
GP AND GP-FEA MULTISCALE MODELING: MODEL SIZE EFFECTS

AND APPLICATIONS

BY

ROSS J. STEWART

A THESIS

SUBMITTED TO THE FACULTY OF

ALFRED UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

ALFRED, NEW YORK

APRIL, 2015

Alfred University theses are copyright protected and
may be used for education or personal research only.
Reproduction or distribution in part or whole is
prohibited without written permission from the author.

Signature page may be viewed at Scholes Library,
New York State College of Ceramics, Alfred University,
Alfred, New York.

GP AND GP-FEA MULTISCALE MODELING: MODEL SIZE EFFECTS

AND APPLICATIONS

BY

ROSS J. STEWART

B.S. ALFRED UNIVERSITY (2010)

SIGNATURE OF AUTHOR

APPROVED BY

JINGHONG FAN, ADVISOR

S. K. SUNDARAM, ADVISORY COMMITTEE

YIQUAN WU, ADVISORY COMMITTEE

CHAIR, ORAL THESIS DEFENSE

ACCEPTED BY

DOREEN D. EDWARDS, DEAN

KAZUO INAMORI SCHOOL OF ENGINEERING

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Jinghong Fan, for

his guidance, advice and creating an environment for me to learn and grow into a

professional. Thanks for his patience, diligence and persistent lifestyle, which has lead

me to push myself forward and to raise my scientific and professional level.

I want to thank my past and present colleagues and friends: Christopher Powell,

Long He, Rongpeng Xu, Steve Gruspier, Taolong Xu, and Nicholas Fuller for their

assistance, support and stimulating discussion.

I would also like to thank my colleagues and superiors at Corning Inc. for their

patience, support, and source of alternative perspectives which has not only enriched my

own education but allowed me to step out of academia and into corporate research.

Finally, I want express my thanks to my parents Mr. Michael Stewart and Mrs.

Lynn Stewart, and my sister Mrs. Gwen Gagnon for their unwavering patience, love and

support.

iv

TABLE OF CONTENTS

 Page

Acknowledgments .. iii

Table of Contents ... iv

List of Tables .. ix

List of Figures ... x

Abstract .. xiv

I. INTRODUCTION ... 1

A. Motivation ... 1

B. Classification of Multiscale methods ... 3

1. Hierarchical ..4

2. Concurrent ..5

C. Atomistic-based multiscale analysis, Class-I... 7

D. Inadequacies and Existing Needs .. 8

II. METHODOLOGY OF THE ATOMISTIC-BASED MULTISCALE

ANALYSIS ... 10

A. The Generalized Particle (GP) Method ... 10

1. Material property scale independence .. 12

2. Scale interfaces ... 14

3. Surface corrections ... 17

4. Scale duality ... 20

a. Decomposition ... 20

b. Dislocation propagation beyond scale boundary .. 23

c. Automatic Decomposition.. 25

B. Linking GP with FEA .. 29

1. Advantages of the GP-FEA Methodology .. 29

2. Model Structure and Design of Coupling subsystems .. 30

3. The “Bottom-Up” and “Top-Down” iteration bridging scheme 31

4. Numerical Algorithms .. 34

C. Shortcomings ... 36

D. Summary .. 36

III. ACCURACY VERIFICATIONS OF ATOMISTICALLY-BASED

MULTISCALE ANALYSIS WITH CONTINUUM SOLUTIONS BY THE

GP-FEA METHODS ... 37

v

A. Introduction ... 37

B. Model Development .. 42

1. GP Hole Model development ... 42

2. GP--FEA interface design ... 43

3. FEA Mesh generation ... 45

C. Verification of the GP and GP-FEA multiscale methods with Elasticity Solutions for a

plate with a central hole under tensile loading .. 46

1. The scheme for the comparison of atomistically- based simulation with a continuum

solution .. 46

2. Result comparison for pure GP and GP-FEA model .. 48

D. Summary and Conclusions .. 50

IV. ACCURACY VALIDATION WITH LEFM SOLUTION AT CRACK-TIPS:

CONCEPT OF CRITICAL MODEL SIZE .. 53

A. Introduction ... 53

B. GP-FEA Model Design ... 61

C. Comparison between LEFM solutions and GP-FEA simulation results for the crack-

tip displacement .. 63

1. LEFM singularity solution and two-term solutions of crack-tip displacement field 63

2. Comparison between atomistically-based multiscale simulation with both LEFM

singularity and two-term solutions ... 66

3. Model size effects on numerical results of displacement distribution near crack-tip in

comparison with LEFM two-term solutions .. 69

D. Summary and discussions .. 72

V. APPLICATION IN CRACK PROPAGATION ... 75

A. Introduction ... 75

B. Simulation Model and Methods... 77

C. Crack Propagation Results via GP-FEA .. 78

1. Fracture Energy .. 79

2. Crack-Tip Phase Transformation .. 83

D. Conclusion ... 86

VI. APPLICATIONS IN IMPACT .. 87

A. Introduction ... 87

B. GP Model for Wave Propagation .. 89

C. MD Results for Wave Propagation .. 91

D. Scale-2 Results for Wave Propagation .. 92

E. Auto-Duality Results for Wave Propagation ... 95

vi

F. Summary and Recommendations .. 97

VII. PARTICLE-BASED MULTISCALE ANALYSIS PROGRAM (PMAP)

STRUCTURE .. 99

A. Introduction ... 99

B. Functionality, constitution and flow charts of three basic processes of PMAP 101

1. Initialization Process ... 102

2. Equilibration Process .. 105

3. Loading Process .. 107

C. Constructions and Executions.. 109

1. Post-processing ... 110

D. Summary .. 110

VIII. CONCLUSIONS AND RECOMMENDATIONS .. 111

A. Conclusions ... 112

B. Recommendations for Future Work .. 115

REFERENCES .. 118

APPENDICES ... 130

A. USUAL MOLECULAR DYNAMIC FEATURES ... 131

1. Reading EAM Tables .. 131

2. Damped Shifted Coulomb Potential (DSC) ... 132

a. Implementation ... 133

3. Simulation Revival .. 134

4. Periodic Boundary Conditions (PBC) using Verlet Neighbor Lists 135

5. Barostat (NPT) ... 138

a. Berendsen Barostat ... 138

b. Anisotropic barostat .. 139

B. GP FEATURES ... 142

1. Automatic Duality Domains (ADD) with stress and energy (internal duality) 142

a. Preparation .. 143

i. Special List ... 143

ii. NLC Linking .. 143

iii. NLC Breakage .. 144

b. Detector and Process ... 145

i. Detector .. 145

ii. Process ... 146

vii

2. Link GP with FEA ... 146

a. FEA-GP connexion ... 147

3. Using local/scale BoxSizes for Verlet neighbor Lists to save memory in large models

... 152

C. MODEL DEVELOPMENT ... 153

1. GP model development program ... 153

a. Auto-Scale Interface Creation .. 158

2. Nano-structure generation ... 159

3. External Decomposition (blind) versions: 2W 3, 5, 6one .. 162

a. decomp2W.f90.. 162

b. decomp3.f90 ... 163

c. decomp5.f90 ... 163

d. decomp6one.f90.. 165

4. Delete duplicate positions within a cutoff: delMDdup & delMD3dup 177

5. Considerations when designing very large micron scale models 177

6. FE Mesh input file for the GP-FEA simulation. .. 178

D. THE PARTICLE-BASED MULTISCALE ANALYSIS PROGRAM (PMAP)

 ... 181

1. PMAP Structure: Subroutines and functions ... 181

a. Compiling and running ... 186

2. PMAP Input file ... 186

a. Examples .. 192

E. DATA PROCESSING ... 197

1. Make XYZ files from CONFIG, MD, MD3 files: mkxyz.exe 202

2. Make Model.MD file from MD3 or Revive.MD file: mkMD.sh 203

3. Extract a specific scale or local domain from MD3 files: getScale.sh getADD.sh ... 205

4. Domain utilities ... 205

a. domainMove and domainScale ... 206

b. domainExtract ... 206

c. inDomain .. 207

d. domainCoordTrans ... 209

e. domainFind-rec ... 209

5. Plot stress contour from FEA: meshplot.exe ... 209

6. Plot FEA output and plotfiles: plot.sh ... 211

7. Plot local ADDomains: plotLS.sh ... 212

viii

8. Movie Generation .. 213

F. ANALYSIS ... 217

1. Void detection: matterInvert.exe ... 217

2. Structure analysis: CNeval.exe .. 219

a. Common Neighbour Analysis (CNA) .. 222

i. Method ... 222

(a) CNA Values .. 222

(b) Characterization .. 224

ii. Code Specifics .. 224

b. Coordination Number (CN) .. 226

c. Coordination Vector (CV) .. 229

d. Near-Neighbor Grouping (NNg)... 230

ix

LIST OF TABLES

 Page

Table I. List of Subroutines and Functions in the PMAP ... 182

Table II. Available Directives for PMAP ... 187

Table III. Model-1. Input File for the Crystal Generation Code 193

Table IV. Input-1. Scale 1 Model in Tensile Load, ... 193

Table V. Model-2. Two Coupled Scale Model Input File, ... 194

Table VI. Input-2. Scale 1 Model in Tensile Load with Surface Images. 194

Table VII. Model-3. Two Coupled Scale Model Input File, ... 195

Table VIII. List of Utility Programs to Augment the Capability of PMAP; 197

Table IX. Element Types Used in CNA Visualization .. 225

Table X. Sample “xyz” File .. 227

Table XI. CN Summary Output on Stderr ... 227

Table XII. CN Density Across the Model ... 228

Table XIII. Coordination Vector Across the Model ... 229

x

LIST OF FIGURES

 Page

Figure 1. Example of DC interface with atoms.
31

 ... 6

Figure 2. A 1D example model, exemplifying the scale interface and imaginary

domains. The scale ratio equals three. ... 11

Figure 3. Stress-strain curve for pure scale models .. 13

Figure 4. Example two-scale model, S2 on top and S1 (atoms) on the bottom. 15

Figure 5. Stress strain curves of pure S1, S2 and the two-scale model. 16

Figure 6. Configuration energy for the pure S1 and S2 models with free surfaces in the

X direction. .. 17

Figure 7. Example of surface images, i, and j, linking to real particles 19

Figure 8. The difference of configuration energy from the 3D PBC condition for the

free surface models and those with surface images, 20

Figure 9. A generic atomic cell (1, 2...9) which links to a generic particle M 22

Figure 10. Overview of deep-notch models for validation of dislocation passing scale

interface ... 24

Figure 11. A comparison of dislocation patters between fully atomistic and the GP

method before and after passing through the scale boundary. 25

Figure 12. ADD Model with central hole. .. 27

Figure 13. Model configuration colored for Coordination Number (CN) 28

Figure 14. Loading stress strain curve for the example model, 29

xi

Figure 15. Schematic of the four main domains of a simple GP-FEA model. 31

Figure 16. Schematic of the three-scale GP model for a thin plate with a central hole .. 43

Figure 17. GP-FEA interface design. .. 44

Figure 18. Continuous WF domain design and its relation with high-scale particles 45

Figure 19. Discontinuous WF domain design and its relation with high-scale particles 49

Figure 20. 2% strain displacement comparison .. 49

Figure 21. 2.5% strain displacement comparison ... 50

Figure 22. 3% strain displacement comparison .. 50

Figure 23. A survey for the model size in different modeling work. 56

Figure 24. Schematic of a micrometer-size GP-FEA model ... 62

Figure 25. Distribution of data acquisition domains ... 66

Figure 26. Y-Displacement comparison between results of GP-FEA 67

Figure 27. X-Displacement comparison between results of GP-FEA 68

Figure 28. Radial displacement comparison between results of GP-FEA 68

Figure 29. Effects of model size, Ly, on the displacement component uy 70

Figure 30. Model size effects on the radial displacement component, ur, 70

Figure 31. Model size effect on boundary stress component, ... 71

Figure 32. Size effect on the stress intensity factor KI at 1% strain, 79

Figure 33. Energy GIC distribution during cracking the local domains. 80

Figure 34. Critical energy release rate, GIC trend with model size 81

xii

Figure 35. T-S response for domain 6. .. 82

Figure 36. T-S response for domain 7. .. 82

Figure 37. Example of crack-tip phase configuration ... 84

Figure 38. FCC evolution during crack extension. ... 85

Figure 39. Mid-phase evolution from BCC to FCC. ... 86

Figure 40. Impact model configuration, .. 90

Figure 41. Kinetic energy and pressure evolution for the pure atomistic model 91

Figure 42. Max principal stress evolution of auto-duality domains 1-7. 92

Figure 43. Kinetic and Potential energy evolution for the pure Scale-2 model 93

Figure 44. Max principal stress evolution of auto-duality domains 1-7. 94

Figure 45. Lumping and Decomposition events for each AD Domain 95

Figure 46. Kinetic energy and Pressure evolution for the auto-duality model 96

Figure 47. Max principal stress evolution of auto-duality domains 1-7. 97

Figure 48. Main flow process of the PMAP. .. 102

Figure 49. Initialization process flow, ... 104

Figure 50. Equilibration process flow. .. 106

Figure 51. General flow of the GP load process ... 108

Figure 52. General flow of the GP-FEA load process. ... 109

Figure 53. The Ewald sum .. 132

Figure 54. Every charge, qj has a corresponding charge -qj .. 133

xiii

Figure 55. Particle i with cut-off radius, ... 137

Figure 56. Two layer DC interface. .. 147

Figure 57. Particle displacement interpolation. ... 150

Figure 58. Current loading flow. ... 151

Figure 59. FEA-GP V29f10 Flowchart revision 3. ... 151

Figure 60. Distance ratios are the same for the atom 'a' as for the particles. 164

Figure 61. Subroutine tree of PMAP, .. 182

Figure 62. FEA-GP Cu model at 13% strain and 384 ps, ... 211

Figure 63. The relationship between real matter and inverted mater models. 217

Figure 64. Examples of the two types of pair relationships, ... 223

Figure 65. Examples of common atom configurations, .. 223

Figure 66. CV concept for atom i with a vacancy. ... 230

Figure 67. Five step process of grouping particles by a single-link method. 231

Figure 68. Two types of clusters, (a) a dense group or (b) a Void group. 232

xiv

ABSTRACT

 Multiscale analysis is the study that bridges the gap between theory and

experiment via numerical simulation and works to couple material behavior across

disparate length and time scales. There is a growing need for techniques that operate

within this regime as progressing technology requires ever more accurate and

fundamental understanding of their materials. Multiscale analysis seeks to offer

atomistically-based informed solutions to the leading technological problems in materials

science. In this thesis the Generalized Particle (GP) method is validated with elasticity

solutions and coupled to a Finite Element Mesh capable of efficiently modelling in the

micro-scale with atomistic detail at local regions such as crack tips. This coupling method

(GP-FEA) is used to investigate model size effects on local atomistic phenomena. Size

effects were found for both elastic and inelastic (crack propagation) pre-cracked

crystalline Iron samples. For these examples it was seen that models 500nm and larger

were consistent with Linear Elastic Fracture Mechanics predictions for the displacement

filed around a crack tip for a given load, however models smaller than 500nm

underestimated the amount of deformation and had smaller zones of crack-tip phase

transformation causing a lower toughness. These results show that the model size used in

simulation and modelling must be large enough for the interesting atomistic phenomena

to be accurate. This work sets the stage for further model size research based on atomistic

analyses in hopes of proving a useful model size guideline for future work to be more

accurate.

 In addition to this research the multiscale program and numerous tools and

utilities developed to acquire this data are explained and examples given. Those scientists

interested in particle based dynamic simulation methods and analyses are encouraged to

peruse the latter chapters and appendices for detailed information regarding the specific

algorithms used and the structure of the programs. This additional rich information is

appended to encourage further work and development in the field of multiscale analysis.

1

INTRODUCTION

In the early part of the 21
st
 century there has been success in the semiconductor and

information technology industry which has caused a significant expectation for

nanotechnological breakthroughs. The progress in these areas is still not quite mature as

they currently rely on scientific advances. This leaves open the study of predictive

methods to hasten the expected nanotechnological breakthroughs. Of particular interest is

computational modeling which can take advantage of supercomputers to solve complex

problems is a wide variety of subjects.

 Material properties are inherently of hierarchical multiscale nature, with behavior

at the atomistic scale dictating the behavior at higher meso-scale domains and higher to

macro-scale domains.
1
 It becomes important to capture this behavior of different scales to

accurately model the material properties. The big challenge comes from uniting the

phenomena at low scales with material behavior at high scales; creating a demand for

new and unique scale bridging methods to solve engineering problems from hardening

materials used in agriculture to implementing new alloys for use in aviation. Modeling

with a fundamental foundation will help old theories become more accurate and robust

and assist in the formation of new theories.

