknown += 1
elif sex[1] == "2":
    female_renewable += 1
    if sex[2] == "0":
        female_renewable_to_undecided += 1
    elif sex[2] == "1":
        female_renewable_to_mechanical += 1
    elif sex[2] == "2":
        female_renewable_to_renewable += 1
    elif sex[2] == "3":
        female renewable to glass += 1
    elif sex[2] == "4":
        female_renewable_to_bio += 1
    elif sex[2] == "5":
        female_renewable_to_materials += 1
    elif sex[2] == "6":
        female renewable to ceramic += 1
    elif sex[2] == "7":
        female renewable to las += 1
    elif sex[2] == "8":
        female_renewable_to_cps += 1
    elif sex[2] == "9":
        female_renewable_to_soad += 1
    elif sex[2] == "10":
        female renewable to sob += 1
    elif sex[2] == "11":
        female_renewable_to_unknown += 1
elif sex[1] ==-"3":
    female_glass += 1
    if sex[2] == "0":
        female_glass_to_undecided += 1
    elif sex[2] == "\overline{1":}
        female glass to mechanical += 1
    elif sex[2\overline{] == "\overline{2":}}\mathbf{}=\mathrm{ -}
        female_glass_to_renewable += 1
    elif sex[2] == "\overline{3":}
        female_glass_to_glass += 1
    elif sex[2] == "\overline{4":}
        female_glass_to_bio += 1
    elif sex[2] == "5":
        female_glass_to_materials += 1
    elif sex[2] == "\overline{6}":
        female_glass_to_ceramic += 1
```

```
    elif sex[2] == "7":
        female_glass_to_las += 1
    elif sex[2] == "\overline{8}":
        female glass to cps += 1
    elif sex[2] == "\overline{9":}
        female_glass_to_soad += 1
    elif sex[2] == "\overline{10":}
        female_glass_to_sob += 1
    elif sex[2] == "\overline{11":}
        female_glass_to_unknown += 1
elif sex[1] == "4":
    female_bio += 1
    if sex[2] == "0":
        female bio to undecided += 1
    elif sex[2] == "1":
        female_bio_to_mechanical += 1
    elif sex[2\overline{] ==-"2"}
        female_bio_to_renewable += 1
    elif sex[2] ==-"3":
        female_bio_to_glass += 1
    elif sex[2] ==-"4"
        female_bio_to_bio += 1
    elif sex[2] ==-"5":
        female_bio_to_materials += 1
    elif sex[2] ==-"6"
        female bio to ceramic += 1
    elif sex[2] ==-"7":
        female_bio_to_las += 1
    elif sex[2] ==-"8":
        female_bio_to_cps += 1
    elif sex[2] == "9":
        female_bio_to_soad += 1
    elif sex[2] ==-"10":
        female_bio_to sob += 1
    elif sex[2] ==-"1\overline{1":}
        female_bio_to_unknown += 1
elif sex[1] ==-"5":
    female_materials += 1
    if sex[2] == "0":
        female_materials_to_undecided += 1
    elif sex[2] == "1":
        female_materials_to_mechanical += 1
    elif sex[2] == "2":
        female_materials_to_renewable += 1
    elif sex[2] == "3":
        female_materials_to_glass += 1
    elif sex[2] == "4":
        female_materials_to_bio += 1
    elif sex[2] == "5":
        female materials to materials += 1
    elif sex[2] == "6":
        female_materials_to_ceramic += 1
    elif sex[2] == "7":
        female_materials_to_las += 1
    elif sex[2] == "8":
        female materials to cps += 1
    elif sex[2] == "9":
        female_materials_to_soad += 1
    elif sex[2] == "10":
        female_materials_to_sob += 1
    elif sex[2] == "11":
        female_materials_to_unknown += 1
elif sex[1] == "6":
```

```
    female_ceramic += 1
    if sex[2] == "0":
        female_ceramic_to_undecided += 1
    elif sex[2] == "1":
        female_ceramic_to_mechanical += 1
    elif sex[2] == "2":
        female_ceramic_to_renewable += 1
    elif sex[2] == "3":
        female_ceramic_to_glass += 1
    elif sex[2] == "4":
        female_ceramic_to_bio += 1
    elif sex[2] == "5":
        female_ceramic_to_materials += 1
    elif sex[2] == "6":
        female ceramic to ceramic += 1
    elif sex[2] == "7":
        female_ceramic_to_las += 1
    elif sex[2] == "8":
        female_ceramic_to_cps += 1
    elif sex[2\overline{] == "9":}
        female_ceramic_to_soad += 1
    elif sex[2] == "10":
        female ceramic to sob += 1
    elif sex[2] == "11":
        female_ceramic_to_unknown += 1
elif sex[1] == "7":
    female_las += 1
    if sex[2] == "0":
        female_las_to_undecided += 1
    elif sex[2] ==-"1":
        female las to mechanical += 1
    elif sex[2] ==-"2\overline{":}
        female_las_to_renewable += 1
    elif sex[2] == "3":
        female_las_to_glass += 1
    elif sex[2] ==-"4":
        female_las_to_bio += 1
    elif sex[2] == "5":
        female las to materials += 1
    elif sex[2] == " 6",
        female_las_to_ceramic += 1
    elif sex[2] == "7":
        female_las_to_las += 1
    elif sex[2] ==-"8":
        female las to cps += 1
    elif sex[2] ==-"9":
        female_las_to_soad += 1
    elif sex[2] == "10":
        female_las_to_sob += 1
    elif sex[2] == "11":
        female_las_to_unknown += 1
elif sex[1] == "8":
    female_cps += 1
    if sex[2] == "0":
        female_cps_to_undecided += 1
    elif sex[2] == "1":
        female_cps_to_mechanical += 1
    elif sex[2] == "2\overline{":}
        female_cps_to_renewable += 1
    elif sex[2] ==-"3":
        female cps to glass += 1
    elif sex[2] ==-"4"
        female_cps_to_bio += 1
```

```
    elif sex[2] == "5":
        female_cps_to_materials += 1
    elif sex[2] ==-"6":
        female_cps_to_ceramic += 1
    elif sex[2] ==-"7":
        female_cps_to_las += 1
    elif sex[2] == " 8":
        female_cps_to_cps += 1
    elif sex[2] == ""六:
        female_cps_to_soad += 1
    elif sex[2] == "1\overline{0}":
        female_cps to_sob += 1
    elif sex[2] ==-"1\overline{1":}
        female_cps_to_unknown += 1
elif sex[1] == "9":
    female_soad += 1
    if sex[2] == "0":
        female_soad_to_undecided += 1
    elif sex[2] == "1"'
        female soad to mechanical += 1
    elif sex[2] == "2":
        female_soad_to_renewable += 1
    elif sex[2] == "3":
        female_soad_to_glass += 1
    elif sex[2] == "4":
        female soad to bio += 1
    elif sex[2] == "5"-
        female_soad_to_materials += 1
    elif sex[2] == "'6":
        female_soad_to_ceramic += 1
    elif sex[2] == "7":
        female_soad_to_las += 1
    elif sex[2] == "8":
        female soad to cps += 1
    elif sex[2] == "9"'
        female_soad_to_soad += 1
    elif sex[2] == \overline{" }10\overline{"}\mathrm{ :}
        female_soad_to_sob += 1
    elif sex[2] == "11":
        female_soad_to_unknown += 1
elif sex[1] == "10":
    female_sob += 1
    if sex[2] == "0":
        female_sob_to_undecided += 1
    elif sex[2] == "1":
        female_sob_to_mechanical += 1
    elif sex[2] == "2":
        female_sob_to_renewable += 1
    elif sex[2] == "3":
        female_sob_to_glass += 1
    elif sex[2] == "4",
        female_sob_to_bio += 1
    elif sex[2] == "5":
        female sob to materials += 1
    elif sex[2] ==-"6":
        female sob to ceramic += 1
    elif sex[2] ==-"7\overline{":}
        female_sob_to_las += 1
    elif sex[2] == " 8" :
        female_sob_to_cps += 1
    elif sex[2] == ""六:
        female_sob_to_soad += 1
    elif sex[2] ==-"1\overline{0}":
```

```
        female_sob_to_sob += 1
        elif sex[2] == " "1\overline{1}":
            female_sob_to_unknown += 1
    elif sex[1] ==-"11":
    female_unknown += 1
    if sex[2] == "0":
            female unknown to undecided += 1
    elif sex[2] == "1":
            female_unknown_to_mechanical += 1
    elif sex[2] == "2":
            female_unknown_to_renewable += 1
    elif sex[2] == "3":
            female_unknown_to_glass += 1
    elif sex[2] == "4":
            female_unknown_to_bio += 1
    elif sex[2] == "5":
            female unknown_to_materials += 1
    elif sex[2] == "6":
            female_unknown_to_ceramic += 1
    elif sex[2] == "7":
        female_unknown_to_las += 1
    elif sex[2] == "8":
        female_unknown_to_cps += 1
    elif sex[2] == "9":
        female_unknown_to_soad += 1
    elif sex[2] == "10":
        female_unknown_to_sob += 1
    elif sex[2] == "11":
        female_unknown_to_unknown += 1
    else:
    print("Error on line ", count)
elif sex[0] == "1":
    if sex[1] == "0":
    male undecided += 1
    if sex[2] == "0":
                male undecided to_undecided += 1
    elif sex[2] == "1":
                male_undecided_to_mechanical += 1
    elif sex[2] == "2":
        male_undecided_to_renewable += 1
    elif sex[2] == "3":
        male undecided_to_glass += 1
    elif sex[2] == "4":
        male_undecided_to_bio += 1
    elif sex[2] == "5";
        male_undecided_to_materials += 1
    elif sex[2] == "6":
        male_undecided_to_ceramic += 1
    elif sex[2] == "7":
        male undecided to las += 1
    elif sex[2] == "8":
        male_undecided_to_cps += 1
    elif sex[2] == "9":
        male_undecided_to_soad += 1
    elif sex["2] == "10":
        male undecided to_sob += 1
    elif sex[2] == "11":
        male_undecided_to_unknown += 1
    elif sex[1] == "1":
    male_mechanical += 1
    if sexx[2] == "0":
        male_mechanical_to_undecided += 1
    elif sex[2] == "1":
```

```
        male_mechanical_to_mechanical += 1
    elif sex[2] == "2":
        male_mechanical_to_renewable += 1
    elif sex[2] == "3":
        male_mechanical_to_glass += 1
    elif sex[2] == "4":
        male_mechanical_to_bio += 1
    elif sex[2] == "5":
        male mechanical to materials += 1
    elif sex[2] == "6":
        male_mechanical_to_ceramic += 1
    elif sex[2] == "7":
        male_mechanical_to_las += 1
    elif sex[2] == "8":
        male_mechanical_to_cps += 1
    elif sex[2] == "9":
        male_mechanical_to_soad += 1
    elif sex[2] == "10":
        male_mechanical_to_sob += 1
    elif sex[2] == "11":
        male_mechanical_to_unknown += 1
elif sex[1] == "2":
    male_renewable += 1
    if sexx[2] == "0":
        male_renewable_to_undecided += 1
    elif sex[2] == "1":
        male_renewable_to_mechanical += 1
    elif sex[2] == "2":
        male_renewable_to_renewable += 1
    elif sex[2] == "3":
        male_renewable_to_glass += 1
    elif sex[2] == "4":
        male_renewable_to_bio += 1
    elif sex[2] == "5":
        male_renewable to materials += 1
    elif sex[2] == "6":
        male_renewable_to_ceramic += 1
    elif sex[2] == "7":
        male_renewable_to_las += 1
    elif sex[2] == "8":
        male_renewable_to_cps += 1
    elif sex[2] == "9":
        male_renewable_to_soad += 1
    elif sex[2] == "10":
        male_renewable to_sob += 1
    elif sex[2] == "11":
        male_renewable_to_unknown += 1
elif sex[1] == "3":
    male_glass += 1
    if sex[2] == "0":
        male_glass_to_undecided += 1
    elif sex[2] == "1":
        male glass to mechanical += 1
    elif sex[2] ==-"2\overline{"}
        male_glass_to_renewable += 1
    elif sex[2] == "3\overline{":}
        male_glass_to_glass += 1
    elif sex[2] == "4"
        male_glass_to_bio += 1
    elif sex[2] ==-"5":
        male glass to materials += 1
    elif sex[2] ==-"6":
        male_glass to_ceramic += 1
```

