

3-D Graphical Area Mapping Bilinear Interactive Technology
[3-D GAMBIT]

BY

Ariel A. Itzhakov

A THESIS
SUBMITTED TO THE FACULTY OF

ALFRED UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

ALFRED, NEW YORK

September, 2017

3-D Graphical Area Mapping Bilinear Interactive Technology

BY

Ariel A. Itzhakov

B.S. Alfred University 2015

SIGNATURE OF AUTHOR

APPROVED BY

 Dr. SEONG-JIN LEE, ADVISOR

 Dr. JOSEPH ROSICZKOWSKI, ADVISORY COMMITTEE

 Dr. WALLACE LEIGH, ADVISORY COMMITTEE

 CHAIR, ORAL THESIS DEFENSE

ACCEPTED BY

 Dr. ALASTAIR N. CORMACK, INTERM DEAN
 KAZUO INAMORI SCHOOL OF ENGINEERING

Alfred University theses are copyright protected and
may be used for education or personal research only.
Reproduction or distribution in part or whole is
prohibited without written permission from the author.

Signature page may be viewed at Scholes Library,
New York State College of Ceramics, Alfred University,
Alfred, New York.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Seong-Jin Lee, for the endless support of my Masters

research. Without the amount of patience and motivation shown throughout the project none of

this would have been possible. I would also like to thank my committee members Dr. Joseph

Rosiczkowski and Dr. Wallace Leigh in their time in reviewing this thesis and assistance

throughout the project. I would like to thank Rosalie DiRaimondo and Katie Decker for all their

help with my random questions and for assisting me in throughout my time at Alfred. To my

friends, who kept me sane for my entire college experience, thank you for all the fun times and

jokes. Last, but not least, I would like to thank my parents, siblings, and the rest of my family for

all the support they gave me throughout my life. Without their constant encouragement to focus

on science and engineering I would not be the person I am today.

iv

TABLE OF CONTENTS

 Page
Acknowledgments .. iii

Table of Contents ... iv

List of Equations .. vi

List of Figures ... vii

Abstract .. ix

I INTRODUCTION ...
A. History of Environmental Mapping .. 1

B. Literature Review .. 2

C. History of Processing .. 6

D. Ongoing Research ... 7

II RESEARCH ...
A. Types of Mapping ... 8

 1. 6D SLAM .. 8

 2. RGB-D ... 10

B. Hardware ... 12

1. Microcontrollers .. 12

2. Stepper Motor and Controller ... 15

3. Scanner .. 17

4. Line Laser.. 18

5. Ultrasonic Sensor .. 18

6. Assembily .. 19

7. Stepper Motor Controls ... 20

8. Budget ... 22

III DESIGN ..
A. Ultrasonic Mapping ... 23

B. Camera .. 27

C. Stepper Motor .. 31

D. Image Genorator ... 31

IV TESTING ...
A. Results ... 34

v

B. Using the Snanner with a Robot .. 36

V RESULTS AND DISCUSSION .. 39
VI CONCLUSION .. 41

VII FUTURE WORK .. 42

REFERENCES .. 43

APPENDIX ..
A. Budget ... 45
B. Ultrasonic Range Finder ... 46
C. Processing Radar Generator .. 49
D. Stepper Motor and Driver Tester .. 56
E. Stepper Motor Code for Scanner ... 58
F. Processing Camera Scanner .. 61
G. Processing 3D Image Generator .. 65

vi

List of Equations
 Pages

Equation 1. Ultrasonic Distance Formula in Metric and Imperial 23

vii

LIST OF FIGURES
 Pages

Figure 1. Topographical map of yellowstone park ... 2

Figure 2. RGB-D image from Washington University ... 3

Figure 3. Sensor based obstacles ... 3

Figure 4. Hartmut Surmann’s obstacle avoidance robot ... 4

Figure 5. Multiple map styles ... 5

Figure 6. Conceptual model of the Bubblebot in small and large form 7

Figure 7. Formula used to estimate distance ... 9

Figure 8. Maps using pairwise matching .. 9

Figure 9. Microsoft Kinect .. 10

Figure 10. Turtlebot .. 11

Figure 11. Arduino microcontroller .. 13

Figure 12. Raspberry Pi model 3B .. 14

Figure 13. NEMA 16 stepper motor ... 16

Figure 14. The A4988 driver used to power and control the stepper motor 16

Figure 15. Logitech C270 webcam ... 17

Figure 16. Line laser used for the 3-D scanner ... 18

Figure 17. HC-SR04 ultrasonic sensor ... 19

Figure 18. Scanner setup ... 20

Figure 19. Arduino stepper motor and motor controller setup .. 21

Figure 20. Electrical assembly .. 21

Figure 21. Arduino serial print code ... 24

Figure 22. Arduino serial monitor ... 24

Figure 23. Arduino to Processing communication code ... 25

Figure 24. Ultrasonic sensor mounted on a servo ... 26

Figure 25. Processing 2D range finder .. 27

Figure 26a. Area scanned .. 28

Figure 26b. Area seen ... 29

Figure 27. Text file generated by scanner ... 30

Figure 28. Decreasing captured pixels .. 30

Figure 29. Arduino angle adjustment .. 31

Figure 30. Blank generated image .. 32

Figure 31. Image orientation code .. 33

viii

Figure 32. Image generated ... 34

Figure 33. Image scanned ... 35

Figure 34. Test robot ... 36

Figure 35. Stepper motor stand ... 37

Figure 36. Arduino master/slave configuration .. 38

Figure 37. Test robot with scanner .. 39

ix

Abstract

The main goal for this thesis project is to develop a 3-D image scanner that will be used as part

of a larger effort in robotics and obstacle detection and avoidance. The scanner developed will be

added to another robotics project being done by Dr. Seong-Jin Lee, Wanrui He, and Andres

Garcia at Alfred University. Known as the Bubblebot, this robot is currently being designed to

expand and contract to maneuver though different size spaces. The Bubblebot will use the

scanner designed and built during this thesis project to map the area and determine the optimal

size it needs to be to navigate through its environment. When researching previous 3-D mapping

methods, i.e. RGB-D and Simultaneous Localization and Mapping (SLAM), three main flaws in

many of the current techniques were determined and corrected. First was the inability to

determine the distances of the objects in the scanner’s range. Second was the size of the

equipment needed for the 3-D scanner. Finally, the third was the large processing power needed

to run the 3-D image generator program. To correct these problems as best as possible, simple

parts and programs were used including a web cam and bilinear line laser along with the Arduino

and Processing programs. During the testing stage, the 3-D scanner was completed and mounted

onto a sample robot for testing. With the use of a Raspberry Pi model 3B the robot was

programed to map its environment, identify any obstacles in its path, and avoid them during

navigation without the need of any human interaction. Overall the result of this project looked

positive and when tested successfully worked. The final step for this 3-D scanner will be

integrating it to the Bubblebot upon its completion.

1

INTRODUCTION

In this modern age of technological advancements, robots are replacing humans in many

dangerous and time-consuming jobs. For example, in military situations like bomb diffusion or

field reconnaissance, a robot or drone would be sent in to keep the humans safe. In the medical

field, physicians use computer controlled equipment to perform surgery which requires

precession. One improvement to be made in modern robots is the addition of 3-D visualization

capability which would allow the robot to see the world in a human 3-D perspective. By giving

robots the ability to create 3-D images of the surrounding area it could be an invaluable aid in

disasters like the one that occurred to the Chilean miners during the mine collapse in 2010.

A. History of Environmental Mapping

Topographic mapping was one of the earliest forms of environmental imaging. It was created in

the United States in 1884 by John Wesley Powell1. When first created, it was known as field

mapping. Done by hand, field mapping used tape and compass traverses for distance and

position, and used aneroid barometers to determine elevation and angle. All the data gathered in

this method was hand drawn to make a map of the terrain with its contours. This was known as

field sketching. Since these maps where hand-drawn and measured it took a significant amount

of time to produce and replicate these maps. Even after the creation of the planetable and alidade,

two devices used to measure vertical angles, point positions and elevation quicker than by hand

the final map was still hand drawn. It wasn't until World War I did the Army Corp create the

aerial photography method2 more commonly known as photogrammetry. Photogrammetry was

the use of photography in the use of surveying and mapping to measure distances between

objects. This lead to the ability to make 3-D maps of the terrain by overlapping images. This

method is known as stereomodel, which replaced the need to hand draw topographic maps

making it easier and faster to produce and replicate. Modern day topography has not changed

much since the method used in World War I, other than the addition of computers to help graph

and plot the areal photogrammetry. An example of this type of map is shown in Figure 13. With

the addition of the computers topographic maps have become much more detailed and can be

created much quicker than ever before.

2

Figure 1. Topographical map of Yellowstone National Park3.