 Science traditionally functions based on two stages of understanding, theory and

experiment. Computational simulation bridges these two stages for a smoother more

continuous understanding by expanding upon the simplified assumptions made by theory

allowing more complicated and more realistic simulation conditions. Simulation has the

added benefit of unrealistic conditions, or circumstances that are unattainable in

laboratory conditions. This allows for extrapolation and predictive power which aides in

a more intrinsically connected picture of fundamental phenomena. Multiscale analysis

has a place in Science in general as it is an intermediate methodology that not only

connects physical scales but also disciplines, such as material science, solid mechanics,

physics of condensed matter, chemistry, biology, et cetera.

A. Motivation

2

 Since material behavior originates at the atomistic scale it makes sense to

investigate the atomistic phenomena such as defects like voids, dislocations and grain

boundaries, in an attempt to elucidate how they cause large scale material behavior. This

is essentially the motivation and perspective that multiscale analysis functions upon.

 Crystal defects and stable structures of non-crystalline materials are widely

studied in material science because of its importance in technology.
2-4

 Crystal defects

include point defects (i.e. vacancies), linear defects (dislocations), and planar defects

(twin and grain boundaries).

 To investigate atomic level defects in materials the thermodynamic concept of

minimum free energy can be used, such that for a defect to be stable, the defect state must

have the lowest free energy for the given boundary conditions. This is akin to the

principle of least virtual work often used in continuum mechanics. Methods used to

analyze such defects include the M-T model proposed by Mott & Littleton,
5
 MD and ab

initio. The last two methods suffer from size limitations but the M-T model does not,

mainly due to the small spherical region I that surrounds the defect of interest. This

region I is the only region that undergoes any kind of atomistic dynamics, the

surrounding medium in region II is the continuum region that is held fixed with the

boundary conditions. This boundary constraint allows the method to be very fast. The M-

T method is included in such well known simulation programs as GULP.
6
 Although this

method can be used to investigate the general properties of defects it lacks adequate

interaction with service loading conditions, the model is over-simplified and suffers from

small model sizes which struggle to simulate defect nucleation in realistic processes.

 Dislocation nucleation and evolution are fundamental mechanisms of inelastic

deformation such as plasticity. Understanding these physical mechanisms is a major

scientific task, and multiscale analysis of inelasticity for nucleation and scale transfer of

dislocations may provide the key to understanding it. Recently, discrete dislocation

analysis confirms experimental results that the flow strength of polycrystals depends on

grain size.
7
 This kind of analysis enables the interpretation of plastic mechanisms, as well

as size and surface effects, for freestanding FCC thin films.
8
 Based on continuum

dislocation theory, the analysis can also indicate typical material behavior, such as the

Bauschinger effect.
9,10

 The length scale effect of plasticity is incorporated through the

3

explicit coupling of the density of geometrically necessary dislocations with the

crystallographic slip rule.
11

 Dislocations are line defects originating in atomic motion;

they can be simulated by atomistic analysis. A review on atomistic modeling of fatigue is

provided by Horstemeyer et al.
12

 The investigation of material failure is important for industrial technology and

fracture mechanics has been used widely in failure analysis since the 1950s. However, as

technology pushes the limits of material properties, it becomes ever important to

understand and control the microscopic and even nano-properties of materials.

Specifically, how cracks nucleate to cause materials to fail is based on the atomic

structure and atomic scale properties of the material. As a consequence, the classic

parameters used in fracture mechanics such as the fracture toughness K, fracture energy

J, and crack opening displacement COD require more fundamental definitions distinct

from their empirical origins.
13

 Just as classical thermodynamics can be described by

statistics which formed the very successful new study of statistical thermodynamics,

coupled the nano- and micro- scales to the macro-scale bulk thermodynamics processes

and properties. For this pursuit of coupling small scale behavior and properties with

macro scale behavior and properties there is extensive ongoing research using Molecular

Dynamics (MD) simulations to investigate material failure.
2-4,6,13-15

B. Classification of Multiscale methods

 There are many ways to use multiscale analysis and many different models and

disciplines to use it in. This wide variety of applications causes people to classify

different types of multiscale analysis by their methodology and by the scale at which the

analysis is performed. For the methodological classification, multiscale analysis can be

split in twain to describe methods that couple different spatial scales together

concurrently (parallel), transferring information simultaneously both ways from one scale

to the other
16,17

 and those that model low scale behavior and send the resulting property

data to a separate higher scale model in a one-way transfer.
18

 These methods are called,

respectively, the concurrent and hierarchical (sequential) multiscale methods.
19

 The other

way to classify multiscale analysis based on the scale of application is also with two

different categories. The first is class I which describes multiscale models primarily used

4

for low scales from Quantum mechanics and the atomic scale up to about the nano-scale.

Class II focuses on the larger scales from the micron scale up to the macroscopic and

tends to be very empirical. With these two types of classification any multiscale analysis

could be given two descriptions, one describing the methodology used and the other at

what scale the analysis is addressing. The following subsections will focus mainly on the

hierarchical and concurrent classification primarily of Class I being atomistically-based

methods.

 The main reason why there is such a distinction between Class I and Class II is

due to the experimental limitations and the modeling limitations. Experiments can

directly validate Class II models however, experiments generally have scale limits on the

micron scale and it becomes difficult to validate Class I models directly. From the

modeling perspective, the methods used today have a difficult time linking the behaviors

of materials on the nanoscale to the large scale bulk properties.
19

 This gap in capability

prevents atomistic-based models from predicting large scale material behavior thereby

failing to link the two classes together. If micron sized models can be developed, it would

open a door to solving important problems in engineering based on a fundamental

atomistic foundation.

1. Hierarchical

 The hierarchical approach uses a one-way transfer from low-scale properties into

key variables and functions for the higher scale.
18,19

 This approach is very general and

can be used in most disciplines. Coarse graining is a type of hierarchical multiscale and is

the act of integrating out redundant degrees of freedom.
20

 Lyubartsev et al. modeled

higher scales in this way by leaving out “uninteresting” degrees of freedom. From first-

principles simulations they obtain a set of atomistic pair-wise effective interaction

potentials to be used as a force field with no need for empirical data. These force fields

are then used in classical all-atom simulations to scale up the system size by 2–3 orders

of magnitude. They then use the MD results to develop a set of effective potentials for a

chosen coarse-grain level suitable for large-scale mesoscopic or soft-matter simulations

otherwise unobtainable by atomic resolution simulations.
21

 Hierarchical multiscale is used extensively in micro-biological simulations, for

example Ortoleva et al. proposed a force-field based methodology that “takes advantage

5

of the structural hierarchy natural to macromolecular assemblies in defining the system as

a collection of mutually interacting subsystems with internal dynamics, which

simultaneously preserves the all-atom description.” where the main driving force is the

free energy dynamics. Although their approach is computationally intensive, the

drawback is outweighed by the large Langevin timestep.
22

 A popular method used to coarse grain atomistic level biological simulations is

the use of the MARTINI force field and bead method.
23

 Their rational and motivation

comes from the idea that interesting phenomena in biological systems occur at long time

scales that cannot be accessed by molecular dynamics, such as the dynamics of large

proteins and material self-assembly. Coarse graining allows simulations to run at 2-3

orders of magnitude larger time scales.

 A well-known Class II continuum model that predicts the brittle to ductile

transition based on a competition between the loss of atomic cohesion and the emission

of crack tip dislocations, this model is known as the Rice-Thomson (RT) model.
24

 The

difficulty with this model is acquiring the critical energy release of the slipping events.

Later in the 1990s a method that uses Frenkel's sinusoidal distribution
25,26

 for the shear

stress along the slip plane ahead of the crack tip was proposed by Peierls
27

 and Nabarro

(PN). The PN model allowed Rice to calculate the slip energy via the J- integral. An

advantage if the PN model is that dislocations need not exist initially, but traces its

evolution from initiation to termination. Even with this advancement the PN model has a

shortcoming based on its transformation of the atomic behavior to the continuum

representation and thus the model does not give the best results for the calculated

dislocation slip energy.
28

 it so happens that in this case the Class II RT model can be

enhanced with a Class I atomistic based model that can find the constitutive equation

required by the RT model.
29,30

 Cleri et al. carried out MD simulations and obtained a

more reliable constitutive equation for the RT model to determine the brittle to ductile

transition. This example shows how well atomistic-based hierarchical multiscale analysis

can be used to acquire accurate results by enhancing long used continuum level models.

2. Concurrent

 The concurrent approach to multiscale analysis simultaneously operates on a

small scale that is coupled in space to a higher scale. Applications where this is

6

advantageous have the similar characteristic where there is a local small domain of

significant interest that is surrounded by a less interesting domain. For example, the grain

boundary created by micron-sized grains, turbulence with small scale vortices surrounded

by large scale bulk fluid motion and elasto-plastic crack tip propagation surrounded by a

finite continuum. All of these examples have interesting behavior at small scales in

specific local areas and are surrounded by less interesting material behavior, such

behavior that could be homogenized into continuum constitutive laws.

Figure 1. Example of DC interface with atoms.
31

 Some existing concurrent multiscale methods directly connect (DC) atoms in the

atomistic domain with finite element (FE) nodes in the continuum domain, see Fig. 1, or

through some form of interpolation.
32

 Methods such as the Quasicontinuum (QC)
33,34

 and

CADD.
35,36

 These methods require that the element size at the scale interface be equal to

the lattice constant to perform well. This constraint requires many FE elements at the

interface when the model size is extended from nano- to submicron- and micrometer-

scales. Thus, a new principle and method for variables to bridge scales should be

developed to avoid this deficiency.

 Most existing concurrent multiscale methods do not truly show seamless transitions

of key variables such as deformation, motion and force at the scale interface.
36

 The

transition problem is caused by the incompatibility between materials on both sides of the

scale interface; the atomistic scale has non-local behavior while the continuum has local

behavior. Here non-local behavior refers to the inter-atomic potential that couples atomic

7

motion that acts not just on the nearest atomic neighbor, but also on atoms that are far

from each other. In contrast, local-behavior refers to models that depend only on the

deformation gradient at a given location in space to provide force or stress to that same

location in space. The incompatibility produces non-physical phenomena such as ghost

forces and artificial wave reflection at the interface. A new type of scale-bridging method

should be developed to eliminate sources of incompatibility, thus realizing a seamless

transition. The GP method is taken as a likely candidate to accomplish this bridging.

C. Atomistic-based multiscale analysis, Class-I

 Due to the desire to have fundamental atomistic behavior describe large scale

phenomena, atomistic-based multiscale analysis is required. There has been certain

success in using such Class I techniques to elucidate important mechanisms that have

been used to drive theoretical models and increase the accuracy of existing ones. Class-I

and concurrent multiscale methods will be the main focus of this thesis.

 The QC method has been applied by Miller and Rodney for investigating the

dislocation nucleation during indentation.
37

 Since QC is a concurrent method it was able

to increase the model size much larger than an MD simulation could have, as a result is

was able to obtain not only detailed information but also more accurate. They did two

types of studies, one model in 2D and another in 3D. They found that for the 2D model

dislocations nucleated spontaneously in a dipole along a slip plane, involving only about

10 atoms on either side. Other than these atomic motions there was hardly any other

deformation. What is very interesting is what they found in their 3D model. Instead of a

dislocation dipole they discovered a small ring or loop of dislocations form

spontaneously, the size of which depended only on the size of the indenter. This

multiscale analysis reveals that dislocation nucleation is an inherently 3D phenomenon

involving the collective motion of a disk of atoms within two adjacent slip planes. This

shows that the PN model used in Rice's method is not as accurate, but with the help from

atomistic-based multiscale analysis these long established theoretical models can be

further improved.

 In an attempt to study the effects of dislocations on a larger scale, multiscale

analysis of plasticity was developed. A three dimensional (3D) simulation model of

8

discrete dislocation dynamics (DD) was developed recently
38

 to understand the

relationship between dislocation glide and macro-scale plastic slip behavior in single

crystal BCC: Tantalum. They concluded that the incorporation of fundamental atomistic

information is critical to develop a physics-based, predictive meso-scale DD model. The

latter has been used to investigate individual dislocation glide behavior and macro-scale

plastic slip behavior in single crystal BCC metals. When dislocation multiplication

occurs, they move to the interior of the model and pass scale interfaces such that the

accuracy of dislocations smoothly passing the scale interface is essential. Unfortunately,

the problem remains unsolved. With remeshing of the continuum to increase the

atomistic domain, dislocations passing the scale interface may be avoided; the QC

multiscale method uses this technique.
39

 A promising technique for bridging Class-I and Class-II multiscale models

through the use of atomistically-based multiscale is with a hybrid approach, using Class-I

concurrent multiscale methods to derive critical key variables for use hierarchically in

Class-II methods. The most common usage of this practice is in fracture analysis. Fan and

Yuen used MD to derive a traction-displacement relation to use as cohesive zone

parameters for larger scale FEA models.
40

 This approach is advantageous since it avoids

the time-scale problem of large concurrent multiscale to simulate the entire propagation

process.

D. Inadequacies and Existing Needs

 Although there has been great progress in the use of MD to investigate crack

propagation and the origins of failure there are two main shortcomings:

 First, most work concentrates on crack propagation rather than crack nucleation.

Although studying defect and crack nucleation is important the connection with failure is

a difficult topic. These defects are both theoretically and practically important since they

are the key properties for understanding the underlying mechanisms of failure. For brittle

materials these defects can be the key property to denote material failure.

 Secondly, much work has imposed special treatments to ensure that the crack

propagates along a desired path. Such treatments included the cutting of atomic bonds

along the designed propagation path,
41

 designing the desired path to be “weak”,
42,43

 using

9

a screening method to prevent atomistic interactions across a Grain Boundary (GB).
44

These treatments are convenient when using the cohesive zone model (CZM) to

investigate and model the crack propagation behavior; however their effectiveness must

be further validated because the crack propagation essentially depends on how it was

nucleated.

 From the modeling perspective, the methods used today have a difficult time

linking the behaviors of materials on the nanoscale to the large scale bulk properties.
19

This is mainly due to the complicated question: what is the minimum size of material that

can be considered a continuum? The answer to this question is highly material

dependent. For nano and micro grained structures the Hall-Petch relationship is valid

when the grain size is larger than 20 nm
45

 making it possible to describe continuum

behavior based on the mechanism of dislocation pile-up at grain boundaries. Another

reason for ambiguous answers to this question is due to the strong surface effects at the

nanoscale. These effects become more significant when the area/volume ratio increases.

The area/volume ratio for a sphere of radius r is 3/r, thus for a 1 nm radius the ratio is 3

whereas for a 1 micron radius the ratio is 0.003 that is 1000 times smaller and surface

effects are generally neglected at scales above the micron. This indicates that the surface

energy is very important to consider on the nanoscale and must be included if an accurate

material model is to be used at these small scales. There is work that exists that

incorporates a surface elasticity theory into continuum mechanics for use at nanometer

scales.
46

 In the elastic range continuum models are incredibly reliable and can be applied

to discrete materials having a size of a few nanometers.
47

 However these continuum

models break down when plasticity is involved at these small scales, such that the

minimum required model size for plasticity remains unsolved.

 This gap in capability prevents atomistic-based models from predicting large scale

material behavior thereby failing to link the two classes together. If micron sized models

can be developed it would open a door to solving important problems in engineering

based on a fundamental atomistic foundation.

10

 METHODOLOGY OF THE ATOMISTIC-BASED MULTISCALE

ANALYSIS

Within this chapter the Generalized Particle method will be explained and examples to

show that material properties do not change with particle scale under the given small-

strain assumptions. How the concurrent scale coupling is accomplished via imaginary

particle domains; the need for surface corrections in higher-scales will also be discussed

preceding a description of a method for compensating for it by using imaginary particles.

The ability to switch from higher-scales to lower scales will be explained and a method

described. Certain shortcomings of the GP method will be discussed that outline the

suitability and applicability of the GP method. Lastly a capability or option for the GP

method is coupling with Finite Element domains and will be used in a proof of the GP

method's elastic capabilities in the Chapter III.

A. The Generalized Particle (GP) Method

 The GP method has some very important geometric features that make it ideal for

use in multiscale inelasticity; its main feature is Scale Duality for particle domains. The

method assumes a material model consisting of generalized particle domains of different

scales beginning with n=1 as the atomistic scale and higher values of n corresponding to

the continuum scale. These higher scales maintain the material structure of the atomic

scale which is more closely related to real material structure, consisting of discretized

atoms or in this case, particles. These higher domains can be represented easily as the

atoms they constitute, by a mathematically proven process called inverse mapping,
48

 thus

enabling the dual nature particle domains.

 These high scales can effectively reduce the degree of freedom dramatically.