```
    elif sex[2] == "7":
        male_glass_to_las += 1
    elif sex[2] == "8":
        male_glass_to_cps += 1
    elif sex[2] ==-"9":
        male_glass_to_soad += 1
    elif sex[2] == "'10":
        male_glass_to_sob += 1
    elif sex[2] == "11":
        male_glass_to_unknown += 1
elif sex[1] == "4":
    male_bio += 1
    if sex[[2] == "0":
        male_bio_to_undecided += 1
    elif sex[2] == "1":
        male_bio_to_mechanical += 1
    elif sex[2] == "2":
        male_bio_to_renewable += 1
    elif sex[2] == "3":
        male_bio_to_glass += 1
    elif sex[2] == "4":
        male_bio_to_bio += 1
    elif sex[2] == "5":
        male_bio_to_materials += 1
    elif sex[2] == "6":
        male bio to ceramic += 1
    elif sex[2] == "7":
        male_bio_to_las += 1
    elif sex[2] == "8":
        male_bio_to_cps += 1
    elif sex[2] == "9":
        male_bio_to_soad += 1
    elif sex[2] == "10":
        male_bio_to_sob += 1
    elif sex[2] == "}11"
        male_bio_to_unknown += 1
elif sex[1] == "\overline{5":}
    male_materials += 1
    if sex[[2] == "0":
        male_materials_to_undecided += 1
    elif sex[2] == "1":
        male_materials_to_mechanical += 1
    elif sex[2] == "2":
        male_materials_to_renewable += 1
    elif sex[2] == "3":
        male_materials_to_glass += 1
    elif sex[2] == "4":
        male_materials_to_bio += 1
    elif sex[2] == "5":
        male materials to materials += 1
    elif sex[2] == "6":
        male_materials_to_ceramic += 1
    elif sex[2] == "7":
        male_materials_to_las += 1
    elif sex[2] == "8":
        male materials_to_cps += 1
    elif sex[2] == "9":
        male_materials_to_soad += 1
    elif sex[2] == "10":
        male_materials_to_sob += 1
    elif sex[2] == "11":
        male_materials_to_unknown += 1
elif sex[1] == "6":
```

```
    male_ceramic += 1
    if sex[2] == "0":
        male_ceramic_to_undecided += 1
    elif sex[2] == "\1":
        male_ceramic_to_mechanical += 1
    elif sex[2] == "\overline{2":}
        male ceramic to renewable += 1
    elif sex[2] == "\overline{3":}
        male ceramic to glass += 1
    elif sex[2] == "\overline{4":}
        male_ceramic_to_bio += 1
    elif sex["]] == "\overline{5":}
        male_ceramic_to_materials += 1
    elif sex[2] == "\overline{6":}
        male_ceramic to_ceramic += 1
    elif sex[2] == "\overline{7":}
        male_ceramic_to_las += 1
    elif sex[2] == "\overline{8}":
        male_ceramic_to_cps += 1
    elif sex[2] == "\overline{9":}
        male ceramic to soad += 1
    elif sex[2] == "10":
        male_ceramic_to_sob += 1
    elif sex[2] == "\overline{11":}
        male_ceramic_to_unknown += 1
elif sex[1] == "7":
    male_las += 1
    if sex[2] == "0":
        male_las_to_undecided += 1
    elif sex[2] == "1":
        male_las_to_mechanical += 1
    elif sex[2] == "2":
        male_las_to_renewable += 1
    elif sex[2] == "3":
        male_las_to_glass += 1
    elif sex[2] == "4":
        male_las_to_bio += 1
    elif sex[2] == "5":
        male las to materials += 1
    elif sex[2] == "6":
        male_las_to_ceramic += 1
    elif sex[2] == "7":
        male_las_to_las += 1
    elif sex[2] == "8":
        male_las_to_cps += 1
    elif sex[\] == "9":
        male_las_to_soad += 1
    elif sex[2] == "}10"
        male_las_to_sob += 1
    elif sex[2] == "11":
        male_las_to_unknown += 1
elif sex[1] == "8":
    male_cps += 1
    if sex[[2] == "0":
        male_cps_to_undecided += 1
    elif sex[2] == "}1"
        male_cps_to_mechanical += 1
    elif sex[2] == "2":
        male_cps_to_renewable += 1
    elif sex[2] == "3":
        male_cps_to_glass += 1
    elif sex[2] == "4":
        male_cps_to_bio += 1
```

```
    elif sex[2] == "5":
        male_cps_to_materials += 1
    elif sex[2] == "6":
        male_cps_to_ceramic += 1
    elif sex[2] == "7":
        male cps to las += 1
    elif sex[2] == "8":
        male_cps_to_cps += 1
    elif sex[2] == "9":
        male_cps_to_soad += 1
    elif sex[2] == "10":
        male_cps_to_sob += 1
    elif sex[2] == "}11"
        male_cps_to_unknown += 1
elif sex[1] == "\overline{9}":
    male_soad += 1
    if sex[2] == "0":
        male_soad_to_undecided += 1
    elif sex[2] == "\overline{1}":
        male soad to mechanical += 1
    elif sex[2] == "\overline{2":}
        male_soad_to_renewable += 1
    elif sex[2] == "\overline{3}":
        male_soad_to_glass += 1
    elif sex[2] == "\overline{4":}
        male_soad_to_bio += 1
    elif sex[2] == "\overline{5":}
        male_soad_to materials += 1
    elif sex[2] == "\overline{6":}
        male_soad_to_ceramic += 1
    elif sex[2] =` "\overline{7":}
        male_soad_to_las += 1
    elif sex[2] == "8":
        male soad to cps += 1
    elif sex[2] == "\overline{9":}
        male_soad_to_soad += 1
    elif sex[2] == "\overline{10":}
        male_soad_to_sob += 1
    elif sex[2] == "\overline{11":}
        male_soad_to_unknown += 1
elif sex[1] == "10":
    male_sob += 1
    if sex[2] == "0":
        male_sob_to_undecided += 1
    elif sex[2] == "1":
        male_sob_to_mechanical += 1
    elif sex[2] == "}2"
        male_sob_to_renewable += 1
    elif sex[2] == "3":
        male_sob_to_glass += 1
    elif sex[2] == "4":
        male_sob_to_bio += 1
    elif sex[2] == "5":
        male_sob_to_materials += 1
    elif sex[2] == "6":
        male_sob to ceramic += 1
    elif sex[2] == "7":
        male_sob_to_las += 1
    elif sex[2] == "8":
        male_sob_to_cps += 1
    elif sex[2] == "9":
        male_sob_to_soad += 1
    elif sex[2] == "10":
```

```
            male_sob_to_sob += 1
            elif sex[2] == "11":
                male_sob_to_unknown += 1
    elif sex[1] == "\overline{11":}
            male_unknown += 1
        else:
            print("Error on line ", count)
    else:
        print("Error on line ", count)
    count += 1
print("female_undecided: ", female_undecided)
print("female_undecided_to_undecide\overline{d: ", female_undecided_to_undecided)}
print("female_undecided_to_mechanical: ", female_undecided_to_mechanical)
print("female_undecided_to_renewable: ", female_undecided_市o_\overline{renewable)}
print("female_undecided_to_glass: ", female_undecided_to_g
print("female_undecided_to_bio: ", female_undecided_to_bio)
print("female_undecided_to_materials: ", female_undecic\overline{ded_to_materials)}
print("female_undecided_to_ceramic: ", female_uñdecided_to_cēeramic)
print("female_undecided_to_las: ", female_undecided_to_las)
print("female_undecided_to_cps: ", female__undecided_to_cps)
print("female_undecided_to_soad: ", female__undecide\overline{d_to_soad)}
print("female_undecided_to_sob: ", female_undecided_to_sob)
print("female_undecided_to_unknown: ", female_undecided_to_unknown)
print("---------------")
print("male undecided: ", male undecided)
print("male_undecided_to_undecided: ", male_undecided_to_undecided)
print("male_undecided_to_mechanical: ", male_undecided_to_mechanical)
print("male_undecided_to_renewable: ", male_u_undecided_E_to_rrenewable)
print("male_undecided_to_glass: ", male_undecided_to_glass)
print("male - undecided_to_bio: ", male uñdecided_to_bio)
print("male_undecided_to_materials: ", male_unde\overline{ci}\overline{ded_to_materials)}
print("male_undecided_to_ceramic: ", male_undecided_to_ceramic)
print("male_undecided_to_las: ", male undecided_to_las)
print("male_undecided_to_cps: ", male_undecided_to_cps)
print("male_undecided_to_soad: ", male_undecided_to_soad)
print("male_undecided_to_sob: ", male_undecided___to_sob)
print("male_undecided_to_unknown: ", male_undecide\overline{_}to_unknown)
print("---------------")
print("female_mechanical: ", female_mechanical)
print("female_mechanical_to_undecided: ", female_mechanical_to_undecided)
print("female_mechanical to_mechanical: ", female mechanical to mechanical)
print("female_mechanical_to_renewable: ", female_mechanical_to_renewable)
print("female_mechanical_to_glass: ", female_mechanical_to_glass)
print("female_mechanical_to_bio: ", female mēchanical tōobīo)
print("female_mechanical_to_materials: ", 白emale_mechāni\overline{cal_to_materials)}
print("female_mechanical_to_ceramic: ", female_mechanical_to_ceramic)
print("female_mechanical_to_las: ", female_mechanical_to_Ias)
print("female_mechanical_to_cps: ", female_mechanical_to_cps)
print("female_mechanical_to_soad: ", femal\overline{e_mechanica\overline{l_to_soad)}}\mathbf{-}\mathrm{ - ('_}
print("female_mechanical_to_sob: ", female_mechanical_E_to_sob)
print("female_mechanical_to_unknown: ", female_mechanical_to_unknown)
print("---------------")
print("male_mechanical: ", male_mechanical)
print("male_mechanical_to_undecided: ", male_mechanical_to_undecided)
print("male_mechanical_to_mechanical: ", mal\overline{e}mechanica\overline{l}
print("male_mechanical_to_renewable: ", male_mechanical__to_renewable)
print("male_mechanical_to_glass: ", male_mechanical_to_glass)
print("male_mechanical_to_bio: ", male_mēchanical_to_bīo)
print("male_mechanical_to_materials: ", male_mechanical_to_materials)
print("male_mechanical_to_ceramic: ", male_mechanical_to_ceramic)
print("male_mechanical_to__las: ", male_mechanical_to_\overline{las)}
print("male mechanical_to_cps: ", male_mechanical_to_cps)
```