B. Literature Review

With the advancement of robotics, 3-D mapping evolved from topographical mapping to

Simultaneous Localization and Mapping (SLAM) and Red Green Blue Dimension (RGB-D)

environmental imaging. By using a RGB-D the camera, Haowei Liu, Matthai Philipose, and

Ming-Ting Sun at the University of Washington4, could develop a 3-D image scanner. The

system used an in-depth per pixel camera to distinguish a slight difference in light and color in

each pixel to create the illusion of a 3-D image. The main problem with this method is that it

only generates 3-D images of items placed in front of it, as seen in Figure 24, and not scan an

area to create a map nor could it be used to autonomously navigate a robot out of its

environment.

3

Figure 2. RGB-D image from the University of Washington4.

The research done by Pedro Loureco et al.5 also utilized per pixel cameras along with ultrasonic

sensors to build a quad copter that could measure distances of objects in an enclosed

environment. The distance data received from the sensors were graphed, which can be seen in

Figure 3.

Figure 3. Sensor based obstacles5.

4

This method could find the distance of the items in its area unlike many others but it too had

many design flaws. For instance, it could not generate a 3-D image of the area scanned. This

inevitably lead to the inability to program the quad copter to navigate through the scanned area

autonomously.

Hartmut Surmann et al.6 took another approach to 3-D mapping by using a 3-D laser range

finder. This method was successful in generating a 3-D map, but as seen in Figure 4, the robot

requires large equipment, like the laser range finder, making the system bulky.

Figure 4. Hartmut Surmann’s obstacle avoidance robot6.

This means larger motors were needed to run the system and a larger power supply was needed

to power it.

5

In the research done at Tsinghua University by Xiang Gao et al.7 a RGB-D based system was

used to map out an area and avoid all obstacles successfully. The main concern with this

technique was the large amount of processing and data storage needed to run the RGB-D system.

David Droeschel, Max Schwartz, and Sven Behnke of the University of Bonn8 took both 3-D

range finder and RGB-D methods and managed to create a hybrid system. This technique

allowed the team to design and build a robot that could map and navigate most obstacles in its

path with a small cylindrical blind spot around the robot's vertical axis. As seen in Figure 58, this

fusion system can generate multiple map styles.

Figure 5. Multiple map styles8.

The main issue for this technique is due to its hybrid mapping system. Since it has multiple

scanners it needs a larger processing power along with a more complex computing system to

allow both scanners to communicate with each other and its microprocessors.

6

C. History of Processing

Processing was created by two graduate students, Ben Fry and Casey Reas in 20019. Its purpose

was to expand the abilities basic programming into visualization. The Processing code is based

off Java, JavaScript, Python, BASIC, and Lego. Many modern uses for Processing include data

visualization, 3-D file exporting, and programming electronics. On a less STEM field,

Processing is also used for music compositions and visual art programs in schools nationwide.

The Processing software has been used by visual designers, artists, architects, and engineers

alike. Work done in Processing has been featured in museums like MoMa in New York City, the

Victoria, Albert museum in London, and George's Pompidou in Paris. Many exhibits use

Processing to create an interactive experience with the viewers. Along with art shows it is used

in many known television shows like House of Cards. The main appeal of Processing to both the

art and the STEM field is the easy and free access to a simple yet essential 3-D visualization

program.

D. Ongoing Research

The research done for this project was part of a larger robotics system designed to navigate

through any environment. Known as the Bubblebot, designed by Dr. Lee and his graduate

students, this robot will have omnidirectional movement, a spherical shape, and will be able to

expand and contract to maneuver through different gap sizes. The ability to change its size and

its unique movement will allow the Bubblebot to be prepared for any real-world scenarios that

could occur. With its 3-D visualization of the area and its ability to avoid any obstacle in its path

the Bubblebot could perform many tasks that are unsafe for humans to attempt. After the

completion of the Bubblebot, the 3-D scanner, that was developed and built for this project, will

eventually be integrated to it. A conceptual model of the Bubblebot with the scanner can be seen

in Figure 6 below.

7

Figure 6. Conceptual model of the Bubblebot in small and large form.

The portion of the Bubblebot created for this research project was the 3-D mapping system. This

consisted of designing and building a small apparatus with the capability to scan an environment,

creating a 3-D image of the area, and assisting the Bubblebot to avoid obstacles using the 3-D

map created. The main way this research is different from other techniques is because simpler

parts are used, less motion is needed, and all coding is done with open source programs. This

allows any user to replicated this process with minimal effort. In this project, many possible

issues that were noted in previous research, like distance measurement and processing needs,

were also corrected. To properly solve these issues and successfully build the scanner, a 3-D

laser mapping approach was taken. This technique uses a simple line laser and any web cam to

scan the area and create a 3-D image of the environment. Through this method the camera will

be coded to only see the red light emitted from the line laser causing the illusion of a 3-D image.

An example of this will be shown later. This 3-D scanning method is common in small scale

item scanning and 3-D printing. When used to scan items, the 3-D Figure scanner rotate the

object on a platform while the stationary camera and line laser captures every possible detail on

the object. However, in the method developed for this project the laser and camera are mounted

on a stepper motor. This motor will rotate the system form a 0 to 270° range of the surrounding

area to find and map the items in the general vicinity. The main advantage of this method is that

the parts needed to replicate the system are relatively inexpensive and the method of coding are

the open source programs Arduino and Processing. Another advantage is that the power

requirement to run the system is relatively low due to the minimal number of parts. One

downside is that to run the Processing portion of the code to generate the 3-D image, a computer

like system is need.

8

RESEARCH

A. Types of Mapping

The goal of this research project was to design, program, and build a low-cost image generator

that creates a 3-D map of the environment and navigate a robot around any obstacle in its path. A

robot with these capabilities can be used in situations which would be too dangerous or

hazardous for human exploration or research. Currently there are two main techniques for this

process. One being 6D SLAM using the Interactive Close Point (ICP) method and the other

using the RGB – D imaging system.

1. 6D SLAM

6D SLAM mapping scans in six dimensions to create a 3-D map or image of the area. These

dimensions include the positive and negative X, Y, and Z coordinates, and the roll, yaw, and

pitch angles. In many 6D SLAM designs multiple cameras and scanners are used to create the

map and/or image. By using 6 degrees of motion the SLAM method can scan an area from

multiple angles and get a detailed image of the environment. It does this by rotating the multiple

cameras and scanners in different directions and orientations and combines all the images into a

3-D map of the area. A popular use for the 6D SLAM technique includes self-driving cars. By

using the multiple sensors and cameras placed around a car the computer system in the vehicle

can successfully navigate around obstacles, like other cars and pedestrians11. Similar research

was done by Nüchter et al. at the University of Osnabrück6. In their system, multiple scanners

were used to create a 3-D map of an area. One issue with this technique is the way the distances

to the obstacles are measured. The robot will measure the distance to an obstacle by driving to it

at a set speed and calculating the distance from its starting point based on the time it took to

reach it. After this, the robot will use the new information to calculate the initial estimations of

the distances to other objects based on its original starting point. However, the robot will still

drive up to other obstacles in its original map and find the precise distances from the starting

point. This is done to adjust the formula, shown in Figure 76, used to calculate the objects in its

surrounding area.

9

 Figure 7. Formula used to estimate distance6.

This method of 6D SLAM creates a loop of the area to be able to map the system and get an

accurate distance measurement of all obstacles. Multiple scans of the area are made and

overlapped to create a map of the area before the robot can navigate the environment and

calculate distances. This technique is called pairwise matching which allows the system to get a

more accurate readout of the map shown below6. As seen in Figure 8, the area scanned using the

pairwise technique becomes more detailed with every scan.

Figure 8. Maps using pairwise matching6.

Through pairwise matching the system could only generate a map of one area at a time. Due to

the need for multiple scans, calculations, and measurements of distances from obstacles from the

starting point a longer time is needed to an accurate 3-D map of the environment. Another issue

in this method of 3-D mapping and imaging is the need for multiple scanners and sensors. The

use of more parts increases the likelihood of equipment malfunction. The increased amount of

parts will also affect the robot’s size and the power needed to run the system. The main

advantage of pairwise matching is even though the system has multiple scanners and sensors

very little processing power is needed to run the program and generate a 3-D. In most cases like

this one, only a microcontroller is needed to run all the hardware and software needed.

10

2. RGB-D

With today's technology, the simplest and quickest technique for 3-D imaging and mapping

would be the RGB – D method. This is because Microsoft created the Kinect to use for their

video game system. The Kinect is a small device that creates an in-depth per pixel image of the

surrounding area using an IR light camera and an in-depth pixel camera as seen in Figure 912.

The main reason for its use and popularity is due to its low cost and the accessibility of the

device. The RGB – D method of 3-D mapping and imaging uses color images with per pixel

depth. By distinguishing the color of each pixel in the image, the RGB – D system can create an

in-depth 3-D image or map of the surrounding area.

 Figure 9. Microsoft Kinect12.