Generally, the number of atoms nℓ that one generalized particle represents at the n
th

scale

domain for BCC, FCC and other cubic crystal structures can be calculated by

 (1)

Likewise, the particle mass, m(n), the lattice constant an and the position vector IJnR

between particle I and J in the particle domain can be expressed, respectively, by atom

)1(3

)(

 n

n kl

11

mass m0, crystalline atomic lattice constant a0 and the position vector ijr between atom i

and j in equations (2)-(4), where atoms i and j correspond to particles I, J.

where the ratio of adjacent scales, k , is defined as a ratio of the lattice constants, as an+1

of (n+1)
th

 domain over that of an of the n
th

 domain (n=1…m-1) or an+1/an. To see how

effective the GP method is at reducing the degrees of freedom, assume a scale ratio of

k=3. In this case, equation (1) shows that for scale domain n=3 the generalized particle is

lumped from 729ℓ 3 = atoms; for n=4, 19283ℓ 4 = ; for n=5 and 6, 531441ℓ 5 = and

7

6 101.43489ℓ = . For an aluminum cube with volume of 1 μm
3
, the total atomic

number is approximately 60.2136x10
9

(a0= 4.05 Å). If all atoms are lumped into particles,

the whole system can be represented by 113.3 x 10
3
 particles of 5

th
 scale or 4196 particles

of 6
th

 scale. Thus, one can have sufficient degrees of freedom to put atoms in the critical

areas around dislocations, interfaces and grain boundaries while keeping the model size

large enough.

Figure 2. A 1D example model, exemplifying the scale interface and imaginary

domains. The scale ratio equals three.

 Natural interaction

forces passing through a scale interface must make both sides

of the interface the same scale, whether they are particles or atoms. Therefore atoms only

interact with atoms and particles only interact with same-scale particles at its natural

scale interface. The GP model satisfies this requirement by introducing two imaginary

domains, Wn+1image and Wnimage, respectively, to the left and the right of the n
th

 scale

interface. (See Figure 2) The imaginary particles' positions are determined by the average

position of the atoms in its Neighbor Link Cell (NLC), these are the atoms that would be

)42(,, 1

0

1

0

13  

ij

n

ijn

n

n

)(n

n rkRakamk=m

12

lumped together to form that imaginary particle. In this case these atoms define the

position of the particle. This particles' position is then used as part of the interaction force

with the real particles. The imaginary atoms also have an NLC, their NLC consists of the

nearest real particles, and the imaginary atom's position is determined by these particles.

The imaginary atoms then are used to impose a force upon the real atoms. It is through

this geometric averaging process that forces and displacements are transferred across the

scale boundary. Each imaginary particles' NLC are defined when the model is created,

and they keep this NLC throughout the simulation.

 Simulation dynamics are not performed on the imaginary particles, they only

influence their real particles; as a result the imaginary domain does not produce surface

effects since they are within, and defined by the domain of the other scale. Particles are

used for the Higher scale behavior since they can be treated in the same manner as atoms,

and can use the same atomic potentials -- once properly scaled down and using the

Cauchy-Born rule.
48

 Treating the higher scales as atoms or particles, gives the domain the

advantage of non-local behavior. Other multiscale methods use a finite element

continuum that consists of local behavioral interactions, which is not well suited to

plasticity.

1. Material property scale independence

 To illustrate the fact that high scale domains may be used in place of atoms in

areas of uniform deformation, three models were developed with the same size of

X=72.580 Å, Y=145.16 Å and Z=72.580 Å. However each had a difference scale; one

model was made entirely of atoms, another purely of scale-2 particles and the third of S3

particles. Each of the models were a single Copper crystal thus each model had 64000,

8000 and 1000 particles, respectively, for a scale ratio of k=2. These models were

equilibrated in an NPT ensemble before an application of load at a temperature of 300 K

and pressure of 1 atm; the Morse potential was used. All models were simulated with 3D

PBCs. Tensile load was applied along the Y direction.

 When loading uniaxially in 3D PBCs there remains the question of the treatment

of the transverse dimensions. Typically 3D PBCs fix the system dimensions thus

maintaining a constant volume. Other times the system dimensions are scaled in order to

change the system pressure, this is the technique used to barostat systems. However when

13

loading along one direction many keep their transverse system dimensions constant

which causes a constraint on the system's Poisson ratio fixing it to be null. Others may

scale the transverse dimensions to preserve the system volume, this may alleviate the

system triaxial stress caused by the former treatment but this also fixes the system's

Poisson ratio, this time to be 1-√0.5=0.2928. This may be a more realistic approximation

to the material behavior however there may still be transverse residual stresses. A third

approach is to relieve the transverse stresses in a similar way to barostatting the system,

only this time the transverse stresses are used rather than the full system pressure. This

third technique and applications for anisotropic barostatting is described in detail in

Appendix A.5.b. Pedone et al. called the first technique that makes v=0 a Constrained

Simulation (CS) and called the barostatting technique an Unconstrained Simulation

(UCS)
49

 both of these loading techniques were used in this study and they both yielded

the same conclusion: that high scale particle domains can replace the atomic domain.

Figure 3 shows the stress strain curves for the CS condition it can be seen that each scale

is coincident until about 12% strain at which point the S1 model began to fail, indicated

by the drop in stress. These results show that whether the loading conditions had or had

no tri-axial stress, replacing atoms with higher scale particles is supported before material

failure. So limiting material failure phenomena to the atomistic scale should preserve the

correct material response.

Figure 3. Stress-strain curve for pure scale models

14

2. Scale interfaces

 Since individual GP scales have been shown to be sufficiently accurate to take the

place of atomic domains, it is natural to consider how well these scales can be coupled

together to reduce the DOF in areas that don't require atomic resolution.

 When designing a coupled two scale model one should start first by considering

the placement of the real atom domain and the higher scale real particle domains in

relation to it. The atomistic domain should be placed in areas with large deformation

gradients, such as surfaces, grain boundaries, and defects. Since real particles and atoms

must interact with the same scale, i.e. an S2 particle can only interact with another S2

particle; imaginary domains are used to interact with the real particles. They are

imaginary particles due to the fact that their positions are determined by the adjacent

scale deformations not from dynamic motion calculations as described at the beginning of

this section.

 In this example, the model, see Fig. 4, is simulated in 3D PBCs and equilibrated

in the NPT ensemble at 300K and 1atm, the model dimensions are X and Z=43.548 Ang,

Y=72.58 Ang. The atomic real domain is on the bottom (as if the Y direction points up)

and the S2 real particles are on the top. So for the atoms to pass information to the scale-2

domain, there must be an imaginary S2 domain overlapping the real S1 atoms at the

interface (Y=0.0 and Y=-36.29). Thus the real atoms will determine the imaginary S2

particle positions and the real particles will interact with imaginary particles.

 Another imaginary domain must be used to pass scale-2 information down to the

atomic real domain. To do this an imaginary S1 domain is used overlapping the real

particles on the upper side of Y=0.0 and underside of Y=36.29. Their positions are

determined by the real particles and interact with the atoms. Thus we have complete scale

coupling based on deformation transfer. The reason for the imaginary domains at the very

top and bottom is due to periodicity in the Y direction, it could be imagined as an infinity

layered model with alternating scale domains, this feature and loading condition make the

model simpler to make, simulate, and compare.

15

Figure 4. Example two-scale model, S2 on top and S1 (atoms) on the bottom. The

dark points are the imaginary particles (W2) and atoms (W1) that couple the two

scales. It is periodic in all direction so the top and bottom also couple across the

boundary.

 The size of the imaginary domains should span the entire interface (from X,Y=-

21.774 to X,Y=21.774). But the depth of the imaginary domains (deviation from Y=0.0

and Y=±36.29) should be equivalent to the scale's interatomic cutoff radius. So the

imaginary S1 domains (overlapping the real particles above Y=0.0 and below Y=36.29)

should have a depth of 6.5Ang for the Morse Potential so they should go from Y=0.0 to

Y=6.5 and Y=29.79 to Y=36.29. The imaginary S2 domains that overlap the real atoms

below Y=0.0 and above Y=-36.29 should go from Y=-13 to Y=0.0 and Y=-36.29 to Y=-

23.29. These domains are twice as deep as the atomic imaginary domain because they

interact with scale-2. And scale 2 must scale up the cutoff radius used, so that when the

inverse mapping method is used to determine particle forces and accelerations, the

correct number and range of particles (inverse mapped into atoms) are used so that the

same interatomic potential can be effective on the particle scale. For this reason the

16

imaginary depth should be equal to the cutoff radius so that the real particles 'feel' as

though they are in bulk material. If the imaginary domain is not deep enough, then the

real particles would 'feel' like they are close to a surface and their behavior would be

different than bulk behavior.

 One may notice in Fig. 4 that the particle layers of the imaginary domains are not

consistent; i.e. those above the interface have four layers while those below have only

three layers. This is an artifact of the measurement used during model development. This

perceived problem may easily be fixed but this case is included here to illustrate a point.

This model is a single crystal of FCC copper with a lattice constant of 3.629 Ang. When

using a cutoff radius of r=rc=6.5 Ang, four layers will be included if counting the layer at

r=0.0 (r in [0.0, 6.5]) but only three will be included if not counting the first layer at r=0.0

(r in (0.0, 6.5]). Thus we see that three layers of imaginary particles is sufficient,

however, due to the nature of imaginary particles, a fourth layer causes no penalty. So a

first look at the model might seem as though there is a problem, but upon careful

inspection it is nothing to worry about.

Figure 5. Stress strain curves of pure S1, S2 and the two-scale model.

17

 This two-scale model was loaded in tension along the Y direction in CS and

compared with pure S1 and S2 models. The comparison can be seen in Fig. 5 to be very

similar to both pure S1 and S2 indicating that the use of the scale coupling scheme is

satisfactory

3. Surface corrections

 It is not always feasible to use periodic boundary conditions and not always

physical. In many cases free surfaces, or at least non-periodicity, is desired. Since a

surface is a discontinuity between a solid/liquid and a vacuum/gas it requires atomic

resolution to be accurate. However in many cases this accuracy may not be needed. In

this subsection will be discussed the cause of surface effects in higher scales and a way to

minimize or circumvent them.

 The same models as used in section II.A.1 are used to demonstrate the effects of

having a free surface. The periodicity in the X direction was removed and the models

were equilibrated at 300K and 1atm then loaded in tension after 15 ps. Figure 6 shows the

configuration energy for the atomistic S1 model and the scale-2 model. It is seen that the

S2 model has significantly higher energy than the S1 model.

Figure 6. Configuration energy for the pure S1 and S2 models with free surfaces in

the X direction.

18

 The reason why S2 has larger energy is due to two reasons, the surface energy and

the fact that it is S2. Since it is S2, the cutoff radius is k times as large as in S1, meaning

that the surface effects will be k times as deep, however the model volume is the same as

in S1, this causes the surface to volume ratio to be larger in S2 than S1. Essentially,

higher scales have larger surface effects than smaller scales because their surface effects

go deeper into the material. Imagine an atom at a distance of r from a free surface, if r is

less than the atomic cutoff radius, rc, then this atom is influenced by the free surface.

Now an S2 particle that is kr from a free surface will have about the same configuration

as that atom, and will be influenced in the same way due to inverse mapping, yet the

particle is twice as deep in the bulk.

 When high scale general particles are exposed to a vacuum, the material

discontinuity causes a greater surface effect than an atomic surface. This surface effect

can affect the surrounding deformation and cause trouble in various parts of the model.

This very noticeable change in configuration energy caused by surfaces could be large

enough to nucleate dislocations from the surface when the atomistic model would not.

This difference could cause incompatible failure phenomena, thus some technique should

be used to minimize this effect.

 An alternative to using periodic boundary conditions in an effort to reduce or

eliminate the surface effect of high scales is to use a way that would reduce the force

imbalance at the surface. One way to do this is to place imaginary particles at the surface

so that the real particles near the surface just see other particles, making them feel as

though they are part of a bulk material. The trick comes from the question of how to

determine the positions of these imaginary surface particles? They could be rigidly linked

to real particles on the inside. Another approach would be to restrain the displacement of

the particles at the surface from moving perpendicular to the surface. This would roughly

maintain their perpendicular strain to that of the inner material; for a uniform strain, there

is no wide spread effect from the surface force imbalance.

 In this instance the former definition will be used around the edges of the model.

These edges are exposed to a vacuum and not in periodic conditions so they will be

affected by the surface effects. The surface image layer, to be most effective, should have

19

a depth equal to the inter-particle cutoff radius, for the same reasons as for scale

interfaces. For instance if the interatomic cutoff radius is 6.5 Å and the scale ratio k=2,

for S2 it would be 13.0 Å. Surface images are created before the simulation is run. The

user must specify domains within-which real particles will be converted to imaginary

particles and be rigidly linked to a group of the closest real particles of the same scale,

see Fig. 7. So in this case, domains should be specified all along the edges of the S2

domain having a depth of 13.0 Å.

Figure 7. Example of surface images, i, and j, linking to real particles within a

cutoff and angle θ. Their fixed distance from the average, re.

Surface images are still required even if the model will be connected to an FEA mesh,

because the GP model must equilibrate alone first, before connecting with FEA. The

Surface images will later become the WG domain during FEA connection, which will be

discussed later.

 When the models have surface images and are equilibrated again their

configuration energy is the same as if they were equilibrated with 3D periodic

boundaries. Their energy difference is shown in Fig. 8 to be zero. This is a significant

improvement to the free surface case. This shows that the use of surface images

effectively eliminates the free surface effects. This is useful for models with geometries

that are unsuitable for periodic conditions, or that are of a nature inherently unperiodic,

20

such as a thin plate with an edge crack; where the use of periodic conditions would cause

the model to behave as if it had a center crack that recurred at every model width.

Figure 8. The difference of configuration energy from the 3D PBC condition for the

free surface models and those with surface images, showing that the surface

images recover the same configuration energy as the 3D PBC condition.

4. Scale duality

 Scale duality is a GP concept that allows higher scale domains to be mapped to

lower scales and vice versa. This concept allows the use of inter-atomic potentials to be

used to describe high scale particle dynamics.

a. Decomposition

 This concept can also be used to decompose a higher scale domain into a lower

scale domain for better resolution. This is particularly important when studying the

migration of dislocations or the path of a crack.

 The basic approach is to use scale duality to decompose particles into their

corresponding atoms for a smooth transition. This is a more thorough and accurate way

for defects (e.g. dislocations, twins and point defects) to smoothly pass scale interfaces.

21

After decomposing the particle region into atoms along the dislocation path, dislocations

can be naturally transferred.

 The critical issue is how to decompose the deformed particle into atoms to keep

the deformation pattern. This will involve some treatment
50

 to transfer the reference

atoms to the currently deformed ones.

 Two strategies can be chosen for particle decomposition. One could be considered

a Lagrange type decomposition method; that is to decompose a generic particle M (M=1,

2… MP) into atoms from which the particle was lumped. Here, MP is the total number of

particles in the selected particle domain. The other is a quasi-Euler type of decomposition

method that needs only a regional distribution of the decomposed atoms with no need to

distinguish which atoms belong to which particle. Here, the term “quasi” is used to

denote that the particles can move in the space before decomposition and they are fixed

in the space during the decomposition process. Specifically, the second strategy focuses

on the decomposed atoms in the deformed unit cells which directly connect to the generic

particle M (see figure 9 below). Summarizing the distribution of the decomposed atoms

in these cells for each particle M (M=1, 2… MP) distributions of decomposed atoms in all

regions of the selected particle domain will be determined. In this work we will take the

second strategy for simplicity.

 For ease of visualization we discuss a decomposition of second-scale particles

into atoms with the scale ratio k=2. Since the decomposition into atoms should be

completed before dislocations reach this region, all particles and their corresponding

atoms in the given region are deformed but the variation in deformation gradient between

different neighbor cells is mild. Figure 9(a) shows two cubic unit cells located in one

quadrant which directly links to a generic particle M before deformation. These cells can

be FCC, BCC and HCP. In Figure 9(a), the BCC structure is shown where the small cube

with labels 1, 2… 9 is the atomistic unit cell and the large cube with bold numbers

within parenthesis, (1), (2)…(9), is the unit cell of the second scale.

22

Figure 9. A generic atomic cell (1, 2...9) which links to a generic particle M and is

located in M’s first quadrant and inside of a second-scale particle cell ((1),

(2)…(9)). (a) Configuration of the atomistic cell before deformation which is

inside of the particle cell, (b) Configuration of the atomistic unit cell after

deformation at an arbitrary loading step.

 All positions of the atoms in the small unit cell before deformation can be

uniquely determined by its crystal structure; the same is true for atoms in the other 7

atomistic unit cells inside the other 7 octants linked to particle M (M=1, 2…MP). If M is

not inside the bulk but on the surface it will involve only 4 unit cells inside 4 octants.

Now, it is more clear if after deformation the positions of atoms in the small unit cell can

be determined then the configuration of those in the 8 (or 4) octants and, in turn, all

decomposed atoms inside the selected second scale can be determined. The task therefore

is how to use the simulation-obtained displacements of particles around the generic

particle M to determine the positions of atoms in the deformed generic unit cell as shown

in Fig. 9(b).

 Two approximate methods are used for this purpose which are introduced in detail

in Section 3.2 and 3.3 of Ref. 50:

23

Decomposition Method 1: Using shape functions to determine atom positions based on

particle displacements at unit cell vertexes. This method is simple with a certain accuracy

which is based on the interpolation function used in the 8-node hexahedral element.

Decomposition Method 2: Calculating deformation gradient matrix F based on particle

displacements at unit cell vertexes for determining atom positions. This method uses the

Cauchy-Born rule to determine the deformation gradient. F In turn, the position vector

ir of the generic atom i after deformation can be expressed as a function of 0ir ; its

position vector before deformation as follows:
11

 n=irF=r i 1,2.......0i (5)

 This concept shows that the high-scale particle can fully represent the position,

velocity and force of the atoms, which lump together to form the particle, to save DOF.

High accuracy can be obtained in highly inhomogeneous deformation fields by the

decomposition of particles into atoms. However, this method has constraints because in

the mathematical proof,
48

 the Cauchy-Born rule is used. This rule requires the

deformation gradient tensor, F , to be sufficiently smooth over the region that the particle

represents the atoms. If this condition is not satisfied, one needs to decompose the

particles into atoms to maintain accuracy.
50

 The difference between the QC’s adaptive meshing method and the GP’s

decomposition method is: QC changes the FE mesh into atoms and GP changes particles

into atoms. This difference is essential since GP particles are in the same material

structure as the atomistic structure and have the same non-local constitutive behavior as

atoms. However, in the QC method, “it is necessary to recalculate the ghost forces after

each re-meshing step since the atoms/nodes experiencing ghost forces are changing,..”.
36

b. Dislocation propagation beyond scale boundary

In Ref. 48 and Ref. 50, 3-scale GP models were used for scale ratio k=2 and k=3,

respectively, to compare with fully atomistic analysis for dislocation initiation based on

the CN method (see Section III.A.1.). The result shows a high accuracy of the GP method

in prediction of applied strain value for dislocation initiation and the dislocation evolution

pattern. Furthermore, two special calculations are conducted to show the GP model has

24

energetic preference to dislocation nucleation and multiplication.
50

 This is done by

computing and then comparing the energy of crystal before and after dislocation

nucleation. Interested readers are referred to Section 7 of Ref. 50.

 For validation that dislocations can pass scale boundaries in a more general case

in which surface effects are minimized, models with deep symmetric notches for both

fully atomistic and 3-scale GP methods were designed as shown, respectively, in Figure

6(a) and (b). The fully atomistic model has 154206 atoms and the GP model has 24136

atom/particles of which 1290 are imaginary located around the interfaces. This simulation

relaxed for 100ps.

Figure 10. Overview of deep-notch models for validation of dislocation passing scale

interface near the center of the nanowire, (a) fully atomistic model, (b) 3-scale

GP model and (c) decomposition of higher scale into lower scale, especially

decomposition of S2 scale into atoms along dislocation propagation path.

 A partial second scale (S2) region along the dislocation path near the S1/S2

interface was decomposed at a strain of 12.83% (see Figure 9(c)). At the same strain, the

25

S3 regions were also decomposed into S2 regions, which make the validation simple. For

simplicity, decomposition method 1 was used.

 After the decomposition, the loading continued from strain 12.83% to about 19%

and analyzed using the CN method. The results shown in Fig. 11(c) and (d) were

compared to the CN of the fully atomistic simulation in Fig. 11(a) and (b). This figure

depicts the CN of the atoms in the central symmetric plane of the model (i.e., near y=0).

Those in yellow are a perfect FCC crystalline structure inside of the body; the blue,

CN=13 and the white, CN=14 are atoms indicating dislocations. At 16.85%, dislocations

had not yet passed the scale interface, however at 18.47% dislocation patterns show

propagation across the scale interface, denoted by the vertical bold line. It is seen that,

after comparison between the GP and MD results, the patterns are very similar; indicating

that the decomposition method proposed in this work is effective for dislocation passing

through the scale boundary. Some differences during the passing process, as shown in the

inset chart on the right of Fig. 11 at strain of 17.65%, is reasonable due to the statistic

distribution of a large amount of dislocation cores simultaneously passing through the

interface.

Figure 11. A comparison of dislocation patters between fully atomistic and the GP

method before and after passing through the scale boundary.

c. Automatic Decomposition

 In practice, a clever way to decompose a domain is to have an imaginary

atomistic domain overlapping the real particle domain. In this way the imaginary atoms

will follow the real particle deformation via their NLC. At a given point in time their

26

roles may reverse; the imaginary atoms will become real and the real particles will

become imaginary, thus decomposition is realized! This method is simple to implement

as an automatic decomposition technique and most closely resembles Decomposition

Method 1 described above. Since the newly made real atoms will have a position based

on interpolation of the formerly real particles they will need some time to relax to a more

realistic structure, however because they followed the deformation of the particles, the

time required is significantly short.

 The domains chosen to be 'auto-duality' domains (ADD) require some kind of

criterion that determines whether they should decompose or lump if already decomposed.

In this work the temporal average of the maximum principal stress over the last ten

timesteps of the ADD is used. The max principal stress for a given ADD is a function of

the domain's virial stress.

     2

2

1
2

1

2

1
xyyxyx τ+σσ+σ+σ=σ 








 (6)

This applies only for 2D models or sufficiently thin atomistic based models. A

dimensionally invariant alternative would be to use the average potential energy of the

domain. When using criteria such as these, appropriate values to use for controlling the

decomposition etc. can be difficult to make. Usually a calibration model is required to

determine a suitable value for the decomposition criterion.

 An example copper plate model was made with a small hole in the center from

which dislocations will nucleate when it is sufficiently loaded. In order to sustain a hole

in an atomistic model the hole must large enough that the atoms cannot “see” or “feel”

each other, so the diameter must be larger than the interatomic cutoff radius. In this case

the hole diameter is made to be 10 Ang. To have the boundary conditions far enough

from the hole the majority of the model is modeled with high scale S2 particles with

atoms around the surface of the central hole going a depth of 10 Ang into the model. The

entire height of the model along the Y direction is 145 A and 87 Ang in width; the plate

thickness in Z is 43.5 Ang. The W1 imaginary domain initially extended into the S2

domain by a depth of the cutoff radius, but was extended in the X direction to be used as

six separate auto-Duality Domains; three on either side of the hole. See Fig. 12.

27

Figure 12. ADD Model with central hole.

 The domains identified in Fig. 12 as 1-6 are domains that will be monitored for

their maximum principal stress during the calibration simulation. When dislocations form

in the S1 domain, the values in the neighboring domains will be recorded and used as

decomposition values, so that the auto-duality simulation will decompose these domains

at that value to allow further dislocation development to propagate horizontally into the

newly made S1 domains. In this case the decomposition stress was set to 15.0 GPa. This

value is low enough to ensure that dislocations are not present at the time of

decomposition.

28

 (a) (b)

Figure 13. Model configuration colored for Coordination Number (CN) of each atom

and particle. The large light blue spheres represent dislocation cores with CN=13

at (a) 9.5% strain and (b) 10.5% strain.

29

Figure 14. Loading stress strain curve for the example model, the two configurations

of figure 12 are before and at the stress peak, respectively.

 This process feature allows the GP model to capture the failure process at the

atomistic level while maintaining higher-scale resolution far from the region of local

failure phenomena.

B. Linking GP with FEA

 In this section, we will show how the model size, which has been already enlarged

by the GP method, can be further extended to the micrometer scale or even larger by the

proposed GP-FEA multiscale method. This extension makes it possible to investigate the

model size effects and satisfy the accuracy validation requirement by comparing the

atomistically-based multiscale analysis with the well-known solutions of continuum

theory.

1. Advantages of the GP-FEA Methodology

 The GP method can save a large degree of DOF and computational resources by

using generalized particles for domains with smooth deformation gradient. However, if

the particle domain is too large the computational saving may not be sufficient due to

time consumption of its non-local calculations. It appears natural for the GP-FEA method

to take the advantage of FEA for connecting the high-scale particle domain to a FE mesh

30

by which large scale continuum level phenomena can be more accurately modeled. This

new method links the continuum via finite element (FE) nodes with high-scale particles

but not directly with atoms, as is the case for most existing multiscale analyses such as

the quasicontinuum (QC) method. Two advantages for the change of connection location

from the atomistic domain to the high-scale particle domain can be observed. First, since

a high scale particle domain, n, has very large generalized lattice constant, an as shown in

eqn. (3), the shortcoming of the DC method listed in Section I.B.2. can be avoided.

Specifically, if the particle domain has a scale ratio k=3 and scale n=3, then following

eqn. (3) we have a3=3
2
a0=9a0, it indicates that this replacement in the GP-FEA method

can save about 2 orders of elements in the interface domain compared with the DC

method. Second, as a consequence of moving the interface from the atomic boundary to

the high-scale boundary, the distance from the external and the interface boundary to the

atomistic domain is much larger. In turn, any variation or oscillation of the BC will have

less disturbance on the atomic motion in the domain of interest, which increases the

atomistic accuracy, avoiding instability and preventing the effects of artificial

phenomenon such as the ghost forces from influencing the atomic domain.

 In addition, for the atomistically-based multiscale analysis it becomes difficult to

accurately connect the thermally active atoms to the quasi-static nodes of an FE mesh,

thus zero temperature MD simulation is used.
35

 However, inside the GP domain there is

no FE nodes existed thus there are no constraints from FE nodes for the description of

thermal activity in these low scales. This advantage is important since the atomistic

domain is the most important domain which needs to have a high accuracy.

2. Model Structure and Design of Coupling subsystems

 The GP-FEA model embeds an inner multiscale particle system within a

surrounding FE domain continuum. This will reduce DOF of the system while not

disturbing any important phenomena in the atomistic domain as it is “far away” from the

interface between the GP and the FEA nodes and “more far away” from the external

boundary. The method for how to link the high-scale particles to the FE nodes through

iteration processes is schematically shown in Fig. 15. The structure of the GP-FEA model

mainly consists of four regions with the ascending order from inside to the outside of the

model: (1) An inner multiscale GP region. (2) An interface WF domain whose main role

31

is to determine the FE node inner boundary position according to the particle relaxation

position after the last iteration. (3) an interface WG domain whose main role is to

determine the generalized particle boundary position according to the FE node positions

after the last iteration. (4) The outside FEA domain in which standard FEM is used. Two

separate but coupling processes occurs alternatively in the two sub-systems, each

involves two domains. The sub-system WF-FEA, short for domains of WF and FEA,

control the FE node displacement based on WF and remote boundary node positions. The

WG-GP, short for domains of WG and GP control the motion of the generalized particles.

The calculation of the second sub-system is necessary as a part of the global loading

iteration process. The WG and WF domains are defined before the loading but after the

GP equilibration to prevent any residual stresses.

Figure 15. Schematic of the four main domains of a simple GP-FEA model. From the

inner region to the outside in an ascending order: The GP domain, the WF and

WG domains and the FEA domain.

3. The “Bottom-Up” and “Top-Down” iteration bridging scheme

 The “bottom-up” transformation from particles to FE nodes, denoted by the up

blue arrows, is through the particle-node overlapped WF domain and the “top-down”

transformation from FE nodes to particles, denoted by the down green arrows, is through

the overlapped node-particle WG domain. The function of WF and WG are similar to the

32

role of W(n+1)image and W(n)image, (or W2 and W1 domains if n=1) in the GP model. The

WF domain transfers data “bottom-up” by averaging particle’s position 𝑟𝑖̅(𝑖 = 1, … 𝑙𝑛) to

determine the position of the corresponding FEA node I in the WF domain by

 𝑅𝐼
̅̅ ̅ = ∑

𝑟𝑖̅

𝑙𝑛

𝑙𝑛
𝑖=1 (7)

where 𝑙𝑛 is the number of the particles in the NLC of the FE node I. Likewise, the WG

domain transfers the data “top-down” by a certain decomposition of the FEA nodes’

position to determine the particle position within the FE elements in the WG domain. The

former and the latter processes are important, respectively, to control the deformation of

the FEA domain and the motion of the GP domain during the iterative process. In fact,

the deformation of the FEA domain is controlled by both the nodes at the remote

boundary and the FE nodes in the WF domain; the motion of the GP domain is controlled

by both the inside body of the GPs and the particles in the WG domain. To make the two

separate but coupling processes of the system functional, it merits note that before any

iteration of a load step all FEA nodes in the WF domain are fixed for the WF-FEA

process and all particles in the WG domain are fixed for the WG-GP process. In turn, for

the first process these nodes serve to be an inner boundary to control the deformation of

the FEA domain under remote external loading, thus the GP displacement controls the

upper scale FEA node motion in the WF domain to carry on the “bottom-up” transition.

 On the other hand, the above controlled deformation process of the FEA domain

will change the position of the FEA nodes which overlap the WG domain. In turn, these

displaced FEA node coordinates will be used for determining the new coordinates of

particles in the WG domain. The principle for assigning the new position of particles with

the new coordinates of the FE nodes is based on the FEA isoparametric formulation.
51

The latter is simply to use the FE shape function matrix

[N ( ] to determine the

coordinates {x ( )} of any particle inside of the element with the coordinate matrix

{X} of the FE element nodes. Here   are the natural (or non-dimensional) coordinates

of the particle and will not change during the FE node displacements. Since after the

iteration the node position {X} is known, shape functions are given then the new particle

position can be obtained by the matrix product of [N] and {X}. Then the position of these

33

particles will be held fixed as the external boundary of the GP domain to start the new

WG-GP sub-system process for its relaxations of particles and atoms. Thus, the FE node

controls the particle motion in the WG domain to make the “top-down” transition

realized. Note, shape functions can be linear or bi-linear, using the bi-linear functions is

more accurate but also more complicated, the unique solution for bi-linear functions

developed by Hua
52

to determine the new coordinates of these particles from the element

node coordinates should be used.

 Specifically, after the equilibration of the GP model and the FE mesh design (see

Section 3.5.3) is completed all initial positions, x(j) and y(j), of GP particle j (j=1...nj)

and initial position XL
J
, YL

J
 of element node J (J=1...NJ, L=1..4) in the WG domain are

determined. Where, nj and NJ denotes the total number, respectively, of GP particles and

FE elements in that domain, L denotes the node number of a given element which varies

from 1 to 4 for the quadrilateral element. Using the inverse transformation method

developed by Hua, one can find the natural coordinates ξ (x, y)x, y) for each generic

particle, j, based on the node coordinates of the element that particle j belongs to. With

the deformation process of the WF-FEA subsystem, the node coordinates XL
J
, YL

J

change, the corresponding position, x and y of the particle j also changes. The new

position x and y of the particle in each iteration is important to formulate the WG-GP

external boundary for particle relaxation. It can be determined by shape functions [N] as

(Remark: the superscript J of the element ID is dropped for simplicity)

{
𝑥(𝜉, 𝜂)
𝑦(𝜉, 𝜂)

} = [𝑁]{𝑋},

{𝑋} = {𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑋3, 𝑌3, 𝑋4, 𝑌4}𝑇

 (8, 9)

[𝑁] = [

𝑁1 0 𝑁2

0 𝑁1 0

0 𝑁3 0
𝑁2 0 𝑁3

𝑁4 0
0 𝑁4

]
 (10)

Where

𝑁1 =
1

4
(1 − 𝜉)(1 − 𝜂), 𝑁2 =

1

4
(1 + 𝜉)(1 − 𝜂),

𝑁3 =
1

4
(1 + 𝜉)(1 + 𝜂), 𝑁4 =

1

4
(1 − 𝜉)(1 + 𝜂)

(11)

34

 The key here in determining the particle position in the WG domain, based on the

position (or) displacement of the FE nodes, is to make the natural coordinates (ξ, 

constant so the distribution pattern of particles inside the element is fixed as required

naturally for a given material domain.

 It may be interesting to look at the difference of the WF domain from the WG

domain in treating the relationship of FE node with the particles. For the former, this

relation is quantified by eqn. (7). In practice, after the initial GP equilibration the first

step is to find what particles is inside the NLC of that FE node I and determine their

position vectors, 𝑟𝑖̅(𝑖 = 1, … 𝑙𝑛). These particles’ identification number (ID) will be

constant during the whole deformation process (i. e., the particle constituents of the NLC

for the FE node I is fixed). Each of these individual particles move during iteration, the

spatio-temporal average of their position determines the new position of the generic FE

node is through the equation (7). It is truly a lumping process but not a one-to-one fixed

relation between FE node and particle. This is natural since the determination of the FE

node positions in the WF domain is controlled by a relaxation process of the WG-GP

subsystem. Thus, the particles should move to make the system, and particularly the

particles surrounding those FE nodes, equilibrated under the fixed WG BC. This is a

dynamic process so one needs to integrate Newton’s equation of motion for the system

by, say, the Velocity Verlet method.
19

 However, for the WG the situation is completely

different, the particles change its role from “master” in the WF domain to “slave” in the

WG. Their positions are controlled by the element node positions which are determined

by the motion of the WF-FEA subsystem. Obviously, the efficient way to make this

control is to fix the relation of these FE node positions with the internal particle through

the fixed natural coordinates ξ, determined after the equilibration In a sense particle

position is solely determined by the FE node displacements through an interpolation

function, the WG method for the top-down transition may be considered as a

decomposition of the FE node displacements to a generic particle.

4. Numerical Algorithms

 The solution for the deformation and failure of the system under a given load P is

nonlinear; it uses incremental loading schemes for numerical convergence. For each

35

increment of loading, there are many iteration steps k (k=1... km) for all of which the

remote external boundary of the FE domain is fixed. What changes between the iterations

is the position of the inner boundary only, which is defined by the FE nodes in the WF

domain. The iteration process is to make the deformation consistent between two

successive iterations, such that the last two iterations are iterations are identical under a

given error tolerance. This requires the WG-GP sub-system also has the identical BC

between the two iterations. This, in turn, will guarantee the identical particle position in

the WF domain and thus cause FE nodes to be identical since they are determined by the

particle positions surrounding them.

To mathematically express this identical position requirement for a single

incremental load step, suppose the symbol k (k=1... km) denotes the k
th

 iteration of the

WF-FEA subsystem in that step, I (I=1,.. NI) is the ID number of a generic node and NI –

the total number of the FE nodes in the WF domain. Symbol
I

u denotes displacement

vector for the FE node I,
I

ku and 1

I

ku  denote that displacement vector is obtained,

respectively, from the k
th

 and (k-1)
th

 iteration. The displacement difference, d
I
, between

the two iterations for FE node I is defined as the so-called L2 norm as

 𝑑𝐼 = ‖𝑢̅𝐼
𝑘 − 𝑢̅𝐼

𝑘−1‖ (12)

Likewise, the average, ukavg, of the FE node displacement norm in the WF domain is

defined by the average of the norm for all FE nodes in that domain

 𝑢𝑘𝑎𝑣𝑔 =
1

𝑁𝐼
∑ ‖𝑢̅𝐼

𝑘‖𝑁𝐼
𝐼=1 (13)

Thus, the iteration error between the two iterations is similarly defined as the L2-norm of

the difference between the displacement vectors of all FE nodes in the WF domain,

normalized first by the total number, NI, of particles and then divided by its average

displacement ukavg.
53

 This can be written as

2

1

()
IN

I

I

I

err

kavg

d

N
ε =

u




 (14)

The iteration process for the incremental load step at hand will not stop until this error is

36

less than the prescribed tolerance 0 , i.e,

 err < 0 (15)

or reaches the maximum iteration number km which is much smaller than the prescribed

number of time steps, tm, for the relaxation of the subsystem WG-GP. This is natural since

the WG-GP calculation to determine FE node positions for the WF-FEA subsystem BC is

mainly a relaxation process to make the system equilibrated.

C. Shortcomings

 Most of the shortcomings of the GP method stem from violations of the

underlying assumption: that for sufficiently small deformation gradients, the deformation

can be approximated by sampling more distant locations; i.e. using a coarse mesh or

larger particles with the same density; this is the Cauchy-Born rule.

D. Summary

 The current incarnation of the GP method is seen to have a natural interface

between scale domains where physical variables such as displacement and force may

smoothly pass from one scale to another. Atomic phenomena such as dislocations may be

passed into higher scale domains via the scale-duality concept
50

 by decomposing particles

into their constituent atoms. In addition, it has been mathematically proven
19,48

 that all

calculations in the particle domain can be conducted at the atomistic domain scale using

the same potential, parameters and numerical algorithm as is used for the model's

atomistic scale. Thus the GP method is essentially an extension of MD and can be easily

delivered to applications by modifying existing MD codes. Readers interested in the

details of the unique features of GP are referred to the literature.
18,19,48,50

37

 ACCURACY VERIFICATIONS OF ATOMISTICALLY-BASED

MULTISCALE ANALYSIS WITH CONTINUUM SOLUTIONS BY

THE GP-FEA METHODS

Most accuracy verifications of atomistically-based multiscale simulations adopt the

comparison with the result of fully atomistic simulation due to the difficulty of

experiments in getting high-resolution data at angstrom and nanometer scales. While

accuracy verification with the well-known continuum field solutions is important for

engineering applications, it is seldom to appear due to unknown model size effects and

the limitation of many multiscale methods in developing a minimum model size

necessary to make the comparison meaningful. Among these issues, the key is to develop

new multiscale methods which can produce sufficiently large models. The key issue is

addressed in this work within the framework of the GP and GP-FEA method where GP is

short for the Generalized Particle Dynamics Method.
48

 The GP-FEA is a further

development of the GP which can make the model size as large as needed. This new

method links the continuum via finite element (FE) nodes with high-scale particles but

not directly with atoms, as is the case in the quasicontinuum (QC) method, etc., to avoid

artificial effects such as ghost forces. In addition, its model structure and design, the

``bottom-up'' and ``top-down'' bridging scale scheme and the iterative process show

convenience for applications. This method is exemplified by simulations for a central

hole in a two-dimensional specimen under tensile load. The agreement between the

continuum solution and simulation demonstrates that the GP-FEA method is a powerful

tool for investigating model size effect and comparing atomistically-based simulation

with continuum theory to validate the accuracy of multiscale analyses.

A. Introduction

 It is by now widely recognized that materials are inherently of multiscale,

hierarchical character.
48,54

 Material behavior should not be considered as monolithic

properties that manifest only at phenomenological levels, as historically taught. Rather,

important properties and material responses can arise at a myriad of length scales and the

38

phenomenological behavior of the continuum follows from their atomic and microscopic

structures. The significance of multiscale analysis naturally follows this understanding

and it brings the hope that new concepts and methods can be developed based on low

scale structures, behaviors and physics. In fact, in the past 20 years one sees a wide scope

of interests and intensive research activities in developing multiscale methods. To name a

few, quasicontinuum (QC),
55

 CADD
56-58

 are examples for the direct coupling (DC)

methods between atoms and FE nodes of continuum in the concurrent multiscale

analysis. Specifically, QC uses the Cauchy-Born rule to transfer atomistic energy to the

strain energy density of FE analysis and CADD, short for coupled atomistic discrete

dislocation dynamics, combines atomic scale analysis with discrete dislocation analysis

in a continuum to perform multiscale modeling. Here, approaches that relate atoms and

finite element nodes in a one to one manner, or through a form of interpolation, will be

referred to as DC methods. According to this definition, most of the existing multiscale

methods belong to the DC methods. On the other hand GP
18,19,48

 and ESCM
32

 belong to

the non-DC methods category. The embedded statistical coupling method (ESCM)

employs statistical averaging over selected time intervals and volume in atomistic

subdomains at the MD/FE interface to determine nodal displacement for the continuum

FE domain. The other non-DC method, called the generalized particle dynamics method

(GP), is proposed to use constant material neighbor link cells (NLC) at the interface

region to mutually transfer information from the bottom-scale up or from the top-scale

down to quantitatively link variables at different scales. Readers interested in the details

of classification, historic development, and applications of multiscale analysis are

referred to “Multiscale Analysis of Deformation and Failure of Materials”.
19

 Looking back on the developments of multiscale analysis in the past two decades,

two basic issues for extending engineering applications of concurrent multiscale

simulations can be addressed. The first one is how to quantify the accuracy of

atomistically-based multiscale simulation and the second one is how to enlarge the model

dimension to the minimum size necessary to make the model realistic.

 The first issue is obvious since experimental accuracy verification of the

multiscale analysis at atomistic/nano scale is difficult even when using high-resolution

experimental methods. The most popular approach so far is to compare the results of

39

multiscale analysis with a fully atomistic simulation method such as molecular dynamics

(MD). Examples can be found for dislocation at notches
48

 and dislocations passing

through scale boundaries.
50

 Among those efforts, there are two notable verification

studies. Curtin and Miller
36

 used a one-dimensional (1D) spring model to compare the

scale transition regions of the various methods such as QC/CLS,
59

 QC-GFC
60

/FEAt
61

 and

CADD with the fully atomistic model. Their results confirm that besides the QC-GFC

and FEAt methods most multiscale models do not truly meet the requirement for a

seamless transition at the interface between atomic and FE domains. This discontinuity is

caused by the intrinsic incompatibility of constitutive behavior between material models

being coupled together at the two sides of the scale interface which causes non-physical

phenomena at the interface, including the so-called ghost forces.
60

 Specifically, the behavior of the continuum on one side of the scale interface is

local but that of atoms on the other side is non-local in nature. Here, non-local

constitutive behavior indicates that the force at any atom depends not only on those atoms

closest to it, but also on the atoms nearby, which are not direct neighbors with the atom at

hand but within its neighborhood through interatomic forces; local behavior indicates that

the force (stress) of a material point depends only on the deformation gradient (strain) at

the same point of the continuum. Due to this local behavior, nodes in the continuum

region cannot feel interactions from other nodes nearby as their atomic counterparts in

the atomistic region. Based on the mechanism of this incompatibility, a dead ghost force

correction method of QC, (i.e., QC-GFC) was developed
60

 to use the ghost force as a

dead force to recalculate the result. This correction method allows this approach to

exhibit a seamless transition at the scale interface, as mentioned in the previous

paragraph. It is therefore necessary to recalculate the ghost forces, in some cases, say,

after each re-meshing, since the ghost forces may change.

 The other verification performed is the benchmark computation of 14 models

carried out by Miller and Tadmor.
53

 The fully atomistic simulation is the benchmark

against which one compares the multiscale models. Here, the corresponding atomistic

solution is considered as the exact solution. The test used a common framework to

examine the accuracy and efficiency of these methods using a test problem of single

crystal aluminum containing a dipole of Lomer dislocations. While this test is significant,

40

the quantitative criterion for accuracy comparison used the global error which covers

displacements of all atoms in the simulation system. The shortcomings of the method for

accuracy verification are twofold: First, it is difficult to judge how accurately this method

describes the local behavior of the material, say, at the interface which makes it difficult

to guide improvement of the interface design. Second, it can also be hard to make a

judgment for how accurately it describes the continuum behavior for engineering

applications. In fact, the benchmark test indicated itself that slight error in global energy

estimation can lead to profound effects on the resulting dislocation motion and, in turn,

the continuum behavior.

 The second issue related to a model size requirement needs some explanation

even though it is a common problem that appears frequently during model design. This

issue can be addressed from the following four aspects. Firstly, accuracy verification for

low scales is important to find the deformation mechanisms, such as crack nucleation in

fatigue, dislocation patterns in fatigue and creep, the inherent inhomogeneity of plastic

deformation, the statistical nature of brittle failure and the effects of size, geometry and

stress state on yield properties.
62

 To make this finding meaningful, however, one must

link these low-scale dynamics to material behavior and be characterized in the continuum

scale for applications. This requires a relatively large continuum model size. Otherwise

the approach of predicting material behavior by implicitly averaging

atomistic/microscopic dynamics may not be valid. Secondly, if the model size is small

the boundary conditions (BC) may likely affect the local fields of forces and

displacements which are near the regions of interest. In turn, it will change the behavior

of highly important domains (e.g. interfaces, crack-tips and flaws). In most practical

cases, BC cannot be perfectly maintained and will have oscillatory and random

perturbations. Various BCs can be accepted if they are sufficiently far away from the

interested regions following the concept of Saint Venant's principle.
63,51

 Otherwise, the

obtained low-scale phenomena observed can be qualitatively different which can cause

the instability of atomic motions, microstructural evolutions and unexpected material

failure. Thirdly, some mathematical solutions for the continuum require the medium to be

infinitely or sufficiently large to obtain results close to the analytical solution such as the

crack-tip solution of linear elastic fracture mechanics (LEFM). In this case, model size

41

must not be small for a reasonable result. The fourth aspect is that for microsystems and

nanotechnology, the model size should be equal/larger than micrometers or at least being

sub-micrometers so the problem of micro- or nano-sensors/activators can be more

accurately simulated. For nanotechnology, this is true for some designs since nanotubes,

nanofibers, etc. need to be assembled and embedded in a matrix which has a certain size

requirement. Thus, investigating the model size effects and choosing a minimum model

size necessary for the accuracy requirement is essential.

 This work is our first effort to address the issue of model size effects on accuracy.

It is obvious that the premise for investigating this issue is to have new methodology for

developing sufficiently large size models such that the effects can be investigated

systematically by varying the model size. Thus, this paper focuses on the introduction of

the new methodology within the framework of the GP and GP-FEA method, where the

GP-FEA is a further development of the GP method. This new method can make the

model size as large as needed. The use of this new methodology to investigate the model

size effects will be exemplified in future works. To address the first issue, accuracy

verification is conducted by a comparison of the GP-FEA simulation result with a

classical solution of continuum theory. This classical problem is a two-dimensional

elasticity solution of a specimen with a central hole under tensile load.
64

 This solution

from elasticity theory is accurate but using it to verify the accuracy of atomistically-based

simulation faces new challenges. Firstly, the explicit expression needed to be modified so

the direct comparison can be available. Secondly, the data process for the atomistic scale

needs to be done correctly which should involve a group of atoms near a continuum point

not a single atom in that position. The third challenge concerns how to estimate the error

by the comparison. All these issues will be addressed through the example of a 2D hole

specimen.

 The Chapter is organized as follows: Section B will introduce the proposed GP-

FEA method in detail. Section C will extend the elasticity solution to an explicit

displacement expression around the hole of a 2-D plate specimen under tension and then

make a comparison with the multiscale simulation. The paper is ended with summary and

conclusions in Section D.

42

B. Model Development

 The model of the GP-FEA simulation includes two inter-connected parts: one is

the GP model consisting of multiscale particle domains and the other is continuum

domain made of an FEA mesh. The first of three operations is to develop the GP model.

It is of primary importance, as it includes the atomistic domain where the interesting

phenomena are to be observed. The second is to clearly define the interface between the

GP and FEA regions. The third is to develop the FE mesh starting from the designed

interface, covering the remaining part of the GP model and extending outward to a large

model size terminated at the external boundary. These three steps will be discussed in

detail using the plate with a hole as an example in the following subsections.

1. GP Hole Model development

 The GP model usually consists of several generalized particle domains with

different scales. In the example of an iron plate with a hole shown in Fig. 16, the GP

model is designed to have three scale domains. Scale-1 (S1) with scale n=1 is the

atomistic scale with a hole in the center with diameter of 4 nm. Scale-2 (S2, n=2), the

second particle domain, surrounds the atomistic domain whose outer boundary size is

about 20.2 nm in width and 42.2 nm in height. Scale-3 (S3, n=3) - the third particle

domain, surrounds the S2 domain space whose size is 36.3 nm in width and 80 nm in

height with the scale ratio k equal to 2. Following eqn. (3), the generalized lattice

constant for S2 and S3 are, respectively, a2=2a0, a3=4a0 and the corresponding number

of atoms that a particle represents for S2 and S3 are l2=8, l3=64. The thickness of this GP

model is about 4.5 nm. The translational DOF number of the GP model is 292,488

(3x97,496). If the model is fully filled by atoms, the DOF will be 3,396,384

(3x1,132,128), i.e., 11.6 times larger than the GP's. The bridging of bottom-up and top-

down between the successive scales is accomplished by imaginary domains W(n+1)image

and W(n)image that overlap, respectively, the real particle domain (n) and (n+1), as

introduced in Section A and discussed in the first paragraph of Section B. More details of

the specifics about their design, function and purpose can be found in the literature.
19,48,50

43

Figure 16. Schematic of the three-scale GP model for a thin plate with a central hole

of 4 nm diameter. The loading direction [-110] is along the Y-axis and the X-axis,

transverse to the loading direction, is along [110].

2. GP--FEA interface design

 An exact interface design must first be drafted before developing a mesh for a GP

model. The general design for the interface can be seen in Fig. 17. As mentioned in

Section II.B.3. the function of WF and WG is to transfer data “bottom-up” and “top-

down” to determine the FEA inner node positions and the outer GP particle positions,

respectively, at the interface. Figure 17 shows the details of the ideal interface design.