```
print("male_mechanical_to_soad: ", male_mechanical_to_soad)
print("male_mechanical_to_sob: ", male_mechanical_to_sob)
print("male_mechanical_to_unknown: ", male_mechanical_to_unknown)
print("-----------------")
print("female_renewable: ", female_renewable)
print("female_renewable_to_undecided: ", female_renewable_to_undecided)
print("female-renewable-to-mechanical: ", female\overline{e}renewabl\overline{e}t\overline{o}mechanical)
print("female_renewable_to_renewable: ", female_renewable_to_renewable)
print("female_renewable_to_glass: ", female_renewable_to_glass)
print("female_renewable_to_bio: ", female_rēnewable_to_bio)
print("female_renewable_to_materials: ", female_renewable_to_materials)
print("female_renewable_to_ceramic: ", female_renewable_to_ceramic)
print("female_renewable_to_las: ", female_renewable_to_las)
print("female_renewable_to_cps: ", female_renewable_to_cps)
print("female_renewable_to_soad: ", female_renewabl\overline{e_tōsoad)}
print("female_renewable_to_sob: ", female_renewable_to_sob)
print("female_renewable_to_unknown: ", female_renewable_to_unknown)
print("---------------")
print("male_renewable: ", male_renewable)
print("male_renewable_to_undecided: ", male_renewable_to_undecided)
print("male-renewable-to-}mechanical: ", male\overline{e}renewabl\overline{e}t\overline{o}\mathrm{ mechanical)
print("male_renewable_to_renewable: ", male_renewable_to_renewable)
print("male renewable to glass: ", male renewable to glass)
print("male_renewable_to_bio: ", male_renewable_to_bio)
print("male_renewable_to_materials: ", male_renēwa\overline{ble_to_materials)}
print("male_renewable_to_ceramic: ", male_renewable to_cēramic)
print("male_renewable_to_-las: ", male_renēwable_to_\overline{las)}
print("male_renewable_to_cps: ", male_renewable_to_cps)
print("male_renewable_to_soad: ", mal\overline{e_renewabl\overline{e_to_soad)}}\mathbf{-}\mathrm{ - }
print("male_renewable_to_sob: ", male_renewable_to_sob)
print("male_renewable_to_unknown: ", male_renewable_to_unknown)
print("---------------")
print("female_glass: ", female_glass)
print("female_glass_to_undecided: ", female_glass_to_undecided)
print("female_glass_to_mechanical: ", female_glass_to_mechanical)
print("female_glass_to_renewable: ", female_glass_to_renewable)
print("female_glass_to_glass: ", female_glass_to_glass)
print("female_glass_to_bio: ", female_glass_to_bio)
print("female_glass_to_materials: ", female_glass_to_materials)
print("female_glass_to_las: ", female_glass_to_ce\overline{ramíc)}
print("female_glass_to_cps: ", female_glass_to_cps)
print("female glass to_soad: ", female glass to soad)
print("female_glass_to_sob: ", female_glass_\overline{to_sob)}
print("female_glass_to_unknown: ", female_glass_to_unknown)
print("---------------\overline{")}
print("male_glass: ", male_glass)
print("male_glass_to_undecided: ", male_glass_to_undecided)
print("male_glass_to_mechanical: ", male_glass__to_mechanical)
print("male_glass_to_renewable: ", male_glass_to_renewable)
print("male_glass_to_glass: ", male_glass_to_glass)
print("male_glass_to_bio: ", male_glass_to_bio)
print("male_glass_to_materials: ", male_glass_to_materials)
print("male glass to_las: ", male glass to ceramic)
print("male_glass_to_cps: ", male_glass_to_cps)
print("male_glass_to_soad: ", male_glass_to_soad)
print("male_glass_to_sob: ", male_glass_\overline{to_sob)}
print("male_glass_to_unknown: ", male_glass_to_unknown)
print("----------------")
print("female_bio: ", female_bio)
print("female_bio_to_undecided: ", female_bio_to_undecided)
print("female_bio_to_mechanical: ", female_bio_to_mechanical)
```



```
print("female_bio_to_glass: ", female_bio_to_glass)
```

```
print("female bio to bio: ", female bio to bio)
print("female_bio_to_materials: ", female_bio_to_materials)
print("female_bio_to_ceramic: ", female_bio_to_ceramic)
print("female-bio- to- las: ", female bio-to \overline{las)}
print("female_bio_to_cps: ", female_bio_to_cps)
print("female_bio_to_soad: ", female_bio_to_soad)
print("female_bio_to_sob: ", female_bio_to_sob)
print("female_bio_to_unknown: ", female_bio_to_unknown)
print("---------------")
print("male_bio: ", male_bio)
print("male_bio_to_undecided: ", male_bio_to_undecided)
print("male_bio_to_mechanical: ", mal\overline{e_bio_to_mechanical)}
print("male_bio_to_renewable: ", male_\overline{b}io_\overline{to_}renewable)
print("male_bio_to_glass: ", male_bio_to_glass)
print("male_bio_to_bio: ", male_bio_to_o_bio)
print("male_bio_to_materials: ", male_\overline{bio_to_materials)}
print("male_bio_to_ceramic: ", male_bīo_to_c\overline{eramic)}
print("male_bio_to_-las: ", male_bio_to_las)
print("male_bio_to_cps: ", male_bio_to_cps)
print("male_bio_to_soad: ", male_bio_to_soad)
print("male_bio_to_sob: ", male_\overline{b}io_\overline{to_sob)}
print("male_bio_to_unknown: ", male_bio_to_unknown)
print("---------------")
print("female_materials: ", female materials)
print("female_materials_to_undecided: ", female_materials_to_undecided)
print("female_materials_to_mechanical: ", female_material\overline{s}t\overline{_}_mechanical)
print("female_materials_to_renewable: ", female_materials_to_renewable)
print("female_materials_to_glass: ", female_materials_to_glass)
print("female_materials_to__bio: ", female_mäterials_to_bīo)
print("female_materials_to_materials: ", female_materials_to_materials)
print("female_materials_to_ceramic: ", female_materials_to_ceramic)
print("female_materials_to_las: ", female_matērials_to_\overline{las)}
print("female_materials_to_cps: ", female_materials_to_cps)
print("female_materials_to_soad: ", female_material\overline{s}_to_soad)
print("female_materials_to_sob: ", female_materials_to_sob)
print("female_materials_to_unknown: ", female_materials_to_unknown)
print("---------------")
print("male_materials: ", male_materials)
print("male_materials_to_undecided: ", male_materials_to_undecided)
print("male_materials_to_mechanical: ", male_material\overline{s}_to_mechanical)
print("male_materials_to_renewable: ", male_materials_to_renewable)
print("male_materials_to_-glass: ", male_matērials_to_g}lass
print("male_materials_to_-bio: ", male_mäterials_t\overline{o_bíio)}
print("male_materials_to_materials: ", male_materia
print("male-materials_to-ceramic: ", male mäterials to cēramic)
print("male_materials_to_las: ", male_matērials_to_Ias)
print("male_materials_to_cps: ", male_materials_to_cps)
print("male_materials_to_-soad: ", male_mmaterials_to_o_soad)
print("male_materials_to_sob: ", male_materials_to_sob)
print("male_materials_to_unknown: ", male_materials_to_unknown)
print("---------------")
print("female_ceramic: ", female_ceramic)
print("female_ceramic_to_undecided: ", female_ceramic_to_undecided)
print("female_ceramic_to_mechanical: ", female__cerami\overline{c_to_mmechanical)}
print("female_ceramic_to_renewable: ", female_ceramic_to_renewable)
print("female_ceramic-to-
print("female_ceramic_to_bio: ", female_cerramic_to_bio)
print("female_ceramic_to_materials: ", female_ceramic_to_materials)
print("female_ceramic_to_ceramic: ", female_c\overline{eramic_tō_cēramic)}
print("female_ceramic_to_las: ", female_ceramic_to_İas)
print("female_ceramic_to_cps: ", female_ceramic_to_cps)
print("female_ceramic_to_soad: ", female_cerami\overline{c_to_soad)}
print("female_ceramic_to_sob: ", female_ceramic_to_sob)
```

```
print("female_ceramic_to_unknown: ", female_ceramic_to_unknown)
print("---------------")
print("male_ceramic: ", male_ceramic)
print("male_ceramic_to_undecided: ", male_ceramic_to_undecided)
print("male_ceramic_to_mechanical: ", male__cerami\overline{c}_to_mechanical)
print("male_ceramic_to_renewable: ", male_ceramic_to_renewable)
print("male_ceramic_to_glass: ", male_ceramic_to_glass)
print("male_ceramic_to_bio: ", male_cerramic_to_bio)
print("male_ceramic_to_materials: ", male_ceramic_to_materials)
print("male_ceramic_to_ceramic: ", male_cēramic_to_cēramic)
print("male_ceramic_to_las: ", male_ceramic_to_las)
print("male_ceramic_to_cps: ", male_ceramic_to_cps)
print("male_ceramic_to_-soad: ", male_cerami\overline{c}_t\overline{O_soad)}
print("male_ceramic_to_sob: ", male_ceramic_to_sob)
print("male_ceramic_to_unknown: ", \overline{male_cerämic_to_unknown)}
print("----------------")
print("female_las: ", female_las)
print("female_las_to_undecide\overline{ed: ", female_las_to_undecided)}
print("female_las_to_mechanical: ", female_las_to_mechanical)
print("female_las_to_renewable: ", female_las_to_renewable)
print("female_las_to_glass: ", female_las_to_g}lass
print("female_las_to_bio: ", female_las_to_bio)
print("female_las_to_materials: ", \}ema\_\_\ las_to_materials
print("female_las_to_ceramic: ", female_làs_to_cēramic)
print("female_las_to_las: ", female_las_to_las)
print("female_las_to_cps: ", female_las_to_cps)
print("female_las_to_soad: ", female__las__to_soad)
print("female_las_to_sob: ", female_las_to_sob)
print("female_las_to_unknown: ", female_las__to_unknown)
print("---------------")
print("male_las ", male_las)
print("male_las_to_undec
print("male_las_to_mechanical: ", male_las_to_mechanical)
```



```
print("male_las_to_glass: ", male_las_to_g}las=-\s
print("male_las_to_bio: ", male_las_to_bio)
print("male_las_to_materials: ", male_\
print("male_las_to_ceramic: ", male_las_to_ceramic)
print("male_las_to_las: ", male_las_to_las)
print("male_las_to_cps: ", male_las_to_cps)
print("male_las_to_soad: ", male_las_to_soad)
print("male_las_to_sob: ", male_las_\overline{to_sob)}
print("male_las_to_unknown: ", male_las_to_unknown)
print("---------------")
print("female_cps: ", female_cps)
print("female_cps_to_undecided: ", female_cps_to_undecided)
print("female_cps_to_mechanical: ", female_cps_to_mechanical)
print("female_cps_to_renewable: ", female_cps_\overline{to_}\mp@subsup{\}{e}{-}=newable)
print("female_cps_to_glass: ", female_cps_to_glass)
```



```
print("female_cps_to_materials: ", \
print("female_cps_to_ceramic: ", female_cps_to_cēramic)
print("female_cps_to_las: ", female_cps_to_las)
print("female_cps_to_cps: ", female_cps_to_cps)
print("female_cps_to_soad: ", female_cps_to_soad)
print("female_cps_to_sob: ", female_cps_\overline{to_sob)}
print("female_cps_to_unknown: ", female_cps_to_unknown)
print("---------------")
print("male_cps: ", male_cps)
print("male_cps_to_undeci
print("male_cps_to_mechanical: ", male_cps_tō_mechanical)
print("male_cps_to_renewable: ", male_\overline{cps_E___`renewable)}
print("male_cps to_glass: ", male_cps to_glass)
```

```
print("male_cps_to_bio: ", male_cps_to_bio)
print("male_cps_to_materials: ",
print("male_cps_to_ceramic: ", male_cps_to_ceramic)
print("male_cps_to_las: ", male_cps_to_las)
print("male_cps_to_cps: ", male_cps_to_cps)
print("male_cps_to_soad: ", male_cps_to_soad)
print("male_cps_to_sob: ", male_ceps_to_sob)
print("male_cps_to_unknown: ", male_cps__to_unknown)
print("---------------")
print("female_soad: ", female_soad)
print("female_soad_to_undecided: ", female_soad_to_undecided)
print("female_soad_to_mechanical: ", female_soad_to_mechanical)
print("female_soad_to_renewable: ", female_soad_to_\overline{renewable)}
print("female_soad_to_glass: ", female_soad_to_undecided)
print("female- soad to-bio: ", female sōad t\overline{o bīo)}
print("female_soad_to_materials: ", 白emale__sōad_to_materials)
print("female_soad_to_ceramic: ", female_soad_to_ceramic)
print("female_soad_to_las: ", female_soad_to_las)
print("female_soad_to_cps: ", female_soad_to_cps)
print("female_soad_to_soad: ", female_soad_to_soad)
print("female_soad_to_sob: ", female_soad_to_sob)
print("female_soad_to_unknown: ", female_soad_to_unknown)
print("----------------")
print("male_soad: ", male_soad)
print("male_soad_to_undecided: ", male_soad_to_undecided)
print("male_soad_to_mechanical: ", male_soa\overline{_}to_mechanical)
print("male_soad_to_renewable: ", male_Soad_to_renewable)
print("male_soad_to_glass: ", male_soad_to_glass)
print("male_soad_to_bio: ", male_sōad_to_bio)
print("male_soad_to_materials: ", male__sōad_to_materials)
print("male_soad_to_ceramic: ", male_sōad tō cēramic)
print("male_soad_to_las: ", male_soa\overline{d_to_las)}
print("male_soad_to_cps: ", male_soad_to_cps)
print("male_soad_to_soad: ", mal\overline{e_soa\overline{_}_to_soad)}
print("male_soad_to_sob: ", male_soad_to_sob)
print("male_soad_to_unknown: ", male_soad_to_unknown)
print("----------------")
print("female_sob: ", female_sob)
print("female_sob_to_undecided: ", female_sob_to_undecided)
print("female_sob_to_mechanical: ", femal\overline{e_sob_tō_mechanical)}
print("female_sob_to_renewable: ", female_sob_to_rrenewable)
print("female_sob_to_glass: ", female_sob_to_g
print("female_sob_to_bio: ", female_so\overline{b_tō_bīio)}
print("female_sob_to_materials: ", female_sob_to_materials)
```



```
print("female_sob_to_las: ", female_sob_to_las)
print("female_sob_to_cps: ", female_sob_to_cps)
print("female_sob_to_soad: ", femal\overline{e_sob\overline{_}_to__soad)}
print("female_sob_to_sob: ", female_sob_to_sob)
print("female_sob_to_unknown: ", female_-sob_to_unknown)
print("---------------")
print("male_sob: ", male_sob)
print("male_sob_to_undecíided: ", male_sob_to_undecided)
print("male_sob_to_mechanical: ", male_so\overline{b_to_mechanical)}
print("male_sob_to_renewable: ", male_sob_to_renewable)
print("male_sob_to_glass: ", male_sob_to_glass)
print("male_sob_to_bio: ", male_sob_to_bio)
print("male_sob_to_materials: ", male_sob_to_materials)
print("male_sob_to__ceramic: ", male_sōb_to_cēeramic)
print("male_sob_to_las: ", male_sob_to_\}as
print("male_sob_to_cps: ", male_sob_to_cps)
print("male_sob_to_soad: ", mal\overline{e_sob}_to_o_soad)
print("male_sob_to_sob: ", male_sob_to_sob)
```

```
print("male_sob_to_unknown: ", male_sob_to_unknown)
print("---------------")
print("female_unknown: ", female_unknown)
print("female_unknown_to_undecided: ", female_unknown_to_undecided)
print("female_unknown_to_mechanical: ", female__unknown_tō_mechanical)
print("female_unknown_to_renewable: ", female_unknown_to_renewable)
print("female_unknown_to_glass: ", female_unknown_to_g}lass
print("female_unknown_to_bio: ", female_unknown_to_bio)
print("female_unknown_to_materials: ", female_unknown_to_materials)
print("female_unknown_to_ceramic: ", female_uñknown_t\overline{o_cēramic)}
print("female_unknown_to_las: ", female_unkñown_to_I`as)
print("female_unknown_to_cps: ", female_unknown_to_cps)
print("female_unknown_to_soad: ", female_unknown_to_soad)
print("female_unknown_to_sob: ", female_unknown_to_sob)
print("female_unknown_to_unknown: ", female_unkn̄own_to_unknown)
print("---------------")
print("male_unknown: ", male_unknown)
print("male_unknown_to_undecíded: ", male_unknown_to_undecided)
print("male_unknown_to_mechanical: ", male_unknown_to_mechanical)
print("male_unknown_to_renewable: ", male_unknown_\overline{to_renewable)}
print("male_unknown_to_glass: ", male_unknown_to_g}la\overline{s}s
print("male_unknown_to_bio: ", male_unknown_to_bio)
print("male_unknown_to_materials: ", male_unknōwn_to_materials)
print("male_unknown_to_ceramic: ", male_unknown_to_cēramic)
print("male_unknown_to_las: ", male_unknown_to_las)
print("male_unknown_to_cps: ", male_unknown_to_cps)
print("male_unknown_to_soad: ", male__unknown_t\overline{O_soad)}
print("male_unknown_to_sob: ", male_unknown_to_-sob)
print("male_unknown_to_unknown: ", male_unkñown_to_unknown)
```


> Major Data Program

- Initial and Current Major Data Programs were the same with the exception of saying Initial or Current in the "with open" statement. The code shown is from the Initial Major Data Program.

```
    author
```

\qquad

``` \(=\) 'Fossum'
with open('Initial Major Data With Sex Separation.txt', 'r+', encoding='utf-8') as a:
    print(a.name)
    female_undecided = 0
    male_undecided = 0
    female_mechanical = 0
    male_mechanical = 0
    female_renewable = 0
    male_renewable = 0
    female_glass = 0
    male_glass = 0
    female_bio = 0
    male_bio = 0
    female_materials = 0
    male mäterials = 0
    female_ceramic = 0
    malecceramic = 0
    female_las = 0
```

```
male_las = 0
female_cps = 0
male_cps = 0
female_soad = 0
male_soad = 0
female_sob = 0
male_sōb = 0
female_unknown = 0
male unknown = 0
coun\overline{t}=1
a.seek(0)
for line in a:
    sex = line.strip('\r\n').split('\t')
    if sex[0] == "0":
        if sex[1] == "0":
            female_undecided += 1
            elif sex[1] == "1":
                female mechanical += 1
            elif sex[1] == "2":
                female renewable += 1
            elif sex[1] == "3":
                female_glass += 1
            elif sex[1] == "4":
                female_bio += 1
            elif sex[1] == "5":
                female_materials += 1
            elif sex[1] == "6":
                female_ceramic += 1
            elif sex[1] == "7":
                female_las += 1
            elif sex[1] == "8":
                female_cps += 1
            elif sex[1] == "9":
                female_soad += 1
            elif sex[1] == "10":
                female_sob += 1
            elif sex[1] == "11":
                female_unknown += 1
            else:
                print("Error on line ", count)
    elif sex[0] == "1":
            if sex[1] == "0":
                male_undecided += 1
            elif sex[1] == "1":
                male mechanical += 1
            elif sex[1] == "2":
                male_renewable += 1
            elif sex[1] == "3":
                male_glass += 1
            elif sex[1] == "4":
                male_bio += 1
            elif sex[1] == "5":
                male materials += 1
            elif sex[1] == "6":
                male_ceramic += 1
            elif sex[1] == "7":
                male_las += 1
            elif sex[1] == "8":
                male_cps += 1
            elif sex[1] == "9":
                male_soad += 1
            elif sex[1] == "10":
                male_sob += 1
```

```
        elif sex[1] == "11":
        male_unknown += 1
        else:
        print("Error on line ", count)
        else:
        print("Error on line ", count)
        count += 1
print("Female Undecided: ", female_undecided)
print("Female Mechanical: ", female_mechanical)
print("Female Renewable: ", female_\overline{renewable)}
print("Female Glass: ", female_glass)
print("Female Bio-Materials: ", female_bio)
print("Female Materials: ", female_matēerials)
print("Female Ceramic: ", female_ceramic)
print("Female School of Liberal A}\mathrm{ Arts and Sciences: ", female_las)
print("Female College of Professional Studies: ", female_cps)
print("Female School of Art and Design: ", female_soad)
print("Female School of Business: ", female_sob)
print("Female Unknown: ", female_unknown)
print("---------------")
print("Male Undecided: ", male_undecided)
print("Male Mechanical: ", male_mechanical)
print("Male Renewable: ", male_renewable)
print("Male Glass: ", male_glass)
print("Male Bio-Materials: ", male_bio)
print("Male Materials: ", male matērials)
print("Male Ceramic: ", male_cēramic)
print("Male School of Liberal Arts and Sciences: ", male_las)
print("Male College of Professional Studies: ", male_cps)
print("Male School of Art and Design: ", male_soad)
print("Male School of Business: ", male_sob)
print("Male Unknown: ", male_unknown)
print("----------------")
total undecided = female undecided + male undecided
total_mechanical = femal\overline{e_mechanical + male_mechanical}
total_renewable = female_renewable + male_renewable
total_glass = female_gla\overline{ss + male_glass}
total_bio = female_bio + male_bio
totalmaterials = \overline{female materials + male materials}
total_ceramic = female_cēramic + male_cerāmic
total_las = female_las + + male_las
total_cps = female_cps + male_cps
total_soad = femal\overline{e_soad + male_soad}
total_sob = female_sob + male_sob
total_unknown = female_unknown}+\mathrm{ male_unknown
print("Total Undecided=
print("Total Mechanical: ", total_mechanical)
print("Total Renewable: ", total_renewable)
print("Total Glass: ", total_glass)
print("Total Bio-Materials: ", total_bio)
print("Total Materials: ", total_matērials)
print("Total Ceramic: ", total_ceramic)
print("Total School of Liberal Arts and Sciences: ", total_las)
print("Total College of Professional Studies: ", total_cps)
print("Total School of Art and Design: ", total_soad)
print("Total School of Business: ", total_sob)
print("Total Unknown: ", total_unknown)
```


Example Output from Major Change Data

- The 2015, 2016 and 2017 Major Change Data Program output was the same with the exception of saying the corresponding year. The output shown is from 2015 Major Change Data Program.

- Note: Only the first page is shown for the example below.

```
C:\Users\fossu\AppData\Local\Programs\Python\Python36-32\python.exe "U:/AU 17-
18/Honors/Python/2015 Major Change Data.py"
2015 major Data With Sex Separation.txt
female_undecided: 6
female_undecided_to_undecided: 0
female_undecided_to_mechanical: 2
female_undecided_to_renewable: 0
female_undecided_to_glass: 0
female_undecided_to__bio: 0
female_undecided_to_materials: 1
female_undecided_to_ceramic: 1
female_undecided_to_las: 1
female_undecided_to_cps: 0
female_undecided_to_soad: 0
female_undecided_to_sob: 0
female_undecided_to_unknown: 1
male_undecided: 15
male_undecided_to_undecided: 0
male_undecided_to_mechanical: 3
male_undecided_to_renewable: 2
male_undecided_to_glass: 2
male_undecided_to_bio: 0
male_undecided_to_materials: 2
male_undecided_to_ceramic: 5
male_undecided_to_las: 0
male_undecided_to_cps: 0
male_undecided_to_soad: 0
male_undecided_to_sob: 0
male_undecided_to_unknown: 1
---------------
female_mechanical: 2
female_mechanical_to_undecided: 0
female_mechanical_to_mechanical: 1
female_mechanical_to_renewable: 0
female_mechanical_to_glass: 0
female_mechanical_to_bio: 0
female_mechanical_to_materials: 0
female_mechanical_to_ceramic: 0
female_mechanical_to_las: 0
female_mechanical_to_cps: 0
female-mechanical-to-soad: 0
female_mechanical_to_sob: 0
female_mechanical_to__unknown: 1
male_mechanical: 38
male_mechanical_to_undecided: 0
male_mechanical_to_mechanical: 29
```


Example Output from Major Data

- Initial and Current Major Data Program Output was the same with the exception of saying Initial or Current. The output shown is from the Initial Major Data Program.

```
C:\Users\fossu\AppData\Local\Programs\Python\Python36-32\python.exe "U:/AU 17-
18/Honors/Python/Initial Major Data.py"
Initial Major Data With Sex Separation.txt
Female Undecided: }1
Female Mechanical: 12
Female Renewable: 4
Female Glass: 6
Female Bio-Materials: 15
Female Materials: 11
Female Ceramic: 10
Female School of Liberal Arts and Sciences: 3
Female College of Professional Studies: 0
Female School of Art and Design: 0
Female School of Business: 0
Female Unknown: 0
Male Undecided: 47
Male Mechanical: 110
Male Renewable: 18
Male Glass: 6
Male Bio-Materials: 18
Male Materials: 26
Male Ceramic: 27
Male School of Liberal Arts and Sciences: 3
Male College of Professional Studies: 0
Male School of Art and Design: 0
Male School of Business: 0
Male Unknown: 0
---------------
Total Undecided: 62
Total Mechanical: }12
Total Renewable: 22
Total Glass: }1
Total Bio-Materials: 33
Total Materials: 37
Total Ceramic: 37
Total School of Liberal Arts and Sciences: 6
Total College of Professional Studies: 0
Total School of Art and Design: 0
Total School of Business: 0
Total Unknown: 0
Process finished with exit code 0
```


Sankey Chart Code Example (Coded in Atom 1.26.1)

This code was modified from an example given on

https://developers.google.com/chart/interactive/docs/gallery/sankey that was accessed on March 4, 2018. This example is the code to generate Figure 15 (pg. **) but similar code was used to generate all other sankey diagrams.

```
<!DOCTYPE html>
<html>
    <head>
        <title>Sankey Chart</title>
        <body>
            <h1>Male and Female Major Flow for Fall of 2015</h1>
        </body>
        <script type="text/javascript"
src="https://www.gstatic.com/charts/loader.js"></script>
        <script type="text/javascript">
            google.charts.load('current', {'packages':['sankey']});
            google.charts.setOnLoadCallback(drawChart);
            function drawChart() {
                var data = new google.visualization.DataTable();
                data.addColumn('string', 'From');
                data.addColumn('string', 'To');
                data.addColumn('number', 'Weight');
                data.addRows([
                    [ 'Male', 'Undecided', 15],
                    [ 'Male', 'Mechanical Engineering', 38],
                    [ 'Male', 'Renewable Engineering', 9],
                    [ 'Male', 'Glass Engineering', 2],
                    [ 'Male', 'Bio-Materials Engineering', 9],
                    [ 'Male', 'Material Science Engineering', 9],
                    [ 'Male', 'Ceramic Engineering', 12],
                    [ 'Male', 'School of Liberal Arts and Sciences', 2],
                    [ 'Female', 'Undecided', 6],
                    [ 'Female', 'Mechanical Engineering', 2],
                    [ 'Female', 'Renewable Engineering', 3],
                    [ 'Female', 'Glass Engineering', 2],
                    [ 'Female', 'Bio-Materials Engineering', 5],
                [ 'Female', 'Material Science Engineering', 5],
                [ 'Female', 'Ceramic Engineering', 6],
                [ 'Female', 'School of Liberal Arts and Sciences', 2],
                [ 'Undecided', ' Mechanical Engineering', 5],
                [ 'Undecided', ' Renewable Engineering', 2],
                [ 'Undecided', ' Glass Engineering', 2],
                [ 'Undecided', ' Material Science Engineering', 3],
                [ 'Undecided', ' Ceramic Engineering', 6],
                [ 'Undecided', ' School of Liberal Arts and Sciences', 1],
                [ 'Undecided', 'Unknown', 2],
                [ 'Mechanical Engineering', ' Mechanical Engineering', 30],
                [ 'Mechanical Engineering', ' Material Science Engineering', 1],
                [ 'Mechanical Engineering', ' College of Professional Studies', 1],
                [ 'Mechanical Engineering', 'Unknown', 8],
                        [ 'Renewable Engineering', ' Renewable Engineering', 8],
```

```
    [ 'Renewable Engineering', ' School of Liberal Arts and Sciences', 2],
    [ 'Renewable Engineering', 'Unknown', 2],
    [ 'Glass Engineering', ' Glass Engineering', 4],
    [ 'Bio-Materials Engineering', ' Bio-Materials Engineering', 7],
    [ 'Bio-Materials Engineering', ' Ceramic Engineering', 2],
    [ 'Bio-Materials Engineering', ' School of Liberal Arts and Sciences', 1],
    [ 'Bio-Materials Engineering', 'Unknown', 4],
    [ 'Material Science Engineering', ' Material Science Engineering', 13],
    [ 'Material Science Engineering', 'Unknown', 1],
    [ 'Ceramic Engineering', ' Mechanical Engineering', 1],
    [ 'Ceramic Engineering', ' Renewable Engineering', 1],
    [ 'Ceramic Engineering', ' Glass Engineering', 1],
    [ 'Ceramic Engineering', ' Ceramic Engineering', 13],
    [ 'Ceramic Engineering', 'Unknown', 2],
    [ 'School of Liberal Arts and Sciences', ' Mechanical Engineering', 2],
    [ 'School of Liberal Arts and Sciences', ' Bio-Materials Engineering', 1],
    [ 'School of Liberal Arts and Sciences', ' School of Liberal Arts and
Sciences', 1],
    [ ' Mechanical Engineering', ' Male', 34],
    [ ' Renewable Engineering', ' Male', 10],
    [ ' Glass Engineering', ' Male', 5],
    [ ' Bio-Materials Engineering', ' Male', 5],
    [ ' Material Science Engineering', ' Male', 10],
    [ ' Ceramic Engineering', ' Male', 14],
    [ ' School of Liberal Arts and Sciences', ' Male', 3],
    [ ' College of Professional Studies', ' Male', 1],
    [ 'Unknown', ' Male', 14],
    [ ' Mechanical Engineering', ' Female', 4],
    [ ' Renewable Engineering', ' Female', 1],
    [ ' Glass Engineering', ' Female', 2],
    [ ' Bio-Materials Engineering', ' Female', 4],
    [ ' Material Science Engineering', ' Female', 6],
    [ ' Ceramic Engineering', ' Female', 7],
    [ ' School of Liberal Arts and Sciences', ' Female', 2],
        [ 'Unknown', ' Female', 5]
    ]) ;
    // Sets chart options.
    var options = {
        width: 1500,
        height: 700,
        sankey: {
            node: { label: { fontName: 'Times-Roman',
                fontSize: 15,
                bold: true},
                    nodePadding: 30,
                        width: 5
                        }
        },
    };
    // Instantiates and draws our chart, passing in some options.
    var chart = new
google.visualization.Sankey(document.getElementById('sankey basic'));
        chart.draw(data, options);
```

 \}
    ```
    </script>
    </head>
    <body>
        <div id="sankey_basic" style="width: 1500px; height: 700px;"></div>
        <div>
            <p>
                    If you hover over any of the chart it will give you more detail
            </p>
        </div>
        </body>
</html>
```


Appendix C

Additional "Why Alfred University" Figures

Figure C- 18: Entering Class of 2015 Coded Data from Responses answering the Question of "Why Alfred
University"; n=127

Figure C- 19: Entering Class of 2016 Coded Data from Responses answering the Question of "Why Alfred University'; n=106

Figure C- 20: Entering Class of 2017 Coded Data from Responses answering the Question of "Why Alfred University'; n=98

Additional "Why Engineering" Figures

Figure C- 21: Entering Class of 2015 Coded Data from Responses answering the Question of "Why
Engineering'; n=127

Figure C- 22: Entering Class of 2016 Coded Data from Responses answering the Question of "Why
Engineering'; n=106

Figure C- 23: Entering Class of 2017 Coded Data from Responses answering the Question of "Why
Engineering'; n=98

Additional "Why Now" Figures

Figure C- 24: Entering Class of 2015 Coded Data from Responses answering the Question of "Why Now"; $\mathrm{n}=127$

Figure C- 25: Entering Class of 2016 Coded Data from Responses answering the Question of 'Why Now'; $\mathrm{n}=106$

Figure C- 26: Entering Class of 2017 Coded Data from Responses answering the Question of 'Why Now';

Additional Sankey Diagrams

Figure C- 27: Major Flow for the entering class of 2015 Females. The second node is as of Fall 2015 and the third node as of January 2018. n=30

Figure C- 28: Major Flow for the entering class of 2015 Males. The second node is as of Fall 2015 and the third node as of January 2018. n=97

Figure C- 29: Major Flow for the entering class of 2016 Females. The second node is as of Fall 2016 and the third node as of January 2018. n=22

Figure C- 30: Major Flow for the entering class of 2016 Males. The second node is as of Fall 2016 and the third node as of January 2018. n=84

Category Responses to the Three Questions Figures Separated by Major
> Undecided

Figure C- 31: All Coded Data from Responses answering the Question of "Why Alfred University" from Undecided; $\mathbf{n = 6 2}$

Figure C- 32: All Coded Data from Responses answering the Question of "Why Engineering" from Undecided; $\mathbf{n = 6 2}$

Figure C- 33: All Coded Data from Responses answering the Question of "Why Now" from Undecided; n=62

Mechanical Engineering

Figure C- 34: All Coded Data from Responses answering the Question of "Why Alfred University" from Mechanical Engineering; n=122

Figure C- 35: All Coded Data from Responses answering the Question of "Why Engineering" from Mechanical Engineering; n=122

Figure C- 36: All Coded Data from Responses answering the Question of "Why Now" from Mechanical Engineering; n=122

Renewable Energy Engineering

Figure C- 37: All Coded Data from Responses answering the Question of "Why Alfred University" from Renewable Energy Engineering; n=22

Figure C- 38: All Coded Data from Responses answering the Question of "Why Engineering" from Renewable Energy Engineering; n=22

Figure C- 39: All Coded Data from Responses answering the Question of "Why Now" from Renewable Energy Engineering; n=22
> Glass Science and Engineering

Figure C- 40: All Coded Data from Responses answering the Question of "Why Alfred University" from Glass Science Engineering; n=12

Figure C- 41: All Coded Data from Responses answering the Question of "Why Engineering' from Glass Science Engineering; n=12

Figure C- 42: All Coded Data from Responses answering the Question of 'Why Now" from Glass Science Engineering; $\mathbf{n = 1 2}$

Bio-Material Engineering

Figure C- 43: All Coded Data from Responses answering the Question of "Why Alfred University" from BioMaterial Engineering; n=33

Figure C- 44: All Coded Data from Responses answering the Question of "Why Engineering" from BioMaterial Engineering; n=33

Figure C- 45: All Coded Data from Responses answering the Question of "Why Now" from Bio-Material Engineering; $\mathbf{n = 3 3}$

Material Science and Engineering

Figure C- 46: All Coded Data from Responses answering the Question of "Why Alfred University" from Material Science and Engineering; $\mathbf{n}=37$

Figure C- 47: All Coded Data from Responses answering the Question of "Why Engineering" from Material Science and Engineering; n=37

Figure C- 48: All Coded Data from Responses answering the Question of "Why Now" from Material Science and Engineering; $\mathbf{n}=37$

Ceramic Engineering

Figure C- 49: All Coded Data from Responses answering the Question of "Why Alfred University" from Ceramic Engineering; n=37

Figure C- 50: All Coded Data from Responses answering the Question of "Why Engineering" from Ceramic Engineering; n=37

Figure C- 51: All Coded Data from Responses answering the Question of "Why Now" from Ceramic Engineering; n=37

School of Liberal Arts and Sciences

Figure C- 52: All Coded Data from Responses answering the Question of "Why Alfred University" from college of Liberal Arts and Sciences; $n=6$

Figure C- 53: All Coded Data from Responses answering the Question of "Why Engineering' from college of Liberal Arts and Sciences; $n=6$

Figure C- 54: All Coded Data from Responses answering the Question of "Why Now" from college of Liberal Arts and Sciences; $\mathbf{n}=\mathbf{6}$

Appendix D

Anonymized	Starting Cohort	Sex	Initial Major	Current Major	Change	Status	Pass Fall of First Year
FA15003	0	1	0	3	1	0	0
FA15007	0	1	2	2	0	0	0
FA15012	0	0	2	11	1	2	0
FA15020	0	1	1	1	0	0	1
FA15031	0	1	1	1	0	0	0
FA15037	0	1	1	1	0	0	1
FA15044	0	1	1	1	0	0	1
FA15052	0	0	4	11	1	2	1
FA15065	0	0	0	1	1	0	1
FA15078	0	1	0	2	1	0	0
FA15088	0	1	1	11	1	2	0
FA15092	0	0	3	3	0	0	1
FA15113	0	0	7	1	1	0	1
FA16003	1	1	6	6	0	0	
FA16013	1	1	0	0	0	0	1
FA16019	1	0	3	3	0	0	0
FA16024	1	1	5	5	0	0	
FA16033	1	1	1	0	1	0	1
FA16038	1	1	1	11	1	2	1
FA16048	1	1	5	5	0	0	
FA16060	1	0	1	1	0	0	1
FA16069	1	0	4	4	0	0	1
FA16077	1	1	2	2	0	0	1
FA16084	1	1	0	0	0	0	1
FA16096	1	1	1	1	0	0	1
FA16104	1	1	5	11	1	2	1
FA17015	2	1	0	0	0	0	1
FA17030	2	1	5	5	0	0	1
FA17043	2	0	4	4	0	0	1
FA17059	2	1	5	5	0	0	
FA17074	2	1	0	0	0	0	
FA17084	2	1	2	2	0	0	1
FA17093	2	0	5	5	0	0	1
				0			1

Wrote/Turned in R1	Why AU 1	Why AU 2	Why AU 3	Why AU 4	Why AU 5	Why AU 6	Why AU 7
0	0	0	0	0	0	0	0
1		1				1	
1	1						
1		1					
1	1	1	1				
1	1	1					
1		1					1
1	1						1
1							
1		1					1
1	1						
1	1						
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1		1			1	
1			1			1	
0	0	0	0	0	0	0	0
1							1
1	1						
1							
1		1	1				
1	1	1					1
1		1		1		1	
1							1
0	0	0	0	0	0	0	0
1							
1							
1						1	
0	0	0	0	0	0	0	0
1	1					1	1
1	1	1	1				
0	0	0	0	0	0	0	0
1	1		1				1

Why AU 8	Why AU 9	Why AU 10	Why AU 11	Why AU 12	Why AU 13	Why AU 14	Why AU 15
0	0	0	0	0	0	0	0

1	1
1	
1	

1
1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

1	0						
0	0	0	0	0	0	0	0

D-iii

Why AU 16	Why AU 17	Why AU 18	Why AU 19	Why AU 20	Why AU 21	Why AU 22	Why AU 23
0	0	0	0	0	0	0	0

1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

1

0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

Why AU 24	Why AU 25	Why AU 26	Why AU 27	Why AU 28	Why AU 29	Why AU 30	Why AU 31
0	0	0	0	0	0	0	0

1
1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

1

0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0

Why AU 32	Why AU 33	Why AU 34	Why ENGR 1	Why ENGR 2	Why ENGR 3	Why ENGR 4
0	0		0	0	0	0

1

Why ENGR 5	Why ENGR 6	Why ENGR 7	Why ENGR 8	Why ENGR 9	Why ENGR 10	Why ENGR 11
0	0	0	0	0	0	0

1

1

0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0

0	0	0	0	0	0	0

0	0	0	0	0	0	0

Why ENGR 12	Why ENGR 13	Why ENGR 14	Why ENGR 15	Why ENGR 16	Why ENGR 17		
0	0	0	0	0	0		1
:---:							

1

0	0	0	0	0	0
0	0	0	0	0	0

0	0	0	0	0	0

0	0	0	0	0	0

1				
0	0	0	0	0

0	0	0	0	0	0

Why ENGR 18	Why ENGR 19	Why ENGR 20	Why ENGR 21	Why ENGR 22	Why ENGR 23
0	0	0	0	0	0

1

0	0	0	0	0	0
0	0	0	0	0	0

0	0	0	0	0	0

1

0	0	0	0	0	0

0	0	0	0	0	0

0	0	0	0	0	0

Why ENGR 24	Why ENGR 25	Why ENGR 26	Why ENGR 27	Why ENGR 28	Why ENGR 29
0	0	0	0	0	0

0	0	0	0	0	0
0	0	0	0	0	0

0	0	0	0	0	0

1	
	1

0	0	0	0	0	0

0	0	0	0	0	0

	1				
0	0	0	0	0	0

Why ENGR 30	Why ENGR 31	Why ENGR 32	Why ENGR 33	Why ENGR 34	Why ENGR 35
0	0	0	0	0	0

1

0	0	0	0	0	0
0	0	0	0	0	0
		1			
0	0	0	0	0	0

0	0	0	0	0	0

0	0	0	0	0	0

Why ENGR 36	Why ENGR 37	Why ENGR 38	Why ENGR 39	Why ENGR 40	Why ENGR 41
0	0	0	0	0	0

1	0	0	0	0	0
0	0	0	0	0	0
0	1	0	0	0	0

1

Why ENGR 42	Why Now 1	Why Now 2	Why Now 3	Why Now 4	Why Now 5	Why Now 6
0	0	0	0	0	0	0
				1		
				1		
						1
				1		

Why Now 7	Why Now 8	Why Now 9	Why Now 10	Why Now 11	Why Now 12	Why Now 13
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	0	0	0	0

1

0	0	0	0	0	0	0

0	0	0	0	0	0	0

Why Now 14	Why Now 15	Why Now 16	Why Now 17	Why Now 18	Why Now 19	Why Now 20
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0

0	0	0	0	0	0	0

0	0	0	0	0	0	0

0	0	0	0	0	0	0

Why Now 21	Why Now 22	Why Now 23	Why Now 24
0	0	0	0

0				
0	0	0	0	

APPENDIX E

NATIONAL CENTER FOR EDUCATION STATISTICS

What is IPEDS?

The Integrated Postsecondary Education Data System (IPEDS) is a system of survey components that collects data from about 7,000 Institutions that provide postsecondary education across the United States. IPEDS collects institution-level data on student enroliment, graduation rates, student charges, program completions, faculty, staft, and finances.

These data are used at the tederal and state level for policy analysis and development; at the institutiona: level for benchmarking and peer analysls; and by students and parents, through the College Navigator htip:/lcolleqenavigator.ed.gov), an online tool to ald In the college search process. For more information about IPEDS, see http/inces.ed.qow/peds.

What is the Purpose of This Report?
The Data Feedoack Report is intended to provide Institutions a context for examining the data they submitted to IPEDS. The purpose of this report is to provide institutional executives a useful resource and to help Improve the qually and comparablily of PEDS data.

What is in This Report?

As suggested by the IPEDS Technical Revew Panel, the figures in this report provide selected indicators for your institution and a comparison group of institutions. The figures are based on data collected during the 2016-17 IPEDS collection cycle and are the most recent data avallable. This report provides a list of pre-selected comparison group institutions and the criteria used for their selection. Additiona: information about these indicators and the preselected comparison group are provided in the Methodological Notes at the end of the report.

Where Can I Do More with IPEDS Data?

Each Institution can access previous Data Feedback Reports as far back as 2005 and customize this latest report by using a oifterent comparison group and IPEDS varlables of its choosing. To downioad archived reports or customize the current Data Feedback Report (DFR), please visit our website at hitpolinces.ed.qowipeds/HomerUseTheData.

Alfred University Alfred, NY

COMPARISON GROUP

Comparison group data are included to provide a context for interpreting your institution's statistics. If your institution did not define a custom comparison group for this report by July 14, 2017 NCES selected a comparison group for you. (In this case, the characteristics used to define the comparison group appears below.) The Customize Data Feedback Report functionality on the IPEDS Data Center at this provided link (http://inces.ed.gow/ipeds/datacenteri) can be used to reproduce the figures in this report using different peer groups.

The custom comparison group chosen by Alfred University includes the following 7 institutions:
-Emira College (Elmia, NY)
Hartutck College (Oneorta, NM)
-ithsca College (Praca, NY)
-Nazareth College (Rocheater, NY)
-Saint John Fisher College (Fochester, NM)

- Stevens insthute of Tectnology (Hoboken, NJ)
-Utica Coilege (Ubca, NY)
The figures in this report have been organized and ordered into the following topic areas:

1) Admisaiors (arily for non-oper-adriasions schocla)	Fig. 1 and 2	Pg 3
2) Scudert Enrollment	Fig 3 and 4	Pg 3 and 4
3) Awnids	Fig 5	Pg 4
4) Charpas and Nat Price	Fig 6 and 7	Pg 4
5) 8udent Finandel Aid	Fig. 8, Q, 10 and 11	Pg 5
6) Milary Peneflis*	[No charsa applicabie]	
7) Retantion and Oratuation Rates	Fig. 12, 13, 14, 15, 18, 17 and 18	Pge 6. 7 and 8
8) Finance	Fig 19 and 20	Pg 9
ข) Start	Fig 21 and 22	Pg 9
10) Litraries*	[No chars appleabie]	

Figure 1. Number of first-time undergraduate students who applled, were admitted, and enrolled full and part time: Fall 2016

NOTE: Admlasions date are presented only for instutions that do not have an open adrisaion policy, snd sppty to frat-tme, degreelcerticate-seeking undergrodiate studerts only. For detalis, see the Metiodological Notes. Nest the rumber of inatitutons in the conporison group.
sOURCE: U.s. Departmert of Education, National Center for Education Statatcs, Integrated Poetrecondary Educaton Data Sjptem (PEDS): Witer 2016-17, Adriasiors
componert.

Figure 2. Percent of first-time undergraduate applicants admitted, and percent of admilssions enrolled, by full- and part-time status: Fall 2016

NOTE: Admlasiors data are presented only for insthitions that do not have an open
 toderts only. Por dea, see the Meens Dee Wi Notes. Median values for the Groupt for how medan values are determined. Nis the nurber of lathitlong in the comparison grove. comparison group.
sOURCE: U.3. Departmert of Education, Nations Center for Education Statstics, interated Poetsecondary Educaton Data Sy item (IFEDS): Witer 2016-17, Adriseions
componert.

Flgure 3. Percent of all students enrolled, by racelethnicity, and percent of students who are women: Fall 2016

Alfred University

Flgure 4. Undupllicated 12 -month headcount of all students and of undergraduate students (2015-16), total FTE enroliment (2015-16), and full- and part-time fall enrollment (Fall 2016)

Flgure 6. Academic year tultion and required fees for full-time, firat -time degree/certificate-seeking undergraduates: 2013-14 to 2016-17

Flgure 5. Number of degrees awarded, by level: 2015-16

Figure 7. Average net price of attendance for full-time, first-time degrea/certificate-seeking undergraduate students, who were awarded grant or scholarshlp ald: 2013-14 to 201516

NOTE: Averoge net price is for fult-ime, fratime degreelcerticate-reeking
undergradiate students and is generated by subtracting the averoge amount of federa, ctatelocal governmert, and nsithtionsi grart and scholarahip swarded aid form tre ittal foes, books and s.pplies, and the average room and boord and other expenses. For debils, see the Methodological Notes. Nis the number of insth.tions in the comparison group.
sCUuRcE: U.s. Department of Education, National Center for Education Stastitcs, Integrated Poetzecondary Education Data Syatem (IPEDS): Fal 2016, Insthutional Characteristics componert and Wrter 2016-17, Sudent Financlal Aid component.

Flgure 8. Percent of full-itime, first-time degree/certificate-8eeking undergraduate atudents who were awarded grant or scholarship ald from the federal government, stateflocal government, or the Institution, or loans, by type of ald: 2015-16

NOTE: Ary gant ald above includes gant or acholarship aid awarded from the federal govermment, statslocal govermment, or the instution. Federal grants includes Peil granta and other federal grants. Any loans includes federal loans and other loans awarded to studerts. For detalls on how studerts are courted for fnancial aid reporting, see Cohort Determination in the Methodological Notes. Nis the number of inattutions in the comparizon group.
SOURCE: U.8. Department of Education, National Center for Education Statstics, Integrated Poetvecondary Educaton Data Syztem (PEDS): Winter 2016-17, Studen Integrated Poetsecondary
Financial Ald componert.

Flgure 10. Percent of all undergraduates awarded ald, by type of ald: 2015-16

Figure 9. Average amounts of grant or acholarship ald from the federal government, statellocal government, or the Institution, or loans awarded to full-time, first-time degree/certificate-seekling undergraduate students, by type of ald: 2015-16

NOTE: Ary grant ald above includes grant or achoiarship aid awarded from the federal goverment, statelocal govermment, or the instution. Federal grants inciudes Pell granta and other federal grants. Any loans includes federal loans and other loans awarded to studerts. Averoge amourts of aid were caiculated by dividing the total aid swarded by the total number of recipients in each inatitition. N is the number of Inattutions in the comparison group.
SOURCE: U.8. Department of Education, National Center for Education 3tatstics, Integrated Poetzecondary Educaton Data System (IPEDS): Witer 2016-17, Studer Finsncial Ald componert.

Flgure 11. Average amount of ald awarded to all undergraduates, by type of ald: 2015-16

[- Your insthision Cancwison Croup Medien (N-7)
NOTE: Ary grart ald above includes grant or acholarship aid fom the federal government, statelocal qoverment, the inathiflon, or other sources. Federsl loans includes federal loans to atudents. Averbge amourts of ald were calculated by dhiding the total ald awarded by the total number of recplente in each inathuton. Nis the number of inathutions in the compariaon group.
SOURCE: U.8. Departmert of Education, National Center for Education 3 tatsatics, Integrated Poataecondary Educaton Data Syatem (IPEDS): Winter 2016-17, 3tudent: Financlal Add componert.

Flgure 12. Retention rates of first-time bachelor's degree $89 \theta \mathrm{king}$ students, by attendance level: Fall 2015 cohort

NOTE: Retertion rates are measured from the fall of frat errolment to the following to Academic reporting insthutons report retertion data as of the insthution's official fal reporting date or as of Odober 15, 2015. Program reporters determine the cohort wth
enroilment ary tme between August 1-October 31, 2015 and retention based on Auguat 1, 2016. Four-year insthitions report retention rates for studerts seeking a bacheior's degree. For more detalls, see the Methodological Notes. Nis the number of inethitions in the comparison group.
SOURCE: U.8. Department of Education, National Center for Education Statsatics, Itegrated Poetuecondary Educaton Data Syptem (PEDS): 8pring 2017, Fall Errollment component.

Figure 14. Bachelor's degree graduation rates of full-time, first-time degreeicertificate-8eeking undergraduates within 4 years, 6 years, and 8 years: 2008 cohort

NOTE: The 4-, 6, and 8 -year graduation rates are caiculated using the number students sho completed a bachelors or equivalent degree from a cohort of atudents who entered he inattuton seeking a bachelor's or equivijent degree For detals, see the Methodological Notes. Nis the number of ingtititors in the comparioon group. Medirs are not reported for comparison groups with less than tree values.
SOURCE: U.S. Department of Education, National Center for Education 3tatistice, ntegrated Poetrecondary Educaton Data Syztem (PEDS): Wnter 2016-17, 200% Graduation Ratecondary componert

Flgure 13. Graduation and transfer-out rates of full-time, first-time degree/certificate-8e0king undergraduates within 150% of normal time to program completion: 2010 cohort

NOTE: Graduation rate cohort includes al fultime, frat-time degres/certficate-seeking undergroduate atudents. Groduation and tranafer-out rates are the Sudent Right-boHnow rates. Only Inathifions with misaion to prepare studente to tranafer are requlred to report transfer out For more detalls, see the Methodological Notes. Nis the number of inathitions in the comparison group.
SOURCE: U.8. Department of Education, National Center for Education Statsatics, Integrated Poetzecondary Education Data Syztem (IPEDS): Winter 2016-17, Groduation Rates component.
Figure 13. Glegree/certincate-seekIng undergraduates within 150%
,

Figure 15. Graduation rates of full-time, firat-time degreelcertificate-8e日king undergraduates within 150% of normal time to program completion, by racelethnicity: 2010 cohort

Figure 16. Graduation rates of full-time, first-time degreelcertificateseaking undergraduates within 150% of normal time to program completion, by financial ald reciplents: 2010 cohort

NOTE: Groduation rate cohot includes al Al-time, frat-Ime degreelcerticate-geeking undergrodiate stideriz. Dat were coliected on trose student, who xt entry of the cohort, were swarded a Fel Grart and students who were awarded a sidesidzed statord losn, but ald not receive a Pel Grant. Groduaton rates are the studert Rightho-Know rates. Ony inaturocna wit mission to prepare sudent to transite are required to report transfer out For more deblla, see the Methodological Notes. Nis the number of inaturions in the comparion group.
sOURCE: U.s. Departmert of Education, Nationsl Center for Education Stasstcs, Integrated Pootrecondry Educaton Data Sjptem (PEDS): Winter 2016-17, Groduaton Rates componert.

Alfred University

Flgure 17. Award and enrollment rates of full-time, degres/certificate-seeking undergraduates after 8 years of entry, by prior postaecondary experlence: 2008 cohort

Figure 18. Award and enroilment rates of part-time, degrea/certincate-seeking undergraduates after 8 years of entry, by prior postaecondary experlence: 2008 cohort

[^0]Figure 19. Percent diatribution of core revenues, by source: Flacal year 2016
 componert.

Flgure 21. Full-time equivalent staff, by occupational category: Fall 2016

NOTE: Graduate asolstants are not included. For calcuiation detalls, nee the Methodological Notes. Nis the number of Inathitions in the comparbon group. SOURCE: U.8. Departmert of Education, National Center for Education Statsatics, Integrated Poetvecondary Educaton Data System (PEDS): Spring 2017, Hurron Integrated Poetsecondar

Figure 20. Core expenses per FTE enrollment, by function: Flacal year 2016

NOTE: Expenoes per ful-tme equlvaient (FTE) erroliment, particularly inatuction, may be infated because inance dsta includes al core experses while FTE refiects creal acivtl/ only. For detals on caicuisting FTE envilment and a debled definison of core expenoes, see the Methodoiogical Notes. Nis the number of insthations in the comparison group.
SOURCE: U.8. Department of Education, Nationai Center for Education 3tatsitics, iniegrated Poetsecondary Educat on Data Syetem (IFEDS): Fal 2016, 12-month Envolment component and 3pring 2017, Finance component.

Figure 22. Average salaries of full-time instructional non-medical staff equated to 9 -months worked, by academic rank: Academlc year 2016-17

- Your insthition Canserison Group Medien

NOTE: Bee Methodology Notes for more detals on averoge salary. Nis the number of inathions in the comparison group. Medans are not reported for comparison groups with ess than tree values.
SOURCE: U.8. Department of Education, National Center for Education Statsitics, Integrated Poetuecondary Educaton Data System (IPEDS): Spring 2017, Hurran Resources component

Alfred University

METHODOLOGICAL NOTES

Overview

This report is based on data supplied by institutions to IPEDS during 2016-17 data collection year. Response rates exceeded 99% for most surveys. IPEDS First Look reports at http://nces.ed.gov/pubsearch/getpubcats.asp?sid=010 provide some information on aggregate institutional responses.

Use of Median Values for Comparison Group
This report compares your institution's data to the median value for the comparison group for each statistic shown in the figure. If more than one statistic is present in a figure, the median values are determined separately for each indicator or statistic. Medians are not displayed for comparison groups with fewer than three values. Where percentage distributions are presented, median values may not add to 100%. To access all the data used to create the figures included in this report, go to 'Use the Data' portal on the IPEDS website at this provided link (http://nces.ed.govipeds).

Missing Stafistics

If a statistic is not reported for your institution, the omission indicates that the statistic is not relevant to your institution and the data were not collected. Not all notes may be applicable to your report.

Use of Imputed Data
All IPEDS data are subject to imputation for total (institutional) and partial (item) nonresponse. If necessary, imputed values were used to prepare your report.

Data Confidentiality
IPEDS data are not collected under a pledge of confidentiality.
Disaggregation of Data by Race/Ethnicity
When applicable, some statistics are disaggregated by race/ethnicity. Data disaggregated by race/ethnicity have been reported using the 1997 Office of Management and Budget categories. Detailed information about the race/ethnicity categories can be found at https://nces.ed.gov/ipeds/Section/Resources.

Cohort Determination for Reporting Student Financial Aid, Graduation Rates, and Outcome Measures

Student cohorts for reporting Student Financial Aid and Graduation Rates data are based on the reporting type of the institution. For institutions that report based on an academic year (those operating on standard academic terms), student counts and cohorts are based on fall term data. Student counts and cohorts for program reporters (those that do not operate on standard academic terms) are based on unduplicated counts of students enrolled during a full 12 -month period.

DESCRIPTION OF STATISTICS USED IN THE FIGURES

Admissions (only for non-open-admissions schools)

Admissions and Test Score Data

Admissions and test score data are presented only for institutions that do not have an open admission policy, and apply to first-time, degree/certificate-seeking undergraduate students only. Applicants include only those students who fulfilled all requirements for consideration for admission and who were notified of one of the following actions: admission, non-admission, placement on a wait list, or application withdrawn (by applicant or institution). Admitted applicants (admissions) include wait-listed students who were subsequently offered admission. Early decision, early action, and students who began studies during the summer prior to the fall reporting period are included. For customized Data Feedback Reports, test scores are presented only if scores are required for admission.

IPEDS DATA FEEDBACK REFORT

Student Enrollment

FTE Enroiliment

The full-time equivalent (FTE) enrollment used in this report is the sum of the institution's FTE undergraduate enrollment and FTE graduate enrollment (as calculated from or reported on the 12 -month Enrollment component). Undergraduate and graduate FTE are estimated using 12 -month instructional activity (credit and/or contact hours). See "Calculation of FTE Students (using instructional activity)" in the IPEDS Glossary at https://surveys.nces.ed.gow/ipeds/VisGlossaryAll.aspx.

Total Entering Undergraduate Students

Total entering students are students at the undergraduate level, both full- and part-time, new to the institution in the fall term (or the prior summer term who returned in the fall). This includes all first-time undergraduate students, students transferring into the institution at the undergraduate level, and non-degree/certificate-seeking undergraduates entering in the fall. Only degree-granting, academic year reporting institutions provide total entering student data.

Charges and Net Price

Average institutional Net Price

Average net price is calculated for full-time, first-time degree/certificate-seeking undergraduates who were awarded grant or scholarship aid from the federal government, state/local government, or the institution anytime during the full aid year. For public institutions, this includes only students who paid the in-state or in-district tuition rate. Other sources of grant aid are excluded. Average net price is generated by subtracting the average amount of federal, state/local government, and institutional grant and scholarship aid from the total cost of attendance. Total cost of attendance is the sum of published tuition and required fees, books and supplies, and the average room and board and other expenses.

For the purpose of the IPEDS reporting, aid awarded refers to financial aid that was awarded to, and accepted by, a student. This amount may differ from the aid amount that is disbursed to a student.

Retention, Graduation Rates, and Outcome Measures

Graduation Rates and Transfer-out Rate

Graduation rates are those developed to satisfy the requirements of the Student Right-to-Know Act and Higher Education Act, as amended, and are defined as the total number of individuals from a given cohort of full-time, first-time degree/certificate-seeking undergraduates who completed a degree or certificate within a given percent of normal time to complete all requirements of the degree or certificate program; divided by the total number of students in the cohort of full-time, first-time degree/certificate-seeking undergraduates minus any allowable exclusions. Institutions are permitted to exclude from the cohort students who died or were totally and permanently disabled; those who left school to serve in the armed forces or were called up to active duty, those who left to serve with a foreign aid service of the federal government, such as the Peace Corps; and those who left to serve on an official church mission.

A further extension of the traditional Graduation Rates (GR) component which carries forward 100% and 150% graduation rates data previously reported in the GR component is the Graduation Rates 200\% (GR200) component, which request information on any additional completers and exclusions from the cohort between 151% and 200% normal time for students to complete all requirements of their program of study.

Transfer-out rate is the total number of students from the cohort who are known to have transferred out of the reporting institution (without earning a degree/award) and subsequently re-enrolled at another institution within the same time period; divided by the same adjusted cohort (initial cohort minus allowable exclusions) as described above. Only institutions with a mission that includes providing substantial preparation for students to enroll in another eligible institution are required to report transfers out.

Retention Rates

Retention rates are measures at which students persist in their educational program at an institution, expressed as a percentage. For fouryear institutions, this is the percentage of first-time bachelors (or equivalent) degree-seeking undergraduates from the previous fall who are again enrolled in the current fall. For all other institutions this is the percentage of first-time degree/certificate-seeking students from the previous fall who either re-enrolled or successfully completed their program by the current fall. The full-time retention rate is calculated using the percentage of full-time, first-time degree/certificate-seeking undergraduates, while the part-time rate is calculated using the percentage of part-time, first-time degree/certificate-seeking undergraduates.

Alfred University

Outcome Measures Data

Alternative measures of student success are reported by degree-granting institutions to describe the outcomes of degree/certificate-seeking undergraduate students who are not only first-time, full-time students, but also part-time attending and non-first-time (transfer-in) students. These measures provide the 6 -year and 8 -year award-completion rates after entering an institution, which is calculated by dividing the number of total awards at 6 - or 8 -year status points divided by the adjusted cohort. The initial cohort can be revised and take allowable exclusions resulting in an adjusted cohort. The type of award is not reported, but institutions report the first award earned by the student at each status point. For students who did not earn an undergraduate award after 8 -years of entry, the enrollment statuses are reported as either still enrolled at the institution, subsequently transferred out of the institution, or status unknown. Unlike the Graduation Rates data, all reporting institutions must report on their transfer outs regardless if the institution has a mission that provides substantial transfer preparation.

Finance

Core Revenues

Core revenues for public institutions reporting under GASB standards include tuition and fees; government (federal, state, and local) appropriations and operating and nonoperating grants/contracts; private gifts, grants, and contracts (private operating grants/contracts plus gifts and contributions from affiliated entities); sales and services of educational activities; investment income; other operating and nonoperating sources; and other revenues and additions (capital appropriations and grants and additions to permanent endowments). "Other core revenues* include federal appropriations, sales and services of educational activities, other operating and nonoperating sources, and other revenues and additions.

Core revenues for private, not-for-profit institutions (and a small number of public institutions) reporting under FASB standards include tuition and fees; government (federal, state, and local) appropriations and grants/contracts; private gifts, grants/contracts (including contributions from affiliated entities); investment return; sales and services of educational activities; and other sources (a generated category of total revenues minus the sum of core and noncore categories on the Finance component). "Other core revenues" include government (federal, state, and local) appropriations, sales and services of educational activities, and other sources.

Core revenues for private, for-profit institutions reporting under FASB standards include tuition and fees; government (federal, state, and local) appropriations and grants/contracts; private grants/ contracts; investment income; sales and services of educational activities; and other sources (a generated category of total revenues minus the sum of core and noncore categories on the Finance component). "Other core revenues" include government (federal, state, and local) appropriations and other sources.

At degree-granting institutions, core revenues exclude revenues from auxiliary enterprises (e.g., bookstores and dormitories), hospitals, and independent operations. Non-degree-granting institutions do no report revenue from auxiliary enterprises in a separate category, and thus may include these amounts in the core revenues from other sources.

Core Expenses

Core expenses include expenses for instruction, research, public service, academic support, institutional support, student services, grant aid/scholarships and fellowships (net of discounts and allowances), and other functional expenses (a generated category of total expense minus the sum of core and noncore functions on the Finance component). Expenses for operation and maintenance of plant, depreciation, and interest are allocated to each of the other functions. Core expenses at degree-granting institutions exclude expenses for auxiliary enterprises (e.g., bookstores and dormitories), hospitals, and independent operations. Non-degree-granting institutions do not report expenses for auxiliary enterprises in a separate category and thus may include these amounts in the core expenses as other expenses. "Other core expenses" is the sum of grant aid/scholarships and fellowships and other expenses.

Endowment Assets

Endowment assets, for public institutions under GASB standards, and private, not-for-profit institutions under FASB standards, include gross investments of endowment funds, term endowment funds, and funds functioning as endowment for the institution and any of its foundations and other affiliated organizations. Private, for-profit institutions under FASB do not hold or report endowment assets.

Salaries and Wages

Salaries and wages for public institutions under GASB standards and private (not-for-profit and for-profit) institutions under FASB standards, include amounts paid as compensation for services to all employees regardless of the duration of service, and amounts made to or on behalf of an individual over and above that received in the form of a salary or wage.

Staff
FTE Staff
The full-time-equivalent (FTE) by occupational category is calculated by summing the total number of full-time staff and adding one-third of the total number of part-ime staff. Graduate assistants are not included.

Equated Instructional Non-Medical Staff Salaries

Institutions reported the number of full-time nonmedical instructional staff and their salary outlays by academic rank, gender, and the number of months worked ($9-10$ - 11-, and 12 -months). Salary outlays for staff who worked $10-11$-, and 12 -months were equated to 9 -months of work by multiplying the outlays reported for 10 -months by 0.80 , the outlays reported for 11 months by 0.818 , and the outlays reported for 12 months by 0.75 . The equated $10-11$ - and 12 -outlays were then added to the outlays for instructional staff that worked 9 -months to generate a total 9 -month equated salary outlay. The total 9 -month equated outlay was then divided by total number of instructional non-medical staff to determine an equated 9 -month average salary. This calculation was done for each academic rank. Salary outlays were not reported for staff that work less than 9 -months and were excluded.

Student-fo-Faculty Ratio

Institutions can provide their institution's student-to-faculty ratio (i.e., student-to-instructional staff) for undergraduate programs or follow the NCES guidance in calculating their student-to-faculty ratio, which is as follows: the number of FTE students (using Fall Enrollment survey data) divided by total FTE instructional staff (using the total Primarily instruction + Instruction/research/public service staff reported in Human Resources component and adding any not primarly instructional staff that are teaching a credit course). For this calculation, FTE for students is equal to the number of the full-time students plus one-third the number of part-time students; FTE for instructional staff is similarly calculated. Students in "stand-alone" graduate or professional programs (such as, medicine, law, veterinary, dentistry, social work, or public health) and instructional staff teaching in these programs are excluded from the FTE calculations.

Addifional Methodological Information
Additional methodological information on the IPEDS components can be found in the publications avalable at http://nces.ed.gow/pubsearch/getpubcats.asp?sid=010.

Additional definitions of variables used in this report can be found in the IPEDS online glossary available at this provided link https://surveys.nces.ed.gov/ipeds/VisGlossaryAll.aspx.

[^0]: IfEDS DATA FEEDBACK REPORT