The research done by Xiang Gao and Tao Zhang in the Department of Automation, at Tsinghua

University, in Beijing, China developed a successful method in using RGB-D equipped robot to

map and navigate an enclosed area7. Since the RGB – D technique uses an in-depth camera to

create the 3-D image of the area this system will need a preset database of the material textures

to properly create a 3-D image of all objects in the mapped the vicinity. The main problem found

using the RGB – D method was since the system needed to determine the texture of the

obstacles, the time needed to map the area would be much greater than other methods. The

current solution used to avoid this problem is by decreasing the resolution of the image created.

Doing this creates problems of its own. A significant decrease in resolution decreases the

11

accuracy of the 3-D map as well. This will also limit the distance the in-depth camera can map at

each run. Even with all this, the main concern that the RGB – D mapping system has is that, even

with low resolution imaging, the processing power needed for this system is much larger than

any other method. For the RGB-D mapping and imaging process to work, a laptop is used as the

main source of computing for the system as seen in Figure 107. Due to this, the robot using this

system will need to be much larger to accommodate the laptop and to compensate for the

increase in weight. The power supply for the system will also be much larger due to the larger

robot and computer system.

Figure 10. Turtlebot7.

12

Final problem with the method of RGB – D mapping would be that there is no system or

procedure to measure the distance to the obstacles in the mapped area.

By researching and learning from these techniques used in previous studies created the

opportunity to design a new and simpler method of 3-D imaging. The first step taken for this was

to design the system and select the proper hardware needed.

B. Hardware

After comparing the previous research three main flaws were determined. First was the inability

to determine the distances of the objects in the scanners range. Second was the size of the

equipment needed tor the 3-D scanner. Finally, the third being the large processing power needed

to run the 3-D image generator programs. The method that was designed for this project was a

simple laser scanner along with an ultrasonic sensor. The laser scanner will consist of a single

line laser and a web cam which will be programmed to only record the red light of the laser. The

ultrasonic sensor will be used to measure the distances of the objects in the scanned area.

Through this the first two problems in many modern scanners could be solved. To solve the large

processing requirements a new code was written using the program Processing. Since the code

running the Processing program requires low computing power, the program could be placed on

a simple microcomputer like a Raspberry Pi.

The objective in this section was to design and select the parts to create the 3-D mapping

equipment needed for the system. These parts would have to be lightweight, energy efficient,

low-cost, and compact.

 1. Microcontrollers and processors

To run the stepper motor, motor driver, camera, line laser, and ultrasonic sensor used for this

project and create the 3-D map the system needed to be controlled and told how and when to

operate. The simplest and most cost-efficient way to do this was with an Arduino microcontroller

as seen in Figure 11. An Arduino is one of the most popular microcontrollers available to

programmers that uses open source coding to allow users to create any code needed or build off a

13

pre-existing code. Each Arduino was powered by a 7.5-volt power supply consisting of five AA

batteries.

 Figure 11. Arduino microcontroller.

In addition to the Arduino to run the hardware an additional microcontroller was needed for

processing all data obtained from the scanner. To run the 3-D mapping system a Raspberry Pi

model 3B was selected. A Raspberry Pi in its most generic definition is a microcomputer. The

entire thing consists of one chip that contains a processor, USB slots, a micro SD slot, a micro

HDMI power input, and an HDMI as shown in Figure 12. This microcomputer was selected due

to its popularity. This helped in resolving any bugs that occurred during programming. Since the

Raspberry Pi also runs on open source coding no additional programs were needed to be

purchased to run the system. Since the codes used to scan and generate a 3-D map were

developed on Windows based programs the microcomputer that would be used would also need

to run Windows and the Raspberry Pi offered Windows 10 as one of its operating system

options. The Raspberry Pi model 3B was used to process the data obtained by the 3-D scanner.

14

Figure 12. Raspberry Pi model 3B.

The most challenging issue from using the Raspberry Pi 3B was its power requirements. Like an

Arduino, the Raspberry Pi 3B runs on a 5-volt 1 amp, but unlike the Arduino the Raspberry Pi

3B power input, is a micro HDMI slot. For the first attempt to power the Raspberry Pi 3B a

micro HDMI wire was spliced and attached to a battery pack similar to the one powering the

Arduino. This worked for a short time. However, it was discovered later that, even though the

power input was equivalent, the Raspberry Pi 3B would need a significantly larger power supply.

This was because processing the data from the scanner took more power than first estimated. To

resolve this problem there were two main options. One was to increase the size of the battery

pack, but this would increase the weight and overall size of the scanner. In addition, the constant

need to replace the batteries would create an unnecessary and easily avoidable cost. The second

option was to get a portable phone charger to run the Raspberry Pi 3B. The main disadvantage in

using a portable phone charger was its initial cost and need for recharge time. Where a battery

pack can be instantly changed, a portable phone charger would need at least an hour for a

recharge time. Overall, it was concluded that a smaller, light weight, and longer lasting portable

charger would be more efficient than a battery pack.

15

2. Stepper motor and controller

One of the key parts of designing and selecting the hardware for the system was the selection of

the motor that would be used. There were many options to choose from, for example basic two

wire motors, three wire servomotors, or stepper motors. There were a few requirements that need

to be met to be able to find the right type of motor. The main requirements were that the motor

needed to be easily programmable, have enough torque to move the system, have low power

consumption, and be structurally strong enough to hold all parts place on top of it. A two-wire

motor could not be used since it is more difficult to program. Many motors like servo motors

have built in motor controllers but since regular two wire motors have little to no circuitry there

is no way to regulate the power that goes into it. This makes controlling the speed and direction

of the motor spin more complicated than any other type of motor. A servomotor like mentioned

before has the motor controller built in. This allows the user to preprogram its speed and

direction. This meant that the servomotor did meet all the requirements but since the amount of

weight that would be placed on top of the motor and the amount of torque needed to move it was

still unknown it was difficult to identify an appropriate servo motor. This was since servomotors

unlike to wire motors and stepper motors use built in gearboxes to increase speed or torque. It

would be difficult to select the correct gearbox assembly before the system was complete. A

stepper motor also met all the requirements needed and due to its ability to vary its torque and

speed outputs given its wider voltage range it had a better chance of accommodating the

unknown load. Even though the stepper motor did not have a motor controller built in its ability

to vary its speed and torque outweighed this problem. The stepper motor selected was the NEMA

16 motor as seen in Figure 13.

16

 Figure 13. NEMA 16 stepper motor.

The one complication with the stepper motor was selecting a proper controller and power supply

for it. There are many options when choosing the proper controller for this stepper motor. These

options would very in cost from anywhere between $2 and $150 and could be programmed using

many different platforms. For the system, a A4988 driver was used since it was the simplest one

to program with Arduino and most cost-efficient at a price of only $3. As seen in Figure 14 the

A4988 driver is a small motor controller with 16 pins. For this project, only 12 pins will be used.

Two for power, four for the stepper motor, four to connect to the Arduino, and two to reset the

system after use. This will be discussed further during the equipment set up.

 Figure 14. The A4988 driver used to power and control the stepper motor.

17

This controller takes a separate power supply to run the stepper motor. This was needed because

the stepper motor operates anywhere in between 5 to 18 volts, and Arduinos are only able to

safely give off 5 volts. For the system two 9-volt batteries were connected to run the stepper

motor.

 3. Scanner

Building the scanner was quite simple. There are three main parts for the physical scanner. One

being any run-of-the-mill webcam shown in Figure 15. The webcam was used to record the red

light from the line laser and block out the rest of the area. A lower resolution webcam was

preferable since it would detect less ambient red light in the mapped area. For this project, a

Logitech C270 webcam was selected since it was the easiest one to acquire at the time.

 Figure 15. Logitech C270 webcam.

The webcam selected had a USB output cable to connect to computer so it could send and

receive data and receive power. This means that the webcam needs a 5-volt 1-amp power

supply. For initial testing, the webcam was powered by the USB port on the computer running

the 3-D mapping program and then later through the Raspberry Pi USB input.

18

 4. Line Laser

The next part to the scanner is a line laser shown in Figure 16. This is like any ordinary laser

pointer that shines a red light just like any other, laser but instead of a point, it produces a

vertical line. The need for a line laser was to allow the camera to scan one line in the area at a

time which helped create a more detailed map.

Figure 16. Line laser used for the 3-D scanner.

This laser needed 6 V to work and was also given an independent power source consisting of

four AA batteries. The main reason for its own battery supply was to prevent risk of the laser

drawing too much power from the primary power supply connected to the Arduinos and

Raspberry Pi.

5. Ultrasonic Sensor

Finally to tell the distances of the obstacles in the 3-D map an ultrasonic sensor was used. For the

set up the HC-SR04 ultrasonic sensor shown in Figure 17 was used.

19

 Figure 17. HC-SR04 ultrasonic sensor.

This ultrasonic sensor was selected in particular because of its small size and ability to detect

objects up to 6 meters away. Also, the HC-SR04 is the most popular when using Arduinos to

program. Finally, this ultrasonic sensor is sold for only $3 where others that have similar

performance vary for over $200. This sensor has four pins, two for power and two for data

transfer to and from the microcontroller to which it is connected. The HC-SR04 ultrasonic sensor

takes a negligible amount of power so it was connected directly to the microcontroller used in the

system.

 6. Assembly

To assemble the 3-D scanner for testing the first thing part acquired was the wooden board that

all the circuitry would rest on. This board was approximately 40 cm in length and 5 cm in width.

These dimensions were selected to hold all parts like the camera, line laser, and Arduino. The

web cam was placed at the first 4 cm of the left side of the board at a 30 to 40° angle. On the

right side of the board approximately 1 cm from the edge place and secure the line laser. In the

20

center of the board which in this case would be 20 cm from either end drill a hole slightly

smaller than the shaft of the stepper motor being used. The board and the stepper motor need to

fit tightly to prevent the system from slipping while scanning the area. Place an L bracket

approximately 2" x 2" in size on the left Side of the board with the vertical side facing the

stepper motor shaft. This will be used along with a belt to stabilize the system and prevent any

unnecessary shaking. Entire system can be seen in Figure 18. When added to the final robot

being designed by the rest of Dr. Lee’s team all the hardware will be concealed in an organized

fashion.

Figure 17. Scanner setup.

 7. Stepper Motor Controls

The first step in the electrical assembly of the system was to wire stepper motor and its power

source to the motor controller. After that the motor controller was wired to the Arduino along

21

with two variable resistors, which control the speed the stepper motor removed. This all can be

seen in Figure 19.

Figure 19. Arduino stepper motor and motor controller setup.

Figure 20 shows the actual Arduino setup.

Figure 20. Electrical assembly.

22

 8. Budget

The estimated budget for this project was approximately $252. This includes all the parts

mentioned, any other hardware needed for the robot, and an additional $50 for miscellaneous

expenses. The complete breakdown of the budget and all expenses can be found in Appendix G.

23

DESIGN

A. Ultrasonic Mapping

When starting this project, the first approach taken to understand 3-D imaging using the HC-

SR04 ultrasonic sensor. The first step taken to understand how the ultrasonic sensor worked was

to create a code using Arduino that would use the sensor to measure distances of any object it

was pointed towards and display the information obtained. The HC-SR04 ultrasonic sensor has

four pins. The first and last pin are used for voltage and ground both obtained from the Arduino.

The other two pins are trigger and echo. The trigger pin is what sends out the ultrasonic sound

wave and the echo pin is what receives the sound wave. It can determine the distance the object

in front of it is by taking the time sound wave traveled from the ultrasonic sensor and bounce

back to it multiply it by the speed of the soundwave and divided by two. All this could be seen in

equation 1.

𝑐𝑐𝑐𝑐 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗0.034
2

 , 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗0.0135
2

 (1)

Equation 1. Ultrasonic distance formula in metric and imperial.

The speed that the sound wave travels may differ for each ultrasonic sensor model but for the

one used in this project it was 0.034cm/s. If imperial units are required the speed of the sound

wave in inches would be 0.0135in/s. The duration in the formula is the time it takes for the

soundwave to reach the object and return to the echo pin. The reason the initial distance is

divided by two is because the time being used is from the ultrasonic sensor to the obstacle and

back which is double just to the object being measured. The next step was to display distances

measured in an easily readable and accessible area. Since the coding was being done on Arduino

the simplest solution for this would be using the Serial Monitor function. This allows any

information received from sensors received by the Arduino to display only when requested. The

coding needed for this could be seen in Figure 21.

24

 Figure 21. Arduino serial print code.

The result for the Serial Monitor showed the distance of the objects the ultrasonic sensor was

measuring in both inches and centimeters shown in Figure 22.

Figure 22. Arduino serial monitor.

25

The next step taken with the ultrasonic sensors was to see if it would be possible to scan an area

and see if it could create a 2D map. The first issue that arose when attempting ultrasonic 2D

mapping was the inability of the Arduino software to create an image as an output. To solve this,

another program would be needed that could communicate with the Arduino software and

hardware. The software selected to solve this problem was Processing version 3.1.1. The reason

an older version of the Processing program was selected was since it had the larger libraries for

video and image drivers and generators. Even though another program was being used the

Arduino software was still needed. The Arduino software was used to control the Arduino and all

other hardware connected to it while the Processing software would take all data and generate a

two-dimensional Polar coordinate (R, θ) map of the area. The Arduino software and the

Processing software would communicate through the com port and any information Processing

needed was obtained through the Serial Monitor. Figure 23 shows the code needed in Processing

to allow both software is to communicate to each other.

 Figure 23. Arduino to Processing communication code.

To be able to get a full scan of an area the ultrasonic sensor needed to be mounted on to a servo.

Along with rotating the sensor, the servo was used to measure the angle at which the system was

oriented. The servo and sensor setup can be seen in Figure 24.

26

Figure 24. Ultrasonic sensor mounted on a servo.

This information was recorded in the Serial Monitor and relayed to Processing as well. The final

2D scan showed all objects and the distance from the ultrasonic sensor. Since the ultrasonic

sensor scanner was set up to only scan a certain height, the final map had a variable R coordinate

and θ coordinate. An example of the 2D map can be seen in Figure 25.

27

 Figure 25. Processing 2D range finder.

The next step taken with ultrasonic sensors was to attempt to create a 3-D map using similar

techniques as the 2D method. The approach taken was by adding a second servo to the original

system and by adjusting the Processing and Arduino code it was determined that using ultrasonic

sensors alone to create a 3-D map would not work. Any image generated through the ultrasonic

sensors came out to blurry and boxy to understand. When using the ultrasonic sensor mapping

approach, it would only work when the sensor would scan small objects at a time. Unless

zoomed in on each small feature nothing in the image could be made out.

B. Camera

In the next attempt to create a system that could generate a 3-D image of the video camera

approach was used instead of ultrasonic sensors. In other research like SLAM and RGB-D

multiple cameras and sensors were used but for this attempt only one simple web cam was used.

The final goal with this approach was to use a web cam and a red line laser to scan the room and

create a 3-D image of the area. The way this would work is that through Processing the web cam

would ignore all light except for the red light given off by the line laser. By ignoring all other

28

light in the area, the camera would not show or see anything in the area being scanned other than

the laser. An image of this can be seen in Figures 26a and 26b.

Figure 26a. Area scanned.

Figure 26a is an example of what the red line laser and camera sees before the code used to

generate the map is used. Figure 26b, on the other hand, is what the camera sees after the 3-D

image generator code on Processing is activated. When both are compared before the program is

running all light is being seen by the web cam but after only the red light is recorded.

29

Figure 26b. Area seen.

To completely scan the environment and for Processing to know where the object scanned, the

system would have to rotate and inform the Processing software at which angle the red line laser

was on. This was done through Arduino. The angle of the motor used was monitored through the

Serial Monitor and sent to the Processing code through the com port like before. Processing

finally took all the data from the camera and the Arduino to create a text file. The information

obtained in the scan was split up by commas and semicolons. The commas would represent

different pixels in one line scanned at its current angle, while the semicolon would signify the

starting of a new angle and therefor new line of data points and pixels. The first number after a

semicolon would be the current angle the scanner was currently set to. The total time it took for a

0 to 270-degree scan to be completed is approximately 20 seconds. A small portion of this file is

shown in Figure 27. On average, the amount of data points and numbers in the text file is usually

well over 800,000 and is so large it would take up over 200 pages of a standard word file.

30

Figure 27. Text file generated by scanner.

When the system completes its scan, the motor used to rotate the camera and line laser would

reset the scanner to its initial position so it would be ready to run when needed. Even though the

camera was only set to view the red light and to ignore all other information, the number of

pixels and data points that were received was overly excessive. The large amount of data would

later cause difficulty in generating an image of the area. In most scenarios, there was so much

data for the Processing program to run through that it would cause the software to freeze or crash

all together. This problem was solved by decreasing the number of pixels the camera would use.

This could be seen in Figure 28.

 Figure 28. Decreasing captured pixels.

The way to decrease the number of pixels used by the camera would be by dividing k, the

number of pixels. For the camera that was used for this project only half the pixels were used to

31

avoid data overload. Even though the number of pixels are being decreased to decrease the

overall processing power, the final image would still be clear enough to make out. the overall

number of pixels an average camera has is quite large but would vary from camera to camera.

The one used for this setup has anywhere from 1.2 to 3.0 megapixels depending on the size of

the image being taken.

C. Stepper Motor

To rotate the hardware in the system to accurately scan the area a motor was needed. The motor

angle would need to be monitored as well so the data points scanned by the laser and camera,

and be arranged in the correct location when creating the 3-D map. Both tasks were achieved

through the Arduino. A stepper motor was used in this situation along with a A4988 motor

controller. The controller regulated the power input to the motor, which direction the motor was

spinning, monitored the stepper motor’s angle, and displayed the angle in the Serial Monitor. To

set the desired max angle, the stepper motor would spin the Arduino would have to be coded

accordingly. This can be seen in Figure 29.

Figure 29. Arduino angle adjustment.

In most scenarios tested the angle was not needed to be larger than 180 degrees, but if needed,

the scanner can be set to rotate a full 360 degrees to map a room or enclosed environment. The

number in these lines of code that would be changed if the angle needed to be adjusted would be

the fourth number in the last line of code.

D. Image generator

As seen from the text file the information obtained from the 3-D scanner was too complex to

decipher manually. To fix this problem another Processing code was made to decipher and

generate the desired map of the area. This code generates an X, Y, Z grid where all data points

32

obtained from the original Processing code will be placed. A blank version of the grid is shown

in Figure 30.

Figure 30. Blank generated image.

When making the imaging generator code, the main issue that occurred was a system overload.

The initial map generating program would attempt to automatically generate the 3-D image all at

once when activated. This would cause Processing, and on occasion the computer, to freeze or

crash due to software and hardware limitations. The way this issue was resolved was by adding

an “if” function that caused a manual activation of the 3-D image.

By adding this function into the code, it allowed Processing time to analyze all the data from the

scanner and correctly rearrange it without overloading or crashing.

When viewing the image generated in some situations the orientation of the image would need to

be changed. For instance, if examining a 360-degree image of an enclosed area the orientation

33

should be moved up the Y axis. To do this the numbers in the code, shown in Figure 31, should

be adjusted accordingly.

Figure 31. Image orientation code.

To move the imager perspective in the X axis the first number in the second code would be

changed. For the Y axis, the second number in the third line of code. Finally, for the Z axis the

third number in the second line would be adjusted.

34

TESTING

A. Results

When testing the laser scanner, the main issue that arose was being able to control the speed at

which the stepper motor was moving. If too slow, the scanner would take too long in time out

causing it to create an incomplete 3-D image of the area. If too fast, the scanner would run the

risk of skipping important data points or marking pixels in the wrong angles and positions. To

solve this problem two variable resistors, each approximately 500K, were added to the system.

One of the variable resistor's will control the max angle the scanner would rotate and the other

would control the speed at which the scanner would run. Doing this allowed for manual

adjustments to the system without having to change the code every time the scanner would need

to be adjusted. The speed and angle at which the stepper motor would run is needed to be set

before the scan is initiated. In most situations, the scanner was set to rotate at 180° and to spin at

the maximum speed that it's power supply could provide. An accurate scan of a small area can be

seen in Figure 32.

Figure 32. Image generated.

35

In the scan, there are a few everyday objects that were found and arranged to test the scanners

accuracy. The main shapes of these objects were basic square and circular Figures. These basic

shapes were selected to mimic most real-world objects that tend to be either rectangular,

spherical, or cylindrical. An image of the items scanned can be seen in Figure 33.

Figure 33. Image scanned.

As seen in the above two images the scanner could mimic the depth of the objects by seeing the

light intensity of the laser. The closer the red light was to the camera the brighter it was. This

would help create the illusion of a third dimension. Even though the scanner could make a

functional 3-D image of the objects scanned it still couldn't know the distances of the objects

from its initial position. To solve this the ultrasonic sensors used in the beginning of the project

would be combined with the laser scanning system to both create a map and know the distance of

the items in the area.

36

B. Using the Scanner with a Robot

After the scanner was tested and in working order the final step was to place the system on any

land base robot and see if it could be programmed to scan and avoid the obstacles in an area. The

robot used for this simulation was a simple and small car as seen in Figure 34. This was done

only to test the scanner and to make sure it will work later on for the next step in Dr. Lee’s

research.

Figure 34. Robot used.

The first issue that arose when adding the scanner to the robot was to design a method in which

the Arduino and the scanner could be both attached to the robot. Since the scanner would need to

see its surrounding area it would have to be mounted above all parts of the robot to see past any

extruding items on it. A model of the scanner's stand can be seen in Figure 34. The stand was

designed specifically for the dimensions of the stepper motor being used on the amount of space

on the robot. This would need to be adjusted for any other robot or stepper motor.

37

Figure 35. Stepper motor stand.

The next issue that arose was to control the robot's motors to move forward and avoid obstacles.

To do this a secondary Arduino was added to the system. This Arduino would only control the

two servo motors controlling the tires and the one servomotor controlling the ultrasonic sensor.

The main Arduino on the scanner would communicate with the secondary Arduino using the last

two analog pins on each Arduino. This set up is known as a master slave configuration since the

main Arduino, in this case the scanner, would control the output of the secondary Arduino, in

this case the servo motor controller. A diagram of this set up can be seen in Figure 36.

38

Figure 36. Arduino master/slave configuration.

The final item needed to autonomously run the robot and scanner would be a Raspberry Pi. The

Raspberry Pi would be coded to run a Windows 10 Remote Desktop. The Raspberry Pi and the

computer would communicate through the same Wi-Fi network. The Raspberry Pi was needed to

process the information obtained from the scanner. By doing this the robot and scanner would

have the processing power of a computer in a compact form.

39

RESULTS AND DESCUSSION

Overall the final system could run and avoid any obstacles in its path. The final assembly of the

scanner onto the test robot can be seen in Figure 37. As mentioned before this will not be the

final robot for the scanner. It is just a test bot to make sure the scanner and code work.

Figure 37. Final results.

This method used solve many of the problems used in other methods. For example, this method

needed significantly less parts then many of the SLAM techniques discussed before. Compared

to the RGB – D method this system needed a much smaller processing capability. Finally, when

compared to both the set up could tell the distance of objects in the area through the use of an

ultrasonic sensor, but in the other two methods discussed both would have to drive up to the

obstacle and calculate the distance based off of its set speed and time it took to reach it. This

method is not a problem free. The main problems that occurred after final assembly was scanner

control and Raspberry Pi communication. As previously discussed the angle at which an area

40

scanned was preset before running. When the scanner was attached to the robot to run

autonomously the angle set could not be adjusted. In most situations, this could be solved by

keeping the scanner angle anywhere from 180 to 270°. The Raspberry Pi communication

problem was due to the limited range of the Wi-Fi network that the Raspberry Pi had a remote

desktop connection with. Possible solutions to this problem would be to extend the network

range or increase the Raspberry Pi's Wi-Fi receiver.

41

CONCLUSION

When researching different 3-D mapping and obstacle avoidance techniques taken in the past

there were many common flaws found throughout them. The three of these issues found in these

methods were equipment size, power needs, and processing power. When designing and building

the 3-D scanner for this project these problems were solved by using simple programs and

controllers. One main concern in almost every method researched beforehand was the need to

drive to the obstacle in the map generated by its system to calculate the distance of the object. To

correct this problem in the 3-D mapping system created for this project, the ultrasonic sensor that

was tested in the beginning was add to the system. By adding the ultrasonic sensor, the scanner

could add the data from it to the map and determine the distances of the objects in the scanned

area. The final step was combining the 3-D scanner with a land based robot to map the area

drive through it autonomously and avoid all obstacles in its general path. This was done to test

the capabilities of the scanner. When scanning an area from 0 through 270 degrees it took a

relatively short time of approximately 20 seconds. Even though this system could function it still

had a few issues like network connection. When using the scanner on a robot or alone it could

generate a 3-D map of any area or object in a simple and time efficient manner. Overall the

scanner will be able to assist the Bubblebot and many other robots to achieve autonomous

capabilities.

The main goal of this project was to design, build, and program a 3-D laser scanner to be

attached to the Bubblebot after its completion. The purpose of the Bubblebot will be to scan area,

which would be hazardous for humans to be in, and navigate through any obstacles by fitting

through any space. The hope for this project is that it would help in the protection of human life.

42

FUTURE WORK

Future work that can be done on this project could be changing the laser and web cam on the

system. Currently, it's using a red line laser and a basic web cam to scan an area. This could be

changed to an ultraviolet or infrared light and camera in order to reduce any ambient light errors

that could occur in the scan. Other future work could include a better design for the robot system.

The robot used in this project was very simple four wheels two motor generic design. By

designing and creating a more advanced type robot the full potential of a scanner could be

achieved. Currently a robot for this scanner is being designed by Wanrui He and Andres Garcia

under the supervision of Dr. Lee at Alfred University. The main purpose of the robot is to

expand and shrink to the desired size to fit through any space and avoid any obstacle seen by the

scanner.

43

References

1. J. W. Powell, “The organization and plan of the United States Geological Survey,” Am. J.

Sci., 170 [29] 93-102 (1885).

2. W.F. Craven and J. L. Cate, The Army Air Forces in World War II, Vol. 6; Ch. 2 pp. 1-
37. Univ. of Chicago Press, Chicago, 1955.

3. R. L. Hardy, “Theory and applications of the multiquadric-biharmonic method 20 years

of discovery 1968–1988,” Computers & Mathematics with Applications, 19 [9] 163-208

(1990).

4. H. Liu, M. Philipose, and M. Sun, “Automatic objects segmentation with RGB-D

cameras,” J. Vis. Commun. Image R., 25 [4] 709–718 (2014).

5. P. Lourenço, P. Batista, P. Oliveira, C. Silvestre, and C.P. Chen, “Sensor-based globally

exponentially stable range-only simultaneous localization and mapping,” Robotics and

Autonomous Systems, 68 [7] 72–85 (2015).

6. H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile robot with a 3D laser

range finder for 3D exploration and digitalization of indoor environments,” Robotics and

Autonomous Systems, 45 [3] 181–198 (2003).

7. X. Gao, and T. Zhang, “Robust RGB-D simultaneous localization and mapping using

planar point features,” Robotics and Autonomous Systems, 72 [2] 1–14 (2015).

8. D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and localization for

autonomous navigation in rough terrain using a 3D laser scanner,” Robotics and

Autonomous Systems, 88 [6] 104–115 (2017).

9. B. Fry, and C. Reas, “Overview. A short introduction to the Processing software and

projects from the community” (2008) Processing. Accessed on: April 2017. Available at

<https://processing.org/copyright.html>

10. B. Fry, and C. Reas, “The History of Processing” (2008) Processing. Accessed on: April

2017. Available at <https://processing.org/overview/>

11. J. Liu, D. Liu, J. Cheng, and Y. Tang, “Conditional simultaneous localization and

mapping: A robust visual SLAM system,” Neurocomputing, 145 [13] 269–284 (2014).

12. D. Rowan, “Kinect for Xbox 360: The inside story of Microsoft's secret 'Project Natal'”

(2010) Wired Microsoft. Accessed on: September 2016. Available at

<http://www.wired.co.uk/article/the-game-changer>

44

13. N. A. Othman and H. Ahmad, “Examining the eigenvalues effect to the computational
cost in mobile root simultaneous localization and mapping,” Computers & Electrical
Engineering, 56 [2] 659-673 (2016).

14. S. Nasuriwong and P. Yuvapoositanon, “Posterior Elimination Fast Look-Ahead Rao-

Blackwellized Particle Filtering for Simultaneous Localization and Mapping,” Procedia

Computer Science, 86 [11] 261–264 (2016).

15. C. Lai, and K. Su, “Development of an intelligent mobile robot localization system using
Kinect RGB-D mapping and neural network,” Computers & Electrical Engineering, (In
Press, Corrected Proof).

16. S. Thrun, “Robotic Mapping: A Survey,” Natl. Sci. Found., 000 [7] 1-31 (2002).

45

Appendix A

Overall parts list and cost for the project

Part Cost Quantity Subtotal

Stepper Motor $11 1 $11

A4988 Motor Controller $4 1 $4

Arduino Uno $25 2 $50

Camera $20 1 $20

Raspberry Pi $40 1 $40

Micro SD Card $10 1 $10

Line Laser $25 1 $25

Ultrasonic Sensor HC-SR04 $3 1 $3

Servo $13 3 $39

Misc. $50

$50

Total

$252

46

Appendix B

This code is used by Arduino to control the ultrasonic sensor to determine the distances of the
objects in the scanned area.

//Ultrasonic Range Finder

// Includes the Servo library

#include <Servo.h>.

// Defines Tirg and Echo pins of the Ultrasonic Sensor

const int trigPin = 10;

const int echoPin = 11;

// Variables for the duration and the distance

long duration;

int distance;

Servo myServo; // Creates a servo object for controlling the servo motor

void setup() {

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

 pinMode(echoPin, INPUT); // Sets the echoPin as an Input

 Serial.begin(9600);

 myServo.attach(12); // Defines on which pin is the servo motor attached

}

void loop() {

 // rotates the servo motor from 15 to 165 degrees

 for(int i=15;i<=165;i++){

 myServo.write(i);

47

 delay(30);

 distance = calculateDistance();// Calls a function for calculating the distance measured by the
Ultrasonic sensor for each degree

 Serial.print(i); // Sends the current degree into the Serial Port

 Serial.print(","); // Sends addition character right next to the previous value needed later in the
Processing IDE for indexing

 Serial.print(distance); // Sends the distance value into the Serial Port

 Serial.print("."); // Sends addition character right next to the previous value needed later in the
Processing IDE for indexing

 }

 // Repeats the previous lines from 165 to 15 degrees

 for(int i=165;i>15;i--){

 myServo.write(i);

 delay(30);

 distance = calculateDistance();

 Serial.print(i);

 Serial.print(",");

 Serial.print(distance);

 Serial.print(".");

 }

}

// Function for calculating the distance measured by the Ultrasonic sensor

int calculateDistance(){

 digitalWrite(trigPin, LOW);

48

 delayMicroseconds(2);

 // Sets the trigPin on HIGH state for 10 micro seconds

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH); // Reads the echoPin, returns the sound wave travel time in
microseconds

 distance= duration*0.034/2;

 return distance;

}

49

Appendix C

This code is used by processing in order to allow the user to visualize a 2-D image of the
scanned area and tell the distances of the objects.

//Processing Radar Generator

import processing.serial.*; // imports library for serial communication

import java.awt.event.KeyEvent; // imports library for reading the data from the serial port

import java.io.IOException;

Serial myPort; // defines Object Serial

// defubes variables

String angle = "";

String distance = "";

String data = "";

String noObject;

float pixsDistance;

int iAngle, iDistance;

int index1 = 0;

int index2 = 0;

PFont orcFont;

void setup() {

 size (1920, 1080); // ***CHANGE THIS TO YOUR SCREEN RESOLUTION***

 smooth();

 myPort = new Serial(this, "COM4", 9600); // starts the serial communication

 myPort.bufferUntil('.'); // reads the data from the serial port up to the character '.'. So actually it
reads this: angle,distance.

50

 orcFont = loadFont("OCRAExtended-30.vlw");

}

void draw() {

 fill(98, 245, 31);

 textFont(orcFont);

 // simulating motion blur and slow fade of the moving line

 noStroke();

 fill(0, 4);

 rect(0, 0, width, height - height * 0.065);

 fill(98, 245, 31); // green color

 // calls the functions for drawing the radar

 drawRadar();

 drawLine();

 drawObject();

 drawText();

}

void serialEvent (Serial myPort) { // starts reading data from the Serial Port

 // reads the data from the Serial Port up to the character '.' and puts it into the String variable
"data".

 data = myPort.readStringUntil('.');

 data = data.substring(0, data.length() - 1);

 index1 = data.indexOf(","); // find the character ',' and puts it into the variable "index1"

51

 angle = data.substring(0, index1); // read the data from position "0" to position of the variable
index1 or thats the value of the angle the Arduino Board sent into the Serial Port

 distance = data.substring(index1 + 1, data.length()); // read the data from position "index1" to
the end of the data pr thats the value of the distance

 // converts the String variables into Integer

 iAngle = int(angle);

 iDistance = int(distance);

}

void drawRadar() {

 pushMatrix();

 translate(width / 2, height - height * 0.074); // moves the starting coordinats to new location

 noFill();

 strokeWeight(2);

 stroke(98, 245, 31);

 // draws the arc lines

 arc(0, 0, (width - width * 0.0625), (width - width * 0.0625), PI, TWO_PI);

 arc(0, 0, (width - width * 0.27), (width - width * 0.27), PI, TWO_PI);

 arc(0, 0, (width - width * 0.479), (width - width * 0.479), PI, TWO_PI);

 arc(0, 0, (width - width * 0.687), (width - width * 0.687), PI, TWO_PI);

 // draws the angle lines

 line(-width / 2, 0, width / 2, 0);

 line(0, 0, (-width / 2)*cos(radians(30)), (-width / 2)*sin(radians(30)));

 line(0, 0, (-width / 2)*cos(radians(60)), (-width / 2)*sin(radians(60)));

 line(0, 0, (-width / 2)*cos(radians(90)), (-width / 2)*sin(radians(90)));

 line(0, 0, (-width / 2)*cos(radians(120)), (-width / 2)*sin(radians(120)));

52

 line(0, 0, (-width / 2)*cos(radians(150)), (-width / 2)*sin(radians(150)));

 line((-width / 2)*cos(radians(30)), 0, width / 2, 0);

 popMatrix();

}

void drawObject() {

 pushMatrix();

 translate(width / 2, height - height * 0.074); // moves the starting coordinats to new location

 strokeWeight(9);

 stroke(255, 10, 10); // red color

 pixsDistance = iDistance * ((height - height * 0.1666) * 0.025); // covers the distance from the
sensor from cm to pixels

 // limiting the range to 40 cms

 if (iDistance < 40) {

 // draws the object according to the angle and the distance

 line(pixsDistance * cos(radians(iAngle)), -pixsDistance * sin(radians(iAngle)), (width - width
* 0.505)*cos(radians(iAngle)), -(width - width * 0.505)*sin(radians(iAngle)));

 }

 popMatrix();

}

void drawLine() {

 pushMatrix();

 strokeWeight(9);

 stroke(30, 250, 60);

 translate(width / 2, height - height * 0.074); // moves the starting coordinats to new location

 line(0, 0, (height - height * 0.12)*cos(radians(iAngle)), -(height - height *
0.12)*sin(radians(iAngle))); // draws the line according to the angle

53

 popMatrix();

}

void drawText() { // draws the texts on the screen

 pushMatrix();

 if (iDistance > 40) {

 noObject = "Out of Range";

 }

 else {

 noObject = "In Range";

 }

 fill(0, 0, 0);

 noStroke();

 rect(0, height - height * 0.0648, width, height);

 fill(98, 245, 31);

 textSize(25);

 text("10cm", width - width * 0.3854, height - height * 0.0833);

 text("20cm", width - width * 0.281, height - height * 0.0833);

 text("30cm", width - width * 0.177, height - height * 0.0833);

 text("40cm", width - width * 0.0729, height - height * 0.0833);

 textSize(40);

 text("Object: " + noObject, width - width * 0.875, height - height * 0.0277);

 text("Angle: " + iAngle + " °", width - width * 0.48, height - height * 0.0277);

 text("Distance: ", width - width * 0.26, height - height * 0.0277);

54

 if (iDistance < 40) {

 text(" " + iDistance + " cm", width - width * 0.225, height - height * 0.0277);

 }

 textSize(25);

 fill(98, 245, 60);

 translate((width - width * 0.4994) + width / 2 * cos(radians(30)), (height - height * 0.0907) -
width / 2 * sin(radians(30)));

 rotate(-radians(-60));

 text("30°", 0, 0);

 resetMatrix();

 translate((width - width * 0.503) + width / 2 * cos(radians(60)), (height - height * 0.0888) -
width / 2 * sin(radians(60)));

 rotate(-radians(-30));

 text("60°", 0, 0);

 resetMatrix();

 translate((width - width * 0.507) + width / 2 * cos(radians(90)), (height - height * 0.0833) -
width / 2 * sin(radians(90)));

 rotate(radians(0));

 text("90°", 0, 0);

 resetMatrix();

 translate(width - width * 0.513 + width / 2 * cos(radians(120)), (height - height * 0.07129) -
width / 2 * sin(radians(120)));

 rotate(radians(-30));

 text("120°", 0, 0);

 resetMatrix();

 translate((width - width * 0.5104) + width / 2 * cos(radians(150)), (height - height * 0.0574) -
width / 2 * sin(radians(150)));

55

 rotate(radians(-60));

 text("150°", 0, 0);

 popMatrix();

}

56

Appendix D

This code, used in Arduino, is used to test the stepper motor used to control the scanner.

//Stepper Motor and Driver Tester

// defines pins numbers

const int stepPin = 10;

const int dirPin = 9;

void setup() {

 // Sets the two pins as Outputs

 pinMode(stepPin,OUTPUT);

 pinMode(dirPin,OUTPUT);

}

void loop() {

 digitalWrite(dirPin,HIGH); // Enables the motor to move in a particular direction

 // Makes 200 pulses for making one full cycle rotation

 for(int x = 0; x < 200; x++) {

 digitalWrite(stepPin,HIGH);

 delayMicroseconds(500);

 digitalWrite(stepPin,LOW);

 delayMicroseconds(500);

 }

 delay(1000); // One second delay

57

 digitalWrite(dirPin,LOW); //Changes the rotations direction

 // Makes 400 pulses for making two full cycle rotation

 for(int x = 0; x < 400; x++) {

 digitalWrite(stepPin,HIGH);

 delayMicroseconds(500);

 digitalWrite(stepPin,LOW);

 delayMicroseconds(500);

 }

 delay(1000);

}

58

Appendix E

This code, used in Arduino, is used to run stepper motor and set the minimum and maximum
area the scanner will see.

//Stepper Motor Code for Scanner

#include <Wire.h>

int dir = 9; // direction, clockwise or counter clockwise

int stp = 10; // step command

int pot1 = 0; // speed

int pot2 = 1; // angleEnd

void setup(){

 Serial.begin(9600);

 pinMode(dir, OUTPUT);

 pinMode(stp, OUTPUT);

 pinMode(pot1, INPUT);

 pinMode(pot2, INPUT);

}

int del; // delay between each loop, determines the speed of the motor

float angle = 0; // the current angle is held in this

59

int angleEnd; // the furthest angle that the motor will turn to

int spd; // the speed again, but just for displaying on the LCD screen

int pass = 0; // the number of times that the scanner has spun in each direction

int repeat = 2; // the number of times the scanner will turn in eech direction. Repeat of 2 returns it
to it's starting position

void loop(){

 del = map(analogRead(pot1), 0, 1023, 500, 50); // reading the pot1 value and mapping it to the
delay

 spd = map(analogRead(pot1), 0, 1023, 1, 100); // reading the pot1 value and mapping it to the
speed

 angleEnd = map(analogRead(pot2), 0, 1023, 0, 60); //// reading the pot2 value and mapping it
to the furthest angle

 if (pass < repeat){ // checking to see if the scanner needs to move

 if(pass%2 == 0){ // checking to see if the scanner has done an even number of passes

 digitalWrite(dir, LOW); // setting the steppers direction

 angle = angle + 1.8; // increasing the current angle (quarter step)

 }

 else if(pass%2 == 1){ // checking to see if the scanner has done an odd number of passes

 digitalWrite(dir, HIGH); // setting the steppers direction

 angle = angle - 1.8; // decreasing the current angle (quarter step)

 Serial.println(500.0); // telling processing to STOP after the first pass. Allows the scanner to
return to it's starting position after one pass

 }

60

 digitalWrite(stp, HIGH); // Start telling the stepper driver to take a step

 delayMicroseconds(300); // tell it for a bit longer...

 digitalWrite(stp, LOW); // stop telling it so take a step

 }

 if ((angle >= angleEnd || angle <=0) && pass < repeat){ // has the stepper motor gone beyond
the specified final angle, or beyond it's starting point?

 pass++; // if so, then it's completed a pass so increase the number of passes it's done

 }

 Serial.println(angle); // tell Processing what angle the motor's at

 delay(del); // wait for a bit before starting it all again, this determines the speed of the motor

}

61

Appendix F

This code, used by Processing, sets the web cam used to only record the red light from the laser,
and allows Processing and Arduino to communicate

//Processing Camera Scanner

import processing.video.*;

import processing.serial.*;

Serial port; // create a serial object called "port"

int linefeed = 10; // ASCII character for new line

PrintWriter output; // object for writing to the text file

Capture video; // video capture object

PImage img1; // first image with filtered red colour (thick fuzzy line)

PImage img2; // second image which is a filtered version of the first image (thin, dotted
line)

void setup(){

 size(640,960); // render window size, double the size of the webcam image to fit
in filtered image too

 video = new Capture(this, 640, 480); // specifying the webcam resolution

 video.start(); // begining communication with the webcam

 port = new Serial(this, "COM4", 9600); // setting up the serial communication with the
Arduino, check correct COM port in Arduino - Tools - Port

62

 port.clear(); // clear out the serial port before starting

 output = createWriter("test.txt"); // make the text file

}

String myString; // String to hold angles from Arduino

float motangle = 0; // holds the current motor angle

void draw(){

 img1 = createImage(640, 480, RGB); // determining image resolution (same as webcam)

 img2 = createImage(640, 480, RGB); // determining image resolution (same as webcam)

 background(0); // set black background of render window

 output.print(";"); // print a semi colon in the text file to indicate the start of a new frame

 output.print(motangle); // print the motor angle in the text file

 if(video.available()){ // is there a new frame available from the webcam?

 video.read(); // if so, then read it!

 }

 if (port.available() >= 4){ // is there 4 or more bytes in the serial buffer from the
Arduino

 myString = port.readStringUntil(linefeed); // if so, then read it until there is a new line and
save it to "mystring" as a string

 if(myString !=null){ // if it succesfully read something

 motangle = float(myString); // angle converted from a string to a float and saved to
"motangle"

63

 }

 }

 for (int i = 0; i < width*height/2; i++){ // loop to run through all of the webcam pixels

 if(red(video.pixels[i]) > 50){ // is the RED value in a pixel is MORE than this value (out
of 255)

 img1.pixels[i] = color(255); // then place a white pixel in image 1

 }

 }

 for (int i = 0; i < width*height/2; i++){ // run through all the pixels in image 1

 int k = 0; // reset "k" to zero

 while(brightness(img1.pixels[i]) == 255 && i < (width*height/2)-1 && (i/width)%5 == 0){ //
stay in this loop IF: there is a white pixel in image 1

 //AND if it's not run off the edge of the
image

 //AND only if it's on every 5th row

 k++; // increase "k" by 1. This counts the number of white pixels in a consecutive row

 i++; // increase "i" by 1. moves along to next pixel

 }

 if(k > 0 && !(i-(k/2) == 195201)){ // check if "k" found any white pixels AND ignore a
specific dead pixel (you can delete this bit)

 img2.pixels[i-(k/2)] = color(255); // draw a white pixel in image 2 at the middle of a row of
white pixels from image 1

64

 output.print(","); // print a comma to the text file to seperate from motor angle
(already printed)

 output.print(i%640); // print the columb the new white pixel is on to the text file (X-
coordinate)

 output.print(","); // print a comma to the text file to seperate the coordinates

 output.print(i/640); // print the row the new white pixel is on to the text file (Y-
coordinate)

 }

 }

 image(video,0,0); // show the webcam feed in the top of the render window

 image(img2,0,480); // show image 2 in the bottom of the render window

 println(motangle); // prints the current motor angle to the command window

 if (motangle > 450.0){ // if the motor angle from the Arduino is more than 450 deg, i.e. 500
deg, then stop the program

 output.flush(); // finish printing to the text file

 output.close(); // close the text file

 exit(); // stop this program from running

 }

}

void keyPressed(){ // make this program able to stop with any key

 output.flush(); // finish printing to the text file

 output.close(); // close the text file

 exit(); // stop this program from running

65

Appendix G

This code, used by Processing, uses the text file and all the data obtained in the scan to generate
a 3-D map for the user to visualize what the scanner and robot see.

//Processing 3D Image Generator

void setup(){

 size(1000, 1000, P3D); // make the render window 1000 x 1000 pixels and 3D capable

}

float rotmot; // current angle of the motor

float rotcam = 30*PI/180; // CHANGE THIS ACCORDINGLY the angle of the webcam
where 0deg is straight forward and 90deg is looking at the laser (converted to radians)

float rotlaser = 0; // same as above but for the linear laser

float rotpixX; // angle of the current white pixel from the camera's centre view in X-
direction

float rotpixY; // angle of the current white pixel from the camera's centre view in Y-
direction

float pixangleX = 50.0/640*PI/180; // angle between each pixel in webcam in X-direction

float pixangleY = 50.0/640*PI/180; // angle between each pixel in webcam in Y-direction

float[] A,B,AB; // constants needed for line equation

float[] C,D,CD; // constants needed for plane equation

float n,t; // constants needed for line/plane intersection equation

float pointX, pointY, pointZ; // temporarily holds the X,Y,Z coordinates of a new point in 3D
space

66

float[] drawpointX; // holds all X coordinates of points in 3D space

float[] drawpointY; // holds all Y coordinates of points in 3D space

float[] drawpointZ; // holds all Z coordinates of points in 3D space

int k = 0; // counts the number of white pixels in entire scan for placing them in the "drawpoint"
vectors

void draw(){

 background(50); // make the background black

 perspective(PI/3.0,(float)width/height,1,500); // adjust the near and far clipping planes to see
the whole scene (last two number)

 stroke(255, 0, 0); // make the line red

 line(0,0,0,50,0,0); // make a line in the x-direction of 50

 stroke(0, 255, 0); // make the line green

 line(0,0,0,0,50,0); // make a line in the y-direction of 50

 stroke(0, 0, 255); // make the line blue

 line(0,0,0,0,0,50); // make a line in the z-direction of 50

 camera(50*cos(mouseX/100.0)+10, 20, -50*sin(mouseX/100.0)-30, // X,Y,Z location of the
camera (not the webcam)

 10, 0, -30, // X,Y,Z location of what the camera is looking at
(not the webcam)

 0.0, -1.0, 0.0); // where is up for the camera (not the webcam)

 if(keyPressed){ // only renders point cloud if a key is pressed on the keyboard

67

 String[] myString = loadStrings("test.txt"); // save the text file to the first element
of a string vector

 drawpointX = new float[splitTokens(myString[0], ",").length/2]; // make the drawpointX
vector the length of how many white pixels there are

 drawpointY = new float[splitTokens(myString[0], ",").length/2]; // make the drawpointY
vector the length of how many white pixels there are

 drawpointZ = new float[splitTokens(myString[0], ",").length/2]; // make the drawpointZ
vector the length of how many white pixels there are

 myString = splitTokens(myString[0], ";"); // split up the large string into
multiple string each containing a webcam frame

 k = 0; // reset "k" to zero

 for(int i = 0; i < myString.length; i++){ // repeat loop for every element in "myString"
(number of webcam frames)

 String[] stringPart = splitTokens(myString[i], ","); // split "myString" up into each pixel
coordinate

 rotmot = float(stringPart[0]); // save the motor angle from the first string
element to "rotmot"

 pushMatrix(); // create set of local coordinates

 rotateY(-rotmot*PI/180); // rotate everything in Y by the motor angle

 pushMatrix(); // create another set of local coordinates

 translate(-19, 2, 0); // move everything along the scanner arm to the laser position in 3D
space

 rotateY(rotlaser); // rotate everything in Y by the laser angle

68

 //Plane Equation

 C = new float[]{modelX(0,0,0), modelY(0,0,0), modelZ(0,0,0)}; // create a point on laser
plane with global coordinates

 translate(10, 0, 0); // move along by 10 in X-direction

 D = new float[]{modelX(0,0,0), modelY(0,0,0), modelZ(0,0,0)}; // create another point, 10
in X-direction away from laser plane

 CD = new float[]{D[0]-C[0], D[1]-C[1], D[2]-C[2]}; // create a line perpindicular to
plane using points "C" and "D" (NORMAL VECTOR)

 // CD[0]x + CD[1]y + CD[2]z = n

 popMatrix(); // close off local coordinates to return current position to the motor shaft with
the motor's angle

 for(int j = 1; j < stringPart.length; j = j+2){ // make the loop repeat for every second
element in the "stringPart" vector (repeats for every set of X-Y white pixel coordinate in a single
webcam frame)

 rotpixX = (float(stringPart[j])-320)*pixangleX; // measuring the white pixels angle in X-
direction from the cameras centre

 rotpixY = (240-float(stringPart[j+1]))*pixangleY; // measuring the white pixels angle in Y-
direction from the cameras centre

 pushMatrix(); // move into another set of local coordinates

 translate(18, 4.5, 0); // move along the arm from the motor shaft to the webcam's centre

 rotateY(rotcam); // rotate to the webcam's angle

 rotateX(rotpixY); // rotate the imaginary line by "rotpixY" in the X-axis to align with
current white pixel

 rotateY(rotpixX); // rotate the imaginary line by "rotpixX" in the Y-axis to align with
current white pixel

69

 //Line Equation

 A = new float[]{modelX(0,0,0), modelY(0,0,0), modelZ(0,0,0)}; // create a point on
webcam's centre with global coordinates

 translate(0,0,10); // move along by 10 in Z-direction

 B = new float[]{modelX(0,0,0), modelY(0,0,0), modelZ(0,0,0)}; // create another point, 10
in Z-direction out in front of the webcam, along the imaginary line

 AB = new float[]{B[0]-A[0], B[1]-A[1], B[2]-A[2]}; // create the line from the
webcam using points "A" and "B" (PROJECTION LINE)

 popMatrix(); // close off local coordinates to return current position to the motor shaft with
the motor's angle

 // Intersection of Line and Plane

 t = (n - CD[0]*A[0] - CD[1]*A[1] - CD[2]*A[2])

 / (CD[0]*AB[0] + CD[1]*AB[1] + CD[2]*AB[2]); // Equation for the laser plane
rearranged with equations for projection line substituted in to find constant "t"

 pointX = A[0] + AB[0]*t; // Using "t" in line equation to find X-coordinate of
intersection

 pointY = A[1] + AB[1]*t; // Using "t" in line equation to find X-coordinate of
intersection

 pointZ = A[2] + AB[2]*t; // Using "t" in line equation to find X-coordinate of
intersection

 drawpointX[k] = (pointX); // inserting temporary X-coordinate into the X-coordinate vector
to hold all data points

 drawpointY[k] = (pointY); // inserting temporary Y-coordinate into the Y-coordinate vector
to hold all data points

 drawpointZ[k] = (pointZ); // inserting temporary Z-coordinate into the Z-coordinate vector
to hold all data points

70

 k++; // increment "k" for moving onto the next white pixel i.e. data point

 }

 popMatrix(); // close off local coordinates to return current position to (0,0,0) in global space

 }

 }

 if(k > 0){ // check to see if any data points were created

 for (int i = 0; i < drawpointX.length; i++){ // repeat loop for every data point

 stroke(255); // make the data point white

 point(drawpointX[i], drawpointY[i], drawpointZ[i]); // draw the point cloud using the
"drawpointX,Y,Z" vectors

 }

 }

}