44

Figure 17. GP-FEA interface design. Particles in WF average their positions to

determine the position of the FE node which are within r1 in the WF domain. As a

result, it produces a displacement to the FE node at position d1. The WG particle

positions, within r2 in the WG domain, are determined by interpolation with in

the FE element.

 The depth of the WG domain, r2, from the edge of the GP model, d2, as well as

the WF domain width, r1, should be equal to the inter-particle cutoff radius as it follows

from the length scaling rule of the GP method shown in eqn. (1). Since Mendelev's

Embedded Atom Potential (EAM) is used whose inter-atomic cutoff radius is 0.53 nm,
65

by eqn. (1) the inter-particle cutoff radius for S3 when k=2 is calculated to be a3= 2.12

nm (=2(3-1) x 0.53 nm). The nodes of the inner boundary of the FEA mesh should align

with the center of the WF domain which is shown in the line d1 of Fig. 17 and is

determined by the particles' position average in the WF domain. The depth of the

interface, found by subtracting (d2-d0), is important for the scale bridging, and should be

larger than two times the inter-particle cutoff radius to allow for a “gap” between WF and

WG. This gap prevents undesirable feedback between WF and WG thus hastening the

interface convergence, the recommended gap size is the inter-particle cutoff radius. The

finite element size in the interface should be uniform about the size of the inter-particle

cutoff radius and gradually increase in size farther from the GP domains. Figure 17

shows the interface for the 1D case. This profile is extended all along the edge of the GP

model, in a sense tangentially, as illustrated in Fig. 18.

45

Figure 18. Continuous WF domain design and its relation with high-scale particles

and the WG domain for the GP-FEA model interface.

3. FEA Mesh generation

 Needless to say, code development is essential for wide applications of multiscale

analysis. The GP-FEA method includes two source codes, Multi-Input57.f90 and

FEA19.f90, which respectively, directly controls the GP simulation, including the WG-

GP subsystem, and couples the calculation of the WF-FEA subsystem. Its corresponding

input file is inp57f19.sh. Here, the numbers denote the code version for the GP and FEA

trial. The structure and its related function of these codes are complicated and will be

introduced elsewhere. Here, we will introduce the constitution of the input file

FEAxx.inp. This file will be a part of the main input file but it is specifically designed for

the FEA calculation parameters. In other words, when the FEA routine runs it will read

this GP-FEA mesh input file. To develop this mesh input file, any FE program, such as

ABAQUS, Ansys, etc. may be used to generate the FEA mesh based on the model size,

the WF internal boundary and the interface dimensions. The process for the generation

and its required format is described in Appendix C.6.

 It is important that the GP model be equilibrated before it's connected to the FEA

mesh to prevent residual stresses from manifesting at the interface. In the simulation, the

NPT ensemble at 300 K was usually used for the equilibration if the system operates in

46

room temperature. After this separate equilibration the FEA mesh is connected to the GP

model for the loading procedure. Here, the FEA mesh is added to the GP hole model such

that the entire model size is about 200 nm wide and 500 nm high, nearly an order larger

than the GP model. After the geometry has been sketched with the coordinate origin

being the same for the GP model and FE mesh, it is best to partition the part around the

interface so that it can be seeded to have a uniform element size and shape for both WF

and WG domains. Since the element size at the interface is designed to have an edge

length equal to the inter-particle cutoff radius, it will create two FE elements overlapping

the GP model along the normal direction of the inner FE boundary. It is important to

carefully seed the edges of the FE model for nodes by keeping a constant size element at

the interface for both WF and WG-FEs then gradually increase the element size away

from the interface.

C. Verification of the GP and GP-FEA multiscale methods with Elasticity

Solutions for a plate with a central hole under tensile loading

1. The scheme for the comparison of atomistically- based simulation with a

continuum solution

 While using the classical solution of a plate with a central hole under tensile

loading to verify the accuracy of multiscale simulation is a good idea, the difficulty is that

the continuum field is very different from the particle field. Besides the difference in their

constitutive relations as mentioned in Section A, the difference of the continuum from the

non-continuum particle type structure makes the data comparison difficult. This makes

the solution expression quite different in terms of the variables and the format. For

instance, the elasticity solution for a central hole with radius, a, under the remote tensile

boundary stress, S, is given by the following stress component form in the polar

coordinates of radius, r, and the angle, θ, measured from the vertical loading axis, y:

 (16)

 (17)

 (18)

47

This solution was obtained by Prof. G. Kirsch in 1898. While it is derived for an

infinitely large plate it has been well confirmed many times by strain measurement and

by the photoelastic method for plates of a finite size. In 1907, Timoshenko proved that “If

the width of the plate is not less than four diameters of the hole the error of the solution in

calculating (𝜎𝜃)𝑚𝑎𝑥 does not exceed 6 percent.”
64

 The width of the model with the

central hole in this work is 200 nm and the hole diameter is 4 nm, the ratio of the width

over the diameter is about fifty, thus the accuracy is reasonable for this comparison.

 On the other hand, the stress in the atomistic field is the so-called virial stress

defined as

 (19)

Here, the symbol “-” under a letter denotes a second order tensor and above a letter

denotes a vector. In the first term of the right part in eqn. 19 there are two vectors of

velocity, 𝑣̅; in the second term, the two vectors are force vector 𝑓 ̅and the position vector

𝑟̅. The superscripts α and β denote the atoms and Ω -- the volume of the atom at hand.

Eqn. 19 shows the stress at atom α depends not only on those atoms closest to it, but also

on the atoms, β, within its spherical neighborhood of cutoff radius through interatomic

forces. This definition shows its nonlocal behavior. The different definition between the

stress defined by a continuum and the atomistic field makes direct comparison difficult.

On the other hand, the definition of displacement is clear and unified for both continuum

and the atomistic field if a certain volume average can be conducted for the atomistic

field. Unfortunately, to the authors' knowledge there is no explicit expression in the

public domain for the displacement field around a central hole of a tensile specimen.

These expressions are based on the solution of eqn. 16 to 18. The final results are given

as follows:

 (20)

 (21)

These expressions will be used to validate the simulation accuracy of the proposed GP-

FEA multiscale analysis.

48

 To make the GP calculation result of any generic point, s, on the plate face

comparable with this continuum solution, the average displacement of atoms within a

cylinder centered at that point with a small radius and extending through the entire

thickness should be used. Here, we use 0.3615 nm for the cylinder radius which includes

about 150 atoms on average for S1 and 20 particles for S2 per cylinder. All the data is

placed in a file whose strain level is indicated. From that file one extracts the average

displacement values from each of the cylinders specified. The obtained average

displacements of the atoms/particles will then be compared with the corresponding data

calculated from the analytical solution.

2. Result comparison for pure GP and GP-FEA model

 The GP-FEA model developed in Section B.1. was loaded along the Y direction

with periodic BC in the thickness direction. A barostat was used during loading to reduce

the transverse stress average to zero to better match the conditions for the analytical plane

stress solutions. Figures 20 to 22 show the angular displacement 𝑢𝜃 and radial

displacement 𝑢𝑟 by both the GP and the GP-FEA method along a circle with radius of 8

nm. The angle θ sweeps from the 0 degree along the Y-axis to 90 degrees along the X-

axis, i.e., varies in the first quadrant. All the data are recorded at the strain of 2% -- 3%

which is in the elastic range for the single iron crystal.

 The corresponding result by using the analytical expressions 20 and 21 are also

given with the key title of “Analytical”. In the analytical solution, the following elastic

constants are used: E=224 GPa and v=0.3. However, it is found that any change of these

constants has but a minor change on the results, which is consistent with elasticity theory.

For the GP-FEA simulations, results for two WF design schemes shown, respectively, in

Figure 18 and 19 are also given. From the comparison, it is seen that all the atomistically-

based multiscale simulations listed in Figures 20 to 22 have sufficient accuracy in

comparison with the analytical solution. It should be emphasized that agreement is along

a circle with radius of 8 nm which crosses both S1 and S2 regions. The consistency of the

simulation in both of the two scales with the analytical solution indicates, implicitly, that

the transition between the scale boundary and the interface between the FEA and GP

domain is sufficiently smooth, while a detailed direct verification at these boundaries

should be done in the next step. The obtained result so far makes one confident to use the

49

GP and GP-FEA methods for middle size and large size models, respectively, for the sub-

microsystem and microsystem. In addition, it is seen that the accuracy of the non-

continuous (or separated) WF design shown in Fig. 19 is a little better than the

continuous design of Fig. 18. The non-continuous one are distinguished in Figs. 20 to 3-7

with the symbol “GP-FEA model b” from the triangle of “GP-FEA model a”. This may

offer some clues for further improving the design of the WF and WG domain by

developing design software to optimize.

Figure 19. Discontinuous WF domain design and its relation with high-scale particles

and the WG domain for the GP-FEA model.

Figure 20. 2% strain displacement comparison of simulation-obtained and formulae-

calculated angular displacement 𝑢𝜃 and radial displacement 𝑢𝑟 along a circle with

radius of 8 nm in the first quadrant for a single iron crystal.

50

Figure 21. 2.5% strain displacement comparison of simulation-obtained and

formulae-calculated angular displacement 𝑢𝜃 and radial displacement 𝑢𝑟 along a

circle with radius of 8 nm in the first quadrant for a single iron crystal.

Figure 22. 3% strain displacement comparison of simulation-obtained and formulae-

calculated angular displacement 𝑢𝜃 and radial displacement 𝑢𝑟 along a circle with

radius of 8 nm in the first quadrant for a single iron crystal.

D. Summary and Conclusions

 Two basic issues for extending applications of concurrent multiscale simulations

are discussed in this work. They include how to quantify the accuracy of atomistically-

based multiscale simulation and how to enlarge the model size to the minimum necessary

to guarantee the accuracy. These solutions are discussed with the GP and GP-FEA

methods. The GP-FEA method, proposed in this work, is a new multiscale method which

can make the model size as large as needed in the microsystem. In addition, it links the

continuum via FEA nodes with high-scale particles, not directly with atoms, as is the case

with other methods such as the QC method, to avoid artificial effects. Apart from the

51

conventional verification method with the full atomic solution (e.g. MD), a classic elastic

stress solution of a two-dimensional specimen with a central hole under tensile load is

extended in this work to its displacement distribution. This provides an effective tool for

accuracy verification of the GP and GP-FEA multiscale methods by comparison of their

simulation data with the analytical solution. The result of the comparison is encouraging.

Main conclusions from this work include:

 The GP-FEA model embeds an inner multiscale particle system within a

surrounding continuum FE domain. It moves the atom-FEA interface of the DC

method far away to the particle-FEA interface. This greatly reduces DOF of the

system while not disturbing any important phenomena in the focused atomistic

domains, thus the artificial forces and deformation caused by, say, ghost forces

can be avoided

 It should be noted that the elastic analytical solution is obtained under the

condition that the width of the specimen be larger than four times the hole

diameter to keep the error of the solution, e.g., (𝜎𝜃)𝑚𝑎𝑥 from exceeding 6 per

cent. Our design satisfies this requirement. However, model size effects are

problem-dependent. It may relate to material property, environmental conditions,

the variables involved, the answer evoked, etc. Thus, it is hard to get a general

answer analytically. In many cases one should carry on numerical simulations for

models with different size to find the minimum necessary for accuracy.

 The satisfactory agreement between the displacement data obtained by the

proposed GP-FEA methods with the classical analytical solution establishes a

foundation to use these multiscale methods to investigate model size effects. In

the parallel works we will demonstrate that the GP-FEA method is a powerful

tool to identify the size effects and some new concepts such as critical model size,

below which will cause serious error and above which may not be necessary

under a given error tolerance.

 Practice has taught us that the extension of multiscale analysis to more

applications requires essential development of computer code. During this work

GP and FEA coupling source codes, two input files related to the modeling

geometry and simulation control of the GP and the FEA have been developed.

52

While codes for model generation have also been developed, models still require

some manual work to design transition domains such as WF, WG, Wn and Wn+1.

This shortcoming will be overcome such that these domains can be formed

automatically after the boundary line and its width and depth are given, etc.

53

 ACCURACY VALIDATION WITH LEFM SOLUTION AT CRACK-

TIPS: CONCEPT OF CRITICAL MODEL SIZE

Recently, ongoing multiscale research uses atomistic-based modeling for the simulation

of crack-tip behavior to enhance the fidelity of predictive models. While there is a lack of

verification analyses that the atomistically derived laws and information accurately

reflects the originating atomistic results, some data by this approach show discrepancy

from experiments. Naturally, this kind of simulation requires a relatively large model size

for implicitly averaging atomistic/microscopic dynamics into continuum and avoids

artificial boundary effects on the fields that are of interest. The requirement is not usually

satisfied since most existing multiscale models are limited from developing sufficiently

large model size. This issue is addressed in the present work. Firstly, a particle-FEA

coupling multiscale model, called the GP-FEA method, is introduced which can make the

model size as large as needed. Eight models with characteristic dimensions ranging from

120 nm to 5m are developed for investigating model size effects on displacement fields

of a Mode-I edge crack-tip. The accuracy of each individual model is then determined by

a comparison with the singularity solution and two-term solution of Rice
24

 and Leevers

and Radon
66

 in linear elastic fracture mechanics (LEFM). Results show that there exists a

critical model size, LCR, below which unrealistic crack-tip behavior may manifest and

above which may not be necessary under a given error tolerance. This result may offer a

guideline for the model size design and signifies the necessity for developing new

multiscale methods which can produce large-size models, prescribed by the LCR, to

improve the simulation accuracy.

A. Introduction

Recently, much ongoing research uses molecular dynamics (MD) and

atomistically-based multiscale simulations for crack analysis following the fact that crack

nucleation and propagation originates from the atomistic and microscopic scales. The

work of Gumbsch
67

 may represent an early effort in developing a fracture theory based

54

on atomistic analysis. He and his colleagues first developed the FEAt (Finite Element-

Atomistic) coupling scheme
61

 between atoms and continuum. FEAt is the earliest version

of the direct coupling (DC) multiscale method which links atoms with finite element

nodes at the scale interface and has been proved to have smooth variable transition.
36

Using this method Gumbsch
67

 carried on an atomistic study of brittle fracture to find

explicit failure criteria from atomistic modeling. His report shows brittle cracks under

general mixed mode loading follow an energy criterion (G-criterion) rather than an

opening-stress criterion (KI-criterion). His report on crack-tip blunting and failure modes

of brittle fracture described below takes notice: “Depending on the shape of the blunted

crack tip, the observed failure modes differ significantly and can drastically disagree with

what one would anticipate from a continuum mechanical analysis”. It also motivates a

study on his model size design. To ensure that the results are not affected by the size of

the model, scaling tests were carried out in that work. Specifically, the author used the

lattice-trapping range K (=KIc
＋－KIc

－
) as a criterion to choose the model size, where KIc

is the critical stress intensity factor of mode I, superscript “＋”and “－” denote a special

loading and unloading status for a stationary mode I crack. Finally, the total system size

of 70a0×70a0 and the inner atomic domain size of 12a0×12a0 were taken, where a0 is the

atomic lattice constant. This choice was determined based on the following results of the

scaling test: First, varying the total model size from about 20a0×20a0 to 160a0×160a0

showed a decrease in the lattice-trapping range from K = 0.04KG at the lowest system

size to K = 0.02KG, here subscript G denotes Griffith. Second, if system sizes change

from about 50a0×50a0 up, no further change of K could be detected. Third, increasing

the size of the atomistic region at a total size of 70a0×70a0 brought KIc
+
 from 1.03 KG

down to 1.02 KG, but left the lattice trapping range essentially unchanged. While using

K is convenient, it may not be sufficient for investigating model size effects on crack-tip

behavior. It is seen from the report K is not sensitive to the total model size, thus the

model size effects cannot be fully measured by the K criterion. For instance, the larger

models showed a more dramatic failure behavior than the small models but this reported

phenomenon cannot be explained by the K values.

55

Recently, one sees widely influenced efforts in the derivation of the traction-

separation (T-S) laws for fracture analysis using cohesive surface elements (CSE) with

atomistically-based modeling. Among these, Yamakov et al.
68

 developed a cohesive

surface model using MD simulations of intergranular fracture in an FCC metal, which

displays both brittle and ductile fracture mechanisms. These authors combine estimates of

crack opening displacement with normal stress to construct a qualitative model of T-S

laws for both mechanisms. This approach was later combined by Yamakov et al.
69

 with

ESCM, short for the embedded statistical coupling method by Saether et al.,
32

 to couple

an embedded atomistic domain within a continuum domain. The resulting coupled system

was used to derive a cohesive zone model (CZM) for interface debonding via moving

averages of stress and opening displacement. Spearot et al.
70

 proposed an internal state

variable (ISV) framework that uses interface separation constitutive laws motivated by

MD simulations of materials with EAM potentials by Foiles et al.
71

 These authors

considered both normal and tangential displacement loading, and developed a nonlinear

elastic separation potential that included path-history dependent effects with active and

passive ISVs.

Others have done work guided by the same concept and technical route in

developing key features of the T-S laws with CSE analysis. Choi and Kim
72

 constructed a

cohesive model for single crystal gold. Krull and Yuan
73

 designed an exponential T-S law

using parameters derived from MD simulations of crack tip blunting and void initiation.

Dandekar and Shin
74

 developed an MD based cohesive zone law for describing Al–SiC

interface mechanics of a composite system. In an attempt to increase the fidelity of an

atomistically derived cohesive law, Zhou et al.
42,75

 used the methodology of Yamakov et

al
68

 to develop a model for an ‘ideal’ BCC metal subject to mixed-mode loading

conditions. To keep the crack propagation along the designed propagation path, they used

a special potential to make the designed crack propagation path a “weak” one with lower

values of cohesive energy, elastic moduli, and work of adhesion.

While these efforts are significant, some fundamental questions may be asked, for

instance, whether the model size is sufficiently large to avoid any artificial effects from

boundary conditions (BC) on the analysis. The latter effects can exacerbate ghost forces

which make the distributions of strain and stress fields near the crack-tip distorted and

56

cause the estimate of crack opening displacement with normal stress on the CSE to have

lower accuracy. While it is seldom that concrete answers to these apparent questions are

found in the public domain, a known assessment is given by Fan and Yuen.
40

 They

conducted a cohesive FEM simulation for an epoxy/Cu interfacial fracture with a tensile

double cantilever beam (TDCB) specimen. Directly using the T-S law obtained by them

with atomistically-based multiscale analysis, this FEM crack simulation showed poor

agreement with the experiment by Fan et al.
76

 The predicted simulation force for a given

displacement of TDCB at the interface between epoxy/Cu was two times higher than the

experimental data. To see whether this low accuracy has any relationship with the model

size an uncompleted survey for the model size used in different atomistically-based

simulations are given in Fig. 23. It is seen that most existing atomistically-based models

have sizes LX and LY around 100 nm×100 nm, and the smallest one of 3.53 nm×3.53 nm

has poor accuracy by Fan and Yuen.
40

Figure 23. A survey for the model size in different modeling work.

a. Fan and Yuen, 2010
40

 b, c, f and g. Dandekar and Shin, 2011
74

d. Spearot et al., 2004
70

 e. Krull and Yuan, 2011
73

 f. Dandekar & Shin, 201174,77

57

h. Zhou et al.200875
 & 200942

; Lloyd et al. 201143 i. Tsai et al., 2010
41

j. Yamakov et al., 2006
68

 k. Yamakov et al., 2014
78

 l. Yamakov et al., 2008
69

 Now is a good place to mention other progress in using atomistically-based

modeling. Lloyd et al.
43

 implemented one of the cohesive models developed by Zhou et

al.
42

 into UMAT of the software ABAQUS.
79

 Then the FEA’s performance was verified

by examining the geometry and loading rate which was originally used to derive the T-S

law by MD. Their analyses show close agreement between the FEM and the MD results

for both stress and crack opening displacement profiles at the cohesive interface. This is

significant since one can use FEA to reproduce the result by atomistic analysis to save a

lot of computational time. However, this agreement indicates only that the MD-obtained

T-S law is consistent with the cohesive FE analysis with the UMAT based on that law. It

is difficult to be certain that the T-S law and the data, such as the KIc=1.154 MPam for

BCC obtained by their work accurately reflects the material property.

From the above descriptions, it is seen that the accuracy of atomistically-based

multiscale simulations may intrinsically relate to the model size and that there is a lack of

accuracy verification methods to confirm it. Thus, the accuracy validation in terms of

model size becomes essential and will be taken as the main objective of the paper. To

reach the goal three aspects need to be addressed.

Firstly, one must find new accuracy validation methods for understanding the crack-tip

behavior

In general, accuracy validation of physical concepts and methods by experiment is

a traditional approach. However, the comparison is difficult for the atomistically-based

simulation due to the resolution limitation of the test equipment in the angstrom and

nanometer scales. So far, the most popular approach in concurrent multiscale analysis is

to compare the results with the fully atomistic simulation such as MD. Among those

efforts, two notable verifications should be noted. Curtin and Miller
36

 used a one-

dimensional (1D) spring model to compare the bridging behavior at scale transition

regions of various models. The other was the benchmark computation test of 14 models

carried out by Miller and Tadmor.
53

 The fully atomistic simulation is the benchmark

58

against which one compares the multiscale models. Here, the corresponding atomistic

solution is considered as the exact solution. Other examples include analysis of

dislocations at notches
48

 and dislocations passing through scale boundaries.
50

 While this

kind of verification is effective in many aspects related to atomistic analysis and its

bridging to high scales, one of the shortcomings is the requirement for huge

computational spatial capacity and time if the model size is reasonably large. In fact,

accuracy verification in low scales is important to find the deformation mechanisms such

as crack nucleation in fatigue, dislocation patterns in fatigue and creep, the inherent

inhomogeneity of plastic deformation, etc. However, these mechanisms must link to

material behavior and be characterized in the continuum scale for applications. This

requires a relatively large continuum model size. Otherwise the approach of predicting

material behavior by implicitly averaging atomistic/microscopic dynamics may not be

valid.

Due to this limitation of computation power, it can be hard to make a judgment

for how accurately the multiscale simulation describes the continuum behavior for

engineering applications. One way to mitigate the problem is to augment the current

validation methods with new approaches. Recently, the authors use a classical two-

dimensional (2D) elastic solution of a specimen with a central cylindrical hole under

tensile load to make a comparison with displacement data obtained by atomistically-

based multiscale analysis to validate model accuracy. This work, to be published

elsewhere, saves a lot of degree of freedom (DOF) and yields satisfactory results to check

the applicability for using the multiscale analysis for continuum analysis. In this paper,

we will continue this technical route to add the richness of continuum mechanics to the

validation. Specifically, we will take the analytical solutions of linear elastic fracture

mechanics (LEFM) for the displacement at the crack tip to validate the obtained

displacement data by the atomistically-based multiscale simulation.

Secondly, one must find ways based on physics and mechanics to find the model size

effects.

In Fig. 23, it is seen that the model size varies within a large range from

3.53nm×3.53 nm
40

 to 1800 nm×1800 nm
69

. Among these, the work given by Dandekar

59

and Shin is notable.
74,77

 They used four model sizes, namely 10×15×4, 20×30×8,

50×30×8 and 60×70×16 nm
3
 and obtained the corresponding Young’s modulus E.

According to the above order, their E values are, respectively, 224.42, 188.66, 180.63 and

177.93 GPa. It merits note that the largest value of Young’s modulus corresponds to the

smallest model and that value is beyond the Hashin–Shtrikman bounds of 155~213 GPa.

In addition, they found with a larger system the simulated Young’s modulus tends toward

the experimental observation and between the system sizes of 60×70×16 nm
3
 and

50×60×16 nm
3
 the difference in the Young’s modulus is only ~1.5%. Therefore a system

size of 50×60×16 nm
3
 offers a good balance in terms of computation time and the

required accuracy is selected to conduct the fracture studies. This study is good for

investigating the Al-SiC interface mechanics. However, most other works do not explain

how their model sizes are determined. One reason may be due to a lack of knowledge and

method based on physics and mechanics to guide the investigation of model size effects.

There may be another practical reason which may relate to the third need described

below.

Thirdly, one must find a way to enlarge the model dimension for investigating model size

effects

The other reason for the large model size requirement comes from the boundary

effects on the atomistic stress and strain fields which are in the area of interest. Actually,

if the boundary is too close it will change the distribution of the variables making the

simulation result less accurate. In some cases, the conditions for deriving the analytical

solution cannot be fully satisfied. In this case, a minimum model size is searched for

within a given error tolerance. For all these purposes, one needs to find a multiscale

method which can develop large model sizes to carry out this analysis for size effects.

 In this work, a solution for this challenge is discussed within the framework of GP

and GP-FEA methods where GP is short for the Generalized Particle Dynamics Method

proposed by Fan.
48

 The GP-FEA, proposed by the authors, is a new method which can

make the model size as large as needed. In addition, it links the continuum via FEA nodes

with high-order particles but not directly with atoms, as is the case with methods such as

the QC, short for quasicontinuum by Tadmor
55

 and FEAt methods, to avoid artificial

effects such as ghost forces.

60

Accuracy verification with the well-known continuum field solutions has great

potential for extending applications of atomistically-based multiscale analysis because

the great treasure of continuum mechanics and continuum physics opens new avenues to

verify its accuracy. In this section, accuracy verification for crack-tip analysis of a

stationary crack in an iron specimen is conducted by a comparison of the GP-FEA

simulation result with a classical solution of LEFM. This analytical solution from

elasticity theory near the crack-tip is accurate to some extent, and was contributed to by

Westergaard
80

, Irwin
81

, Williams
82

, Rice
24

, Leevers and Radon
66

.

Note that if the comparison is satisfactory the significance is far-reaching and the

validity of the multiscale analysis may be extended to other problems where no exact

analytical solutions exist. Alternatively, if the comparison fails then its validity for the

prediction of more complicated cases is questionable. In other words, if the atomistically-

based simulation cannot predict the elastic deformation fields by LEFM, it seems

unlikely that the same method can accurately predict the T-S law which involves non-

linear phenomena such as crack propagation, crack-tip blunting and elastic-plastic

deformation. To deeply understand this judgment, one must realize that the accuracy

control factors of atomistically-based multiscale modeling are much different from

continuum mechanics. For the former, the accuracy mainly depends on the multiscale

methodology and the potential used. If the methods, especially the scale-bridging method,

is correct and the potential used, such as the EAM potential, is accurate then its solution

should be accurate for wider cases where both methods and potential have not changed

and remain applicable.

This feature is quite different from continuum mechanics where if material

constitutive laws, strain-displacement relations and governing equations change then the

accuracy will change and should be verified for every single case. This fundamental

difference highlights the advantage of extending the verified atomistically-based

multiscale analysis to wider applications. Based on this view point, the focus of this paper

is on the comparison of deformation fields near the elastic crack-tip of a stationary brittle

iron specimen by the proposed GP-FEA method with the LEFM analytical solution to

determine under what conditions the accuracy of the method can be confirmed. In the

61

next paper, this accuracy-confirmed method will be applied to crack-tip behavior during

crack propagation until failure.

This Chapter is organized as follows. Section B gives a foundation to introduce

the newly proposed GP-FEA method and model design. Section C will present numerical

comparisons between simulation results with the LEFM solution at the crack tip under

the plane strain conditions. It will show the LEFM solutions for the displacement field

near the crack tip, including the singularity solution and the two-term solutions derived

by Rice
24

 and Leevers and Radon
66

. The Chapter ends with discussions and conclusions

in Section D.

B. GP-FEA Model Design

As shown in Fig. 24, the GP-FEA simulation model includes two inter-connected

parts: one is the GP model consisting of multiscale particle domains and the other is a

continuum domain made of an FEA mesh. The first of three operations for model design

is to develop the GP model to be embedded in the FEA mesh. It is of primary importance,

as it includes the atomistic domain where the crack tip will be closely observed. Steps

two and three are related to interface design between the GP and FE region as well as the

FE mesh design.

 In the example shown in Fig. 24b, the GP model consists of three particle scales

representing an iron plate with an edge crack. Scale-1 (S1) with scale n=1 is the atomistic

domain and is 6 nm wide and 8 nm high around the crack tip. Scale-2 (S2, n=2), the

second particle domain, surrounds the atomistic domain whose outer boundary size is

about 60 nm in width and 20 nm in height. Scale-3 (S3, n=3), the third particle domain,

surrounds the S2 domain space above and below whose size is 60 nm in width and 120

nm in height. The edge crack extends from the left surface in scale-2 into the atomistic

domain (S1) having a total crack length of 8 nm. The thickness of each scale and thus the

whole GP model is about 4.5 nm.

62

Figure 24. Schematic of a micrometer-size GP-FEA model with an embedded

60×120×4.5 nm
3
 three-scale GP model for a thin plate with an edge crack, where

the unit is nm. The loading direction [-110] is along the Y-axis and the crack

direction [110] is along the X-axis, transverse to the loading direction. The

blue/points in the figure represent GP particles and the quadrilaterals around the

edges represent finite elements. The separated red dots denote WF domain, the

narrow green strip surrounding the GP model is the WG domain.

Following Eqn. (1) and (2) with the scale ratio k equal to 2, the generalized lattice

constant for S2 and S3 are, respectively, a2=2a0, a3=4a0 and the corresponding number of

atoms that a particle represents for S2 and S3 are ℓ2=8, ℓ3=64. The total number of real

particles and atoms is 109,536. If the model was completely filled by atoms, the number

63

would be 2,865,852, i.e., 26.16 times larger than the GP model’s. The bridging between

particle scales with bottom-up and top-down schemes is accomplished by imaginary

domains W(n+1)image and W(n)image, as introduced in Section II.A.2. After this GP model is

developed the FEA mesh will be generated to fit around the GP model, interfacing at the

top, bottom and right side as seen in Figure 25b.

C. Comparison between LEFM solutions and GP-FEA simulation results for the

crack-tip displacement

Our experience in using a 2D elastic solution of a cylindrical hole specimen to

check the accuracy of the GP-FEA method told us that one may face new challenges

along this technical route. Firstly the explicit expression needs to be carefully checked so

the direct comparison can be available. Secondly, the data processing for the atomistic

scale needs to be done correctly which should involve a group of atoms near a continuum

point not a single atom in that position. The third challenge concerns how to estimate the

error by the comparison. These issues have been addressed in detail in that work to be

published elsewhere and will be discussed again for this particular crack-tip problem.

1. LEFM singularity solution and two-term solutions of crack-tip

displacement field

The variables of the comparison are the displacement components not stress

tensors. This is because in continuum theory stress is defined locally as the limit of

average stress when the area, which subject to the force, approaches zero. This is

consistent with the local behavior of the stress-strain relationship that the stress at a

material point depends only on the strain at the same point of the continuum. On the other

hand, the stress in the atomistic field is the so-called virial stress defined as

 𝜎
𝛼 =

1

Ω𝛼 [−𝑚𝛼𝑣̅𝛼𝑣̅𝛼 +
1

2
∑ (f̅𝛼𝛽)(r̅𝛼𝛽)𝛽≠𝛼] (22)

Here, the symbol “-” under a letter denotes a second order tensor and above a letter

denotes a vector. There are three vectors: velocity vector, 𝑣̅, the force vector, 𝐟 ̅ , and the

position vector, 𝐫̅ . The superscript anddenote the atoms and
αΩ 

denotes the volume

of atom . In fact, the stress at atom  depends not only on those atoms closest to it, but

also on the atoms,  within its spherical neighborhood within a cutoff radius through

64

interatomic forces. Eqn. (22) defines the per-atom stress. To get the corresponding

continuum stress a further average for the volume occupied by these atoms should be

conducted. The different definition between the stress defined by a continuum and the

atomistic field makes direct comparison difficult. On the other hand, the definition of

displacement is clear and unified for both continuum and the atomistic field if a certain

volume average can be conducted for the atomistic field in order to exclude thermal

displacements. Our experience shows the volume average for the virial stress is more

sensitive to the volume specified than the volume average for the atomic displacement.

Unlike the 2D plate with a central cylindrical hole, there are explicit LEFM

expressions for the displacement field near the crack-tip. For the mode-I opening crack,

the leading terms are as follows
83

 𝜎𝑖𝑗 =
𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) (23)

 𝑢𝑥 =
𝐾𝐼

2𝜇
√

𝑟

2𝜋
cos (

𝜃

2
) [𝜅 − 1 + 2 sin2 (

𝜃

2
)] (24)

 𝑢𝑦 =
𝐾𝐼

2𝜇
√

𝑟

2𝜋
sin (

𝜃

2
) [𝜅 + 1 − 2 cos2 (

𝜃

2
)] (25)

where 𝜅 = 3 − 4𝑣 for plane strain, and 𝜅 = (3 − 𝑣)/(1 + 𝑣) for plane stress, µ- shear

modulus, KI-stress intensity factor of Mode I, r and θ are polar coordinates of the point

with the displacement.

These equations actually correspond to a singularity solution since the

corresponding expressions of stress components are all inversely proportional to r, which

will become infinitely large when r approaches zero. This solution is taken from the

mathematic solution given by Westergaard
80

 and others in which the dominant leading

term of the stress at the crack-tip has a singularity and the leading term of the

displacement field is shown in Eqn. (24) and (25).

When the r-distance from the crack tip increases these terms decrease fast and the

remaining part of the solution cannot be neglected. Rice
24

 first suggested to add a second

term related to the so-called non-singular stress term “T” that agrees with the results by

Larsson and Carlsson.
84

 Later Leevers and Radon
66

 derived crack-tip deformation with a

biaxiality parameter B which relates to the magnitude of the T-stress and can be written

65

as follows:

 𝜎𝑖𝑗 = 𝐾𝑟−
1

2𝑓𝑖𝑗(𝜃) +non-singular terms (26)

𝑢𝑥 =
𝐾𝐼

2𝜇
√

𝑟

2𝜋
cos (

𝜃

2
) [𝜅 − 1 + 2 sin2 (

𝜃

2
)] + (1 − 𝑣2)

𝐵

𝐸√𝜋𝑎
𝐾𝐼 cos 𝜃 (27)

𝑢𝑦 =
𝐾𝐼

2𝜇
√

𝑟

2𝜋
sin (

𝜃

2
) [𝜅 + 1 − 2 cos2 (

𝜃

2
)] − 𝑣(1 + 𝑣2)

𝐵

𝐸√𝜋𝑎
𝐾𝐼 sin 𝜃 (28)

B values for the single-edge-cracked specimens are expressed as the following by

Kardomateas et al.
85

𝐵 = −0.52 − 1.50 (

𝑎

𝑤
) + 12.70 (

𝑎

𝑤
)

2

− 20.70 (
𝑎

𝑤
)

3

 (29)

KI solution for single edge notched tension (SENT) is
83

 𝐾𝐼 =
𝑃

𝑏√𝑤

√2 tan
𝜋𝑎

2𝑤

cos
𝜋𝑎

2𝑤

[0.752 + 2.02 (
𝑎

𝑤
) + 0.37 (1 − sin

𝜋𝑎

2𝑤
)

3

] (30)

For the GP-FEA model in this paper, remote strain is applied on the top and

bottom edges at 1% engineering strain, which is defined by the elongation between the

top and bottom boundary of the model divided by the initial model size LY along the Y-

axis. This corresponds to a remote average stress 2.24GPa and total boundary tensile

force P=10.2 N when E = 224GPa. In reality, after calculating the remote stress

distribution, it is found that the error of average stress ranges from 0.18% to 2.8% by the

GP-FEA models (see Figure 32 later).

Before coupling to the FEA mesh, the GP model equilibrated in the NPT

ensemble for 100 ps at 100 K and 1 atm to ensure configurational stability. The GP

model then had its temperature increased to 300 K and allowed to equilibrate for 20 ps

before being attached to the FEA mesh. The loading procedure kept the thickness

constant and no deformation was permitted along the thickness direction to mimic plane-

strain conditions. Load was applied in two 0.5% strain increments. For each increment

the strain was applied at the FEA mesh outer boundary then 20 ps of relaxation at 300 K

was allowed for the WG-GP subsystem or until the GP-FEA interface converged

triggering the next load step.

66

2. Comparison between atomistically-based multiscale simulation with both

LEFM singularity and two-term solutions

Figure 25 schematically shows three paths in front of the crack-tip on which the

eight models’ displacement components will be compared with the LEFM solutions.

They are paths along the X- and Y- axis and a semi-circle in the first quadrant with radius

R=15 Å. To make the GP-FEA calculation result of any generic point, s, in these paths

comparable with a continuum solution, the average displacement of atoms within a finite

volume surrounding the point at hand should be used. For the circular path, the volume

average is over a cylinder with radius of 3.615Å. For the X-axis path a rectangular

domain is selected with 2Å width and 8Å height but for the Y-axis path, 8Å width and

2Å height are used instead to maximize the accuracy for this displacement field with a

high gradient. All of the domains have the same thickness as the model. As a result, the

cylinder contains over 170 atoms and each rectangular have about 60 atoms. The first

rectangular domain on X or Y axis is 1Å away from the crack-tip. The obtained average

displacements of the atoms will then be compared with the corresponding data calculated

from the analytical solution for the plane strain condition.

Figure 25. Distribution of data acquisition domains along the paths of the X-axis, Y-

axis and a semi-circle with radius of R=15Å

Figures 26 to 28 shows the comparison between simulation results with the LEFM

singularity solution and two-term solution, respectively, for the Y-displacement

67

component, uy along the Y-axis, the X-displacement component, ux, along the X-axis and

the radial displacement component, ur, along the circle of R=15 Å in the first quadrant.

The model size in the GP-FEA simulation has 1000nm width and 500nm height. From

the comparison between the simulation result with, respectively, the singularity solution

and the two term solution in the three figures, it is seen clearly that the LEFM second

term solution is more accurate and consistent with the simulation result than the

singularity solution beyond the range of r≥2 Å. This is rational in LEFM due to the work

by Rice and others. Thus, in the next section we will mainly show the comparison of

simulation results with the two-term LEFM solution.

Figure 26. Y-Displacement comparison between results of GP-FEA simulation with

LEFM solutions along the Y-axis.

68

Figure 27. X-Displacement comparison between results of GP-FEA simulation with

LEFM solutions along the X-axis.

Figure 28. Radial displacement comparison between results of GP-FEA simulations

with LEFM solutions along the circle of R=15 Å in the first quadrant.

69

3. Model size effects on numerical results of displacement distribution near

crack-tip in comparison with LEFM two-term solutions

For the case of loading along the Y-direction, the model size Ly along the Y-axis

is dominantly important and will be taken as the characteristic model dimension. Thus,

the model size effects will be mainly measured by the Y-displacement component, uy,

versus Ly. In view of a minor but not negligible effect of the model size Lx along the X-

(or crack line) direction the width of all models will be kept the same as Lx=1000 nm. All

the comparisons are carried out by the same condition with strain level y=1%. For the

single crystal model it is within the elastic range.

Figure 29 shows the effects of model size Ly on the Y- displacement component,

uy, with eight model sizes for Ly ranged from 120 nm to 5 m. In the figure, the two-term

solution denoted by a bold solid line, will be taken as the exact solution because of its

semi-infinite size it is physically sound for an edge crack From this figure one can see

that the smaller the model size the less of the displacement uy at the same location y from

the crack tip. This small size causes an error around 50% in comparison with the two-

term LEFM solution. It is interesting to note that when the model size Ly increases to

about 500 nm and beyond, the simulation results agree well with the two-term solutions.

Figure 30 shows the model size effects on the radial displacement component, ur, along

the semi-circle of R=15 Å in the first quadrant. Surprisingly, if the model size is too

small (i.e., Ly ≤250 nm) the trend of the curve ur ~ is not consistent with the analytical

solution.

70

Figure 29. Effects of model size, Ly, on the displacement component uy for the

location along the Y-axis near the crack-tip within 2 to 40 Å.

Figure 30. Model size effects on the radial displacement component, ur, along the

circle of R=15 Å in the first quadrant.

71

 To find the reason of model size effects, Fig. 31 shows the y stress distribution

of the FE elements along the top boundary (i.e., y= Ly/2). It is seen that when the model

size Ly < 800 nm, the top boundary stress is seriously affected by the crack-tip with a

much lower value than the average one. On the other hand, if Ly ≥800 nm then the

average remote stress is about 2.24 GPa. The result indicates that if the BC is too close to

the field of interest then it may cause coupling effects between the boundary stress and

the crack-tip displacement as we see by the great reduction in the displacement near the

crack-tip for small models shown in Fig. 29. For the case of a force boundary, the model

size effects will also appear. In that case, if the model size is small then the stress field

near the crack-tip will be seriously affected.

Figure 31. Model size effect on boundary stress component, σy, distribution along the

top BC for different models. For these 1000nm width GP-FEA models, edge

crack with length of 8 nm is embedded on the left side located at X-coordinate -

200. Two fixed points on the top and bottom kept at 400nm away from the left

side of the model were applied on each GP-FEA model to avoid rigid body

motion, thus, the disturbance can be detected on the Y-stress curve in the dashed

box.

72

D. Summary and discussions

 Looking back on the developments of multiscale analysis in the past two decades,

two basic issues for extending engineering applications of concurrent multiscale

simulations can be addressed. The first is how to quantify the accuracy of atomistically-

based multiscale simulation and the second is how to enlarge the model dimension to the

minimum size necessary to make the modeling realistic and accurate. While accuracy

verification with the well-known continuum field solutions is important for engineering

applications, it is seldom performed due to unknown model size effects and the limitation

of many multiscale methods in developing a minimum model size necessary to make the

comparison meaningful. To address these issues, the key is to develop new multiscale

methods which can produce sufficiently large models. Encouraged by the successful

comparison of the displacement field predicted by the GP-FEA method with the

continuum solution for a 2D plate with a central hole, this newly proposed multiscale

method has been further developed and applied to crack-tip analysis. Results show

excellent agreement between the simulation and LEFM two-term solutions.

This successful comparison with the continuum solution and the powerful

capability of the GP-FEA multiscale method in developing a large micrometer size model

is promising. It allows for the investigation of model dimension effects on the accuracy

of atomistically-based multiscale methods realistic and attractive. The significance of this

investigation should be further emphasized even though the choice of model size is a

common problem that appears frequently during model design. It can be further

addressed from the following four aspects. Firstly, accuracy verification for low scales is

important to find the deformation mechanisms. To make this finding meaningful,

however, one must link these low-scale dynamics to material behavior and be

characterized in the continuum scale for applications; which requires a relatively large

continuum model. Otherwise the approach of predicting material behavior by implicitly

averaging atomistic/microscopic dynamics may not be valid. Secondly, if the model size

is small the BC disturbances may likely affect the local force and displacement fields

which are near the atomistic regions of interest such as interfaces, crack-tips and flaws. In

most practical cases, BC cannot be perfectly maintained and will have oscillatory and

random perturbations. Various BCs can be accepted if they are sufficiently far away from

73

the regions of interest, following the concept of Saint Venant’s principle.
63

 Otherwise, the

obtained low-scale phenomena observed can be qualitatively different which can cause

instability of atomic motions, microstructural evolutions, and unexpected material failure.

Thirdly, some mathematical solutions for the continuum require the medium to be

sufficiently large to make the LEFM crack-tip solution realistic for a tiny crack inside of

a bulk material. In this case, model size must not be small for a reasonable result. The

fourth aspect is that for microsystems and nanotechnology, the model size should be

equal or larger than micrometers so the problem of micro- or nano- sensors/activators can

be more accurately simulated. For nanotechnology, this is true for some designs since

nanotubes, nanofibers, etc. need to be assembled and embedded in a matrix which has a

certain size requirement. Thus, investigating the model size effects and choosing a

minimum model size necessary for the accuracy requirement is essential.

With the proposed GP-FEA method, the model size effects on the crack-tip

displacement fields of a Mode-I edge crack embedded in a single crystal of BCC iron

along the X-direction [110] are extensively investigated. All models were subjected to the

remote BC displacement along the Y-direction [1̅10] with 1% strain. In this problem, the

main displacement component is uy along the loading direction Y and displacement

component ux, related to Poisson’s effect, has minor effect, thus all the models’ widths,

LX, were held at a constant 1000 nm but the Ly value was changed from 120, 180, 250,

500, 800, 1000, 2000 to 5000 nm to observe the model size effect. This size effect is

measured by the displacement uy for same material points in different models. They are

located on the Y-axis and apart from the crack tip from 2 to about 40 Å. The accuracy is

verified by the LEFM two-term solution described in the same figure. From the

comparison of the eight simulation curves of these models with the analytical solution

shown in Figure 30, one observes the following observations and conclusions.

 It is seen that the smaller the model size the larger the error produced in the

simulation-obtained uy. Specifically, for the case of Ly=120 nm, the error can

reach about 50%. This result is consistent with the result of Fan and Yuen;
40

 for

their small size model a double force is needed to produce the required interfacial

displacement. It is also consistent with the result of Dandekar and Shin,
74,77

 for

their smallest model of 10×15×4 nm
3
 the Young’s modulus is about 1.25 times

74

larger than the testing value for the large model, indicating the small model has

high rigidity to produce small deformation. Our work shows that using stress

intensity factor K to investigate the model size effects is not sufficient since that

value is obtained by a model with infinite size. Changing the model size and

comparing the behavior with the LEFM solution will show the size effect

quantitatively. This result serves as a serious warning: since many existing

simulation models are below this size as given in Figure 23, the accuracy of these

models may be questionable and need to be carefully verified.

 When the model size increases from 120 nm to 500 nm, the accuracy quickly

increases. However, a further increase of the model size from 500 nm to 5000 nm

results in basically the same accuracy as the case of 500 nm. This result is

significant since it lays a foundation for introduction of a new concept of critical

model size, LCR. In fact, the comparison tell us that if the model size is less than

LCR, say 500 nm, the results obtained from atomistically-based multiscale

simulations will have unrealistic crack-tip behavior, including a large percent of

inaccuracy in comparison with the LEFM result. On the other hand, the case for

designing the model size larger than LCR should also be avoided since it may not

greatly improve the accuracy with the penalty of increasing a large of DOF.

 While this finding may open a new avenue to develop a guideline for the least-

required model size, LCR, to improve the accuracy in bridging atomistic and

continuum scales, more investigation on the feature of LCR should be conducted.

Since LCR is a problem dependent variable, it may relate to material property,

environmental conditions, the variables involved, the answer evoked, etc. Thus, it

is hard to get a general answer analytically. In many cases, one should carry on

numerical simulations for models with different size to find the minimum

necessary for the required accuracy. Fortunately, the newly proposed GP-FEA,

which can develop large model sizes, has proven so far to be an effective tool to

face this challenge. To introduce GP-FEA methods in detail with more examples

and their wide applications in crack propagation involving plasticity and failure

are prepared to be published elsewhere.

75

 APPLICATION IN CRACK PROPAGATION

The model size was found to affect the deformation field around a pre-crack tip in the last

chapter. This chapter takes that work a step further to investigate any size effects for a

propagating crack on the energy release rate and atomistic crack-tip phenomena.

A. Introduction

 Various work has been done to derive macro-scale traction-separation laws for

use in Finite Element Analysis (FEA) from Molecular Dynamics (MD) and multiscale

models.

 Song et al. studied crack-tip shielding.
86

 They found that at the point of fracture

there is a unique traction displacement cohesive zone law along the fracture independent

of the position of the anti-shielding dislocation. However, for crack propagation, the

atomistic model shows that, as an anti-shielding dislocation approaches the crack tip, it

causes less anti-shielding than predicted by the singular-crack model. If the cohesive

strength is reduced then the cohesive-crack model is consistent. The difference is due to

the non-linear deformation of material around the crack tip, which cannot be fully

represented by a cohesive zone law. Their simulation method used was CADD and they

found excellent agreement with the values obtained from independent atomistic

calculations on this material. This shows that crack initiation behavior is different than

crack propagation behavior, in the sense that they must be modeled independently.

 Yamakov et al. studied the inter-granular failure of a Σ99[110] symmetric tilt

boundary in Aluminum.
68

 Under hydrostatic tensile load, the crack propagates brittly in

one direction and ductily in the other. This is consistent with Rice's criterion for cleavage

vs. dislocations blunting. The preference for twinning over dislocation is consistent with

the Tadmor and Hai criterion. Two separate traction separation relations are extracted

from MD for brittle and ductile decohesion to be used in higher scale FEA models and

coupled to MD. Their group then used the ESCM method to couple MD with FEA with

the addition of CZM elements near the MD-FEA boundary based on the cohesion

measured in the MD domain. In this way, cracks that nucleate or originate in the MD

76

domain will be able to propagate into the FEA domain.
87

 Their coupling scheme is the

ESCM method which statistically averages the atomic properties to apply as boundary

conditions to the FEA mesh without the mesh being required to be the same size at the

atomic lattice constant. Since ESCM provides traction forces to the MD domain that

means that the MD boundary has a surface. To compensate for this they partition the

local MD surface boundary into domains and provide a correction force that compensates

for the different stiffness and surface tension. The statistic nature of ESCM allows for

finite temperature of the MD domain.

 Choi and Kim used a nanoscale planar field projection of atomic decohesion and

slip in crystalline solids based on a new orthogonal eigenfunction expansion of the elastic

field around an interfacial cohesive crack.
72

 The atomistic fields are obtained from

molecular statics simulations of decohesion in a gold single crystal along a [11̅̅̅̅ 2]

direction in a (111) plane, using the EAM potential. The field projection yields the

traction and displacement as well as the surface stress of the nascent surface. Thus the

traction separation and surface energy gradient can be measured as functions of the

cohesive zone displacements. It is shown that there is a nanoscale mechanism of

decohesion lattice trapping or hardening caused by the characteristics of non-local

atomistic deformations near the crack tip.

 Fan and Yuