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ABSTRACT 

 

Particle size distributions present a unique challenge for analysis and 

presentation and simply reporting the D50 value fails to capture any information 

that describes the width of the distribution.  By fitting the particle size distribution 

to a statistical model, it is possible to describe a distribution with a two-parameter 

model, similar to that obtained from a Weibull analysis of mechanical testing 

data.  In fact, as is demonstrated in this thesis, many native particle distributions 

actually fit a Weibull distribution, but when the distribution is scalped, as is 

common for industrial powders, the distribution is better described with a log-

normal model.  Both of these distribution types can be described by a mean and 

a modulus, and thus a two-parameter model.  The two-parameter model can then 

be plotted on x-y coordinates to allow the tracking of particle size distributions for 

milling studies or for quality control purposes. 
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I. INTRODUCTION 

 

 Particle size distribution data are commonly collected and reported for 

many ceramic powders. This data is however underutilized and often does not 

allow for the comparison between various samples and powders in varying 

applications. Most commonly the particle size data is recorded through the value 

of the D50 or the mean particle size, but this only covers one aspect of an overall 

particle size distribution, effectively making it a poor marker for comparison. The 

hypothesis of this study is that regardless of the nature of the particle size 

distribution, be it scalped or native, it is possible to describe a particle size 

distribution with a two-parameter model through the use of statistical analysis. 

 I first became interested in this topic my sophomore year of the ceramic 

engineering program. During a lecture Dr. Carty described log-normal 

distributions and how they can be used to describe particle size distributions. He 

mentioned that this method should show the distribution as a line. I engaged in a 

conversation with him about describing each material by a slope of that line. 

Later that day, I received an offer to pursue research under Dr. Carty in a work 

study position later that day. This would be the spark that ignites not only my 

thesis research but also my love for research. 

 I began to do statistical analysis on various particle size distributions 

provided to me by Dr. Carty. The first problem to overcome was an issue in 

creating a probability axis in order to make a linear approximation. The way 
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textbooks describe creating a log-normal distribution does not lend itself to use in 

Excel otherwise it is simply an axis generated that cannot create a slope as the 

space between numbers on the axis are not consistent. This issue was solved by 

applying a statistical analysis function from Excel that is used to compare many 

points of data by its percentage compared to 50%. 

 Once the ability to describe the percentage of mass below a 

particle diameter was developed it was applied to as many datasets as I could 

get my hands on. In this study, 86 historical particle size distribution datasets 

were obtained for various ceramic powders. These datasets were recorded using 

an x-ray sedimentation instrument. The collected datasets reported a D50 for the 

powders analyzed as well as reporting a cumulative mass finer than percent 

(CMFT%) related to a particle diameter measured.  

It was discovered in this study that 64 particle size distributions fit a log 

normal distribution while 22 fit a Weibull distribution based on the R2 value for the 

linear approximation. The distributions were affixed to a plot as a point described 

by their D50 and slope from a linear approximation of a log-normal distribution in 

order to analyze and compare various particle size distributions at once. 

 

This procedure can be applied to various aspects of particle size studies. 

Industrial applications of this procedure could be used for quality control 

applications to facilitate tracking of particle size distributions of incoming raw 
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materials. This can also be used to analyze and track particle size distribution 

changes during a milling study. 

 Particle size distributions are very easy to obtain. Many distributors of raw 

material will provide their clients with particle size distribution data. But if the 

distributor were to not provide the distribution data it is very easy to gather the 

data with the right equipment. The person looking to find particle size 

distributions doesn’t require access to an x-ray sedimentation instrument as long 

as the powder size is larger than the colloidal limit. The simplest way to gather 

particle size distribution is through the use of sieves. Figure 1 shows a photo of 

an ASTM standard test sieve. 

 

Figure 1. Example of a standard test sieve for particle size analysis. 
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 Sieves are placed in a stack based on decreasing the size of the mesh as 

it falls. This stack is then placed on a vibratory table and after the stack has been 

agitated the mass of powder remaining in the mesh is measured in order to 

determine the mass of the powder that is within a specific size range. The ASTM 

sieve designations are shown in Table I. 

Table I. ASTM Standard Sieve Designations 

Sieve 
Designation 

Opening 
Size 

No. 4 4.75 mm 
No. 5 4.00 mm 
No. 6 3.35 mm 
No. 8 2.36 mm 

No. 10 2.00 mm 
No. 12 1.70 mm 
No. 14 1.40 mm 
No. 16 1.18 mm 
No. 18 1.00 mm 
No. 20 850 μm 
No. 25 710 μm 
No. 30 600 μm 
No. 35 500 μm 
No. 40 425 μm 
No. 50 300 μm 
No. 60 250 μm 
No. 70 212 μm 
No. 80 180 μm 

No. 100 150 μm 
No. 120 125 μm 
No. 140 106 μm 
No. 170 90 μm 
No. 200 75 μm 
No. 230 66 μm 
No. 270 53 μm 
No. 325 45 μm 
No. 400 38 μm 
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This is to say that this method of showing particle size distributions 

shouldn’t have any barrier beyond simple statistical analysis software, a set of 

sieves, and a scale. The accessibility of this procedure is important as it is a 

universal problem. The scientific community unfortunately is sitting on tons of 

particle size data with very few effective ways to analyze multiple distributions at 

once. This would immediately allow the scientific community to look at and study 

particle size in a novel way. Conclusions can be drawn from many distributions at 

once, such as the hypothesis that a native Z modulus exists as a base property 

of a powder, or even that there are different inclusions in an analyzed powder 

resulting indicated through a shift in Z modulus. 
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II. LITERATURE REVIEW 

 

 Particle size distributions are a commonly collected feature when 

analyzing materials, especially ceramic materials. The D50 or the mean particle 

size is a characteristic often used to describe particle size distributions. It is the 

particle diameter found where half of the particles analyzed are larger and half of 

the particles are smaller. In industry this value is used as an index to describe 

distributions.1  

In this study all historical datasets were obtained from an x-ray 

sedimentation instrument that analyzes particle size by the principles of Stokes’ 

law. Specifically, that the equilibrium velocity of a particle through a medium of 

known viscosity from gravity is directly related to the size of the particle.2 This 

method of determining particle size assumes that the particles are spherical. 

 Log-normal distributions are described by most particle size analysis 

guides as the favorite to best describe datasets from size measurement 

instruments.3 In 1913 Hazen proposed that a probability axis would provide a 

linear plot.4 This however was illustrated using a generated dataset rather than a 

measured particle size distribution leading to the subsequent publications using 

only data from 30% to 70% of the CMFT%.2 

 Z is globally accepted designation for a single standard deviation.5 This is 

calculated and plotted to provide a probability axis that allows for a linear 
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approximation in the program used for statistical analysis. This value is directly 

determined from the CMFT% percent in this study. 

 In a previous study Kini concluded that there are only three ways a particle 

size distribution can be described statistically: as log-normal, Weibull, or neither.3 

Her work proposed that the type of distribution was coupled to the presence or 

absence of cleavage planes in the crystal. In a subsequent study Decker 

concluded that Weibull distributions are more accurate in the description of 

particle size distributions obtained directly from comminution.6 These studies 

however, both make steps towards the graphical representation of particle size 

distributions linearly which allow for the creation of a two-parameter model to 

show multiple distributions in a single plot. 
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III. EXPERIMENTAL PROCEUDURE 

 

 Historical particle size distribution datasets were obtained from the x-ray 

sedimentation instrument (Sedigraph 5100, Micromeritics, Inc., Norcross, GA). 

The x-ray sedimentation instrument measures the interference with an x-ray 

beam caused by suspended particles in a fluid of known properties as they settle 

as described by Stokes. This interference indicates the particle size distribution 

of the powder sample that is then reported by the instrument. The measurement 

of particle size in this way assumes an equivalent particle diameter. In this study 

88 historical datasets describing 5 different materials were statistically analyzed 

using Excel (Excel Office 365, Microsoft Corporation, Redmond, WA). A list of 

materials analyzed is presented in Table I. 

 In order to represent particle size distributions as a log-normal plot in 

Excel the resulting data from the dataset must be given a Z value from an Excel 

function in order to accurately represent a probability axis. The Z value is the 

normal standard deviation from the mean. For example, the value 0 is equivalent 

to 50%. Notable values for Z are shown in Table II. To obtain a Z value the 

CMFT%, the percentage of mass below the measured particle diameter, is 

gathered from the x-ray sedimentation instrument must be converted using the 

function, NORM.S.INV(), in Excel. The function uses CMFT%, i.e. 

NORM.S.INV(CMFT%), values as a decimal with the assumption of a normal 

distribution and assigns a Z value based on the distance from 50%. The 
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application of this function is shown in the datasets provided digitally for future 

analysis (attached in a CD-format as an appendix). The example application of 

this function is shown in Table III.  After the Z values are obtained in relation to a 

particular particle diameter reported by the x-ray sedimentation instrument, a plot 

can be produced that will offer a linear approximation of the particle size 

distribution resulting in two parameters for plotting, the D50, and the slope, or Z 

modulus. An example of the plot is shown in Figure 1 and the equation for the Z 

modulus of a log-normal distribution is shown in Equation 1. The two parameters 

can then be plotted in comparison to other particle size distributions for similar 

and different materials. 

 Similarly, the particle size distributions can be represented as Weibull 

plots resulting in the parameters analyzed being the D50 and the Weibull 

modulus. 

Table II. Powders analyzed from historical datasets. 

 

Powder Frequency
Alumina 45

Cerium Oxide 2
Glass Frit 7

Quartz 22
Silicon Carbide 10

Total 86
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Table III. Notable values for the description of Z 

 

Table IV. The use of Excel to obtain Z. Highlighted is Z=0, identifying the D50 as 

the particle size at 50% or the mean of a log-normal distribution. 

 

Z Std. Dev. % Overall %
0 Mean - -

±1 1 34.1 68.2
±2 2 47.7 95.4
±3 3 49.8 99.6

Particle Size CMFT% Z
(μm) NORM.S.INV(CMFT%)
8.660 0.245 -0.691
9.173 0.299 -0.527
9.716 0.358 -0.364

10.292 0.420 -0.201
10.902 0.485 -0.038
11.050 0.500 0.000
11.548 0.549 0.124
12.232 0.613 0.287
12.957 0.673 0.449
13.725 0.730 0.611
14.538 0.780 0.774
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Figure 2. The particle size distribution of a sample of silicon carbide represented 

as a log-normal distribution. 

 

 𝑍𝑍 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
𝛥𝛥𝑍𝑍
𝛥𝛥𝑃𝑃𝑃𝑃

 →  
𝛥𝛥𝑍𝑍

𝛥𝛥log (𝑃𝑃𝑃𝑃)
 (1) 
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IV. RESULTS AND DISCUSSION 

 

4.1 Log-Normal Analysis 

 In order to analyze the powders using log-normal distributions it is 

important to illustrate the plots that are used and where it is derived from. Figure 

2 through Figure 9 show examples of CMFT% plotted as a function of log particle 

diameter and Z as a function of log particle diameter for randomly selected 

examples of representative powder datasets for each powder type. 

 In general terms, the slope of Z versus log-particle size, is termed the “Z-

modulus.”  As the Z-modulus increases, the width of the distribution becomes 

narrower, analogous to the Weibull modulus when describing brittle failure 

strength data.   

 For this analysis, the data is assumed to fit a log-normal distribution if the 

regression coefficient, R2, is greater than 0.75.  Datasets that did not meet this 

criterion were then evaluated using a Weibull analysis, i.e., a skewed log-normal 

distribution.   
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Figure 3. A calcined alumina dataset represented as CMFT% as a function of log 

particle diameter. 

 

Figure 4. A calcined alumina dataset represented as Z as a function of log 

particle diameter. 
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Figure 5. A glass frit dataset represented as CMFT% as a function of log particle 

diameter. 

 

Figure 6. A glass frit dataset represented as Z as a function of log particle 

diameter. 
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Figure 7. A quartz dataset represented as CMFT% as a function of log particle 

diameter. 

 

Figure 8. A quartz dataset represented as Z as a function of log particle diameter. 
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Figure 9. A silicon carbide dataset represented as CMFT% as a function of log 

particle diameter. 

 

Figure 10. A silicon carbide dataset represented as Z as a function of log particle 

diameter. 
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Following the procedure to convert CMFT% into a Z value the D50 and Z 

modulus can be gathered for every dataset evaluated. Table IV through Table Xi 

show the results for the representative powder’s datasets. In the tables the value 

for R2 or the coefficient of determination is included, this value indicates the 

amount of linear association between the two variables. In this case the variables 

being evaluated to show the R2 value is the Z value and log particle diameter. 

Table V. Table of results for A3000 alumina for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

0.273 4.3862 0.9579 
0.299 5.0539 0.9766 
0.322 4.3683 0.9827 
0.326 4.9408 0.9810 
0.326 3.6910 0.9781 
0.328 4.4846 0.9899 
0.329 4.6021 0.9915 
0.339 4.6675 0.9907 
0.355 4.8357 0.9693 
0.383 3.9910 0.9928 
0.406 4.3453 0.9944 
0.425 3.7012 0.9954 
0.436 3.9189 0.9957 
0.813 3.3445 0.9180 
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Table VI. Table of results for A-16 S.G. alumina for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

0.311 2.1507 0.8312 
0.323 1.1648 0.7594 
0.330 1.7552 0.7829 
0.331 1.5299 0.8314 
0.337 1.5227 0.8269 
0.350 1.6232 0.7776 
0.365 1.6423 0.9318 
0.370 1.4082 0.8170 
0.422 1.6314 0.8867 
0.423 1.6114 0.8801 
0.425 1.5609 0.8913 
0.445 1.8305 0.9116 
0.448 1.2979 0.8539 
0.449 1.9150 0.9211 
0.453 1.5485 0.9063 
0.466 1.3931 0.8843 
0.470 1.1637 0.8600 
0.532 1.3862 0.8882 
0.539 1.6807 0.9381 
0.572 1.9767 0.9514 
0.573 1.2020 0.7656 
0.593 1.4103 0.9268 
0.597 2.0511 0.9481 
0.651 1.2344 0.8431 
0.876 1.6502 0.9074 

 

Table VII. Table of results for A-10 alumina for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

2.448 1.6679 0.9702 
3.511 1.3719 0.9260 
5.501 1.2038 0.8297 
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Table VIII. Table of results for tabular alumina for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

7.234 1.4933 0.8616 
7.367 1.9940 0.9618 
8.937 1.6323 0.9954 

 

Table IX. Table of results for glass frit for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

18.17 2.7503 0.9807 
18.70 3.2066 0.9918 
18.91 2.9208 0.9916 
20.24 3.2329 0.9794 
20.59 2.7190 0.9883 
21.51 3.1392 0.9730 
22.89 3.1670 0.9873 
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Table X. Table of results for quartz for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

7.720 1.9734 0.9521 
7.726 1.6861 0.9775 
7.906 1.7251 0.9532 
8.727 2.0221 0.9505 
8.738 2.1574 0.9514 
8.867 2.1595 0.9463 
11.42 1.8127 0.9587 
11.51 1.7733 0.9891 
11.56 1.7460 0.9653 
13.21 1.7317 0.9359 
13.23 1.8437 0.9424 
13.37 1.8992 0.9868 
13.39 1.8430 0.9450 
13.39 1.7992 0.9482 
13.56 1.7112 0.9713 
13.56 2.3059 0.9742 
13.60 2.1990 0.9832 
17.79 1.8948 0.9855 
20.89 1.6794 0.9402 
27.13 2.0218 0.9365 
27.15 1.8764 0.9697 
28.04 1.8322 0.9722 

 

Table XI. Table of results for silicon carbide for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

10.45 6.1782 0.9919 
11.00 5.9046 0.9883 
11.04 4.5057 0.9820 
11.05 6.3984 0.9993 
11.05 5.9887 0.9953 
20.85 4.3466 0.9379 
20.89 4.8555 0.9863 
21.05 5.4100 0.9923 
21.19 5.2444 0.9930 
21.40 4.7065 0.9689 
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Table XII Table of results for cerium oxide for log-normal analysis. 

D50 
(μm) 

Z 
Modulus R2 

0.642 1.8386 0.9881 
1.396 1.9693 0.9695 

 

Particle size distributions plotted as a log-normal plot yield two 

parameters, a D50 and a Z modulus. These parameters can be used to create a 

D50 vs Z modulus plot to compare multiple particle size distributions at once. This 

plot is shown in Figure 10. The square symbols in Figure 10 are alumina 

datasets. Note that Figure 10 does not include the two datasets for cerium oxide 

as there are not enough points to adequately compare distributions. 

 

Figure 11. Plot of compiled particle size distributions for various materials. 

 The plot is labeled for the materials silicon carbide, glass frit, and quartz. 

The alumina datasets are unlabeled in Figure 10. The compilation of the alumina 
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particle size distributions is shown in Figure 11 showing that the type of alumina 

appears to contribute to particle size distribution data. 

 

Figure 12. Plot of compiled distributions for alumina powders. 

 In Figure 10 it is evident that in every case except with silicon carbide the 

Z modulus for each material remains relatively tightly grouped. The D50 for the 

quartz datasets changes throughout the course of the historical measurements. 

This is likely to be evidence of a milling study in which a native distribution of 

quartz is milled reducing its D50 but retaining its distribution features. This is 

strongly suggests that a given material will exhibit a native Z modulus providing 

an opportunity to detect contamination or changes to the material, potentially 

through processing variations in the fabrication of the powder. 

Supporting evidence for this hypothesis can be gathered from the silicon 

carbide datasets plotted together. The reduction of the slope suggests the 

distribution widening. This can be done through milling similarly to the quartz 



23 
 

samples. The increase in frequency of the Z-modulus of silicon carbide at about 

4.5 may suggest a native Z-modulus exists there as well. Figure 3 also could 

make an argument for the existence of a native Z-modulus for alumina powders 

at a Z-modulus of around 1.5. The function of the Z-modulus as an indicator for 

behavior of the particle size distribution is also on display in Figure 3. Both A3000 

alumina and A-16 S.G. alumina are calcined aluminas. The similarity of the D50 

yet different Z-modulus suggest that A3000 alumina is produced with, or scalped 

to, a significantly narrower distribution than A-16 S.G. alumina. 

4.2 Weibull Analysis 

 In order to analyze the powders using Weibull distribution it is important to 

illustrate the plots that are used and where it is derived from. To obtain a Weibull 

distribution Equation 2 is applied to the CMFT% as a decimal to produce the 

values for a Weibull axis. The values for a Weibull axis are plotted as a function 

of natural log particle diameter to produce the Weibull plot. Figure 12 through 

Figure 20 show an example CMFT vs natural log particle diameter plot and 

Weibull plots for representative powders. 

 ln (− ln(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%)) (2) 
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Figure 13. A calcined alumina dataset represented as CMFT% as a function of 

natural log particle diameter. 

 

Figure 14. A calcined alumina dataset represented as a Weibull plot. 



25 
 

 

Figure 15. A glass frit dataset represented as CMFT% as a function of natural log 

particle diameter. 

 

Figure 16. A glass frit dataset represented as a Weibull plot. 
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Figure 17. A quartz dataset represented as CMFT% as a function of natural log 

particle diameter. 

 

Figure 18. A quartz dataset represented as a Weibull plot. 
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Figure 19. A silicon carbide dataset represented as CMFT% as a function of 

natural log particle diameter. 

 

Figure 20. A silicon carbide dataset represented as a Weibull plot. 
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Converting CMFT% into values for the Weibull axis, the D50 and slope can 

be gathered for every dataset evaluated. Table XII through Table XIX show the 

results for each representative powder’s datasets. In this case the R2 value is the 

result of comparing the relationship between the Weibull value and natural log 

particle diameter. 

Table XIII. Table of results for A3000 alumina for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

0.273 2.1525 0.9972 
0.299 2.6311 0.9882 
0.322 1.9196 0.9943 
0.326 2.4455 0.9938 
0.326 1.8344 0.9405 
0.328 1.8945 0.9483 
0.329 2.1729 0.9815 
0.339 2.2510 0.9821 
0.355 2.4167 0.9942 
0.383 1.5729 0.9667 
0.406 2.2141 0.9731 
0.425 1.8112 0.9622 
0.436 1.8593 0.9646 
0.813 1.8053 0.8646 

 

  



29 
 

Table XIV. Table of results for A-16 S.G. alumina for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

0.311 0.9266 0.7357 
0.323 0.4963 0.6302 
0.330 0.8043 0.6654 
0.331 0.6515 0.7262 
0.337 0.6646 0.7185 
0.350 0.8101 0.7177 
0.365 0.6256 0.8390 
0.370 0.6172 0.6919 
0.422 0.7261 0.7719 
0.423 0.7177 0.7531 
0.425 0.6919 0.7664 
0.445 0.8793 0.8188 
0.448 0.5901 0.7247 
0.449 0.8913 0.8255 
0.453 0.6820 0.7851 
0.466 0.6291 0.7511 
0.470 0.5157 0.7228 
0.532 0.6413 0.7672 
0.539 0.8309 0.7955 
0.572 0.9362 0.8493 
0.573 0.7737 0.6773 
0.593 0.6278 0.8073 
0.597 0.9419 0.8420 
0.651 0.6493 0.7341 
0.876 0.9474 0.8126 

 

Table XV. Table of results for A-10 alumina for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

2.448 0.7284 0.9013 
3.511 0.6706 0.8760 
5.501 0.7225 0.8277 
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Table XVI. Table of results for tabular alumina for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

7.234 0.7870 0.8897 
7.367 1.1651 0.9922 
8.937 1.0673 0.9561 

 

Table XVII. Table of results for glass frit for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

18.17 1.2815 0.9457 
18.70 1.4419 0.9819 
18.91 1.4998 0.9871 
20.24 1.6540 0.9951 
20.59 1.2955 0.9620 
21.51 1.6222 0.9926 
22.89 1.5065 0.9863 
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Table XVIII. Table of results for quartz for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

7.720 1.1097 0.9927 
7.726 0.9526 0.9682 
7.906 1.0640 0.9978 
8.727 1.1852 0.9815 
8.738 1.2140 0.9894 
8.867 1.2333 0.9822 
11.42 1.0903 0.9694 
11.51 1.0618 0.9311 
11.56 1.1193 0.9033 
13.21 1.0734 0.9979 
13.23 1.1107 0.9955 
13.37 1.1031 0.9438 
13.39 1.0497 0.9219 
13.39 1.0571 0.9396 
13.56 1.0019 0.9380 
13.56 1.3365 0.9458 
13.60 1.2581 0.9486 
17.79 1.3861 0.9729 
20.89 1.2194 0.9906 
27.13 1.2588 0.9496 
27.15 1.1591 0.9867 
28.04 1.137 0.9662 

 

Table XIX. Table of results for silicon carbide for Weibull analysis. 

D50 
(μm) 

Weibull 
Modulus R2 

10.45 2.5731 0.9207 
11.00 3.7198 0.8799 
11.04 2.5202 0.9603 
11.05 4.0887 0.9316 
11.05 3.9542 0.9555 
20.85 2.9095 0.9699 
20.89 2.7325 0.9323 
21.05 3.2796 0.9616 
21.19 2.9506 0.8985 
21.40 2.2523 0.9292 
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Table XX. Table of results for cerium oxide for Weibull analysis. 

D50 
(μm) 

Z 
Modulus R2 

0.642 0.8084 0.9693 
1.396 0.9664 0.9978 

 

Particle size distributions plotted as a Weibull plot yield two parameters, a D50 

and a Weibull modulus. These parameters can be used to create a D50 vs 

Weibull modulus plot to compare multiple particle size distributions at once. This 

plot is shown in Figure 20 (omitting the CeO2 datasets). 

 

Figure 21. Plot of compiled particle size distributions for various materials using 

Weibull analysis. 

 The plot is labeled for the materials silicon carbide, glass frit, and quartz. 

The alumina datasets are unlabeled in Figure 20. The compilation of the alumina 

particle size distributions is shown in Figure 21. 
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Figure 22. Plot of compiled distributions for alumina powders using Weibull 

analysis. 

 The plots in Figures 20 and 21 illustrate similar properties as those shown 

using log-normal plots to show the datasets. This suggests both methods of 

showing particle size distributions are capable of showing the data with relatively 

similar results. 

4.3 Scalped Distributions 

 It is a trend that native distributions tend to fit Weibull distributions. Figure 

22 shows the linear approximation of a distribution of quartz that fits a Weibull 

distribution better than a log-normal distribution. This is determined by their R2 

value which indicates how well the variables relate in a linear approximation. 
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Figure 23. A quartz dataset plotted using Weibull distribution to find a linear 

approximation. 

The same particle size dataset for quartz is shown in Figure 23 as a log-

normal distribution. The linear approximation is relatively poor when compared to 

the fit of the Weibull plot. 
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Figure 24. A quartz dataset plotted using log-normal distribution to find a linear 

approximation. 

 This trend likely means that by scalping the same distribution a 

better log-normal linear approximation should be achievable. In Figure 24 the 

same dataset is scalped, removing particles smaller than 3.0 μm and larger than 

30 μm to simulate industrial scalping (based on particle size). The remaining data 

is then renormalized and evaluated using log-normal distribution. 
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Figure 25. A scalped quartz dataset plotted using log-normal distribution to find a 

linear approximation. 

Figure 25 shows the same scalped dataset represented using a Weibull 

plot to find a linear approximation. 
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Figure 26. A scalped quartz dataset plotted as a Weibull distribution illustrating 

that the fit is poorer than observed for log-normal (in Figure 24). 

 This difference in fit for the linear approximation would suggest that for the 

same dataset a native distribution is best represented as a Weibull distribution, 

and a scalped distribution is best represented using log-normal analysis to 

determine the Z modulus. The difference in Z modulus and Weibull modulus 

between the native and scalped distributions is indicative of the properties shown 

by the respective modulus, i.e. a higher modulus indicates a narrower 

distribution.  
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V. SUMMARY AND CONCLUSIONS 

 

 The particle size distribution of various materials can be represented as a 

two-parameter model in order to compare and analyze multiple distributions at 

once. This can be done using log-normal or Weibull distributions. This study 

suggests the existence of native particle size distribution and a native Z modulus. 

The use of a two-parameter model to describe particle size distributions can be 

used by industry for quality control applications and facilitate tracking of particle 

size distributions of incoming raw materials. Furthermore, it may be useful to 

analyze and track particle size distribution changes during a milling study. 

Further work is necessary to build a catalogue of raw material distributions to test 

the hypothesis of a native particle size distribution that remains consistent 

despite changing D50 values. 
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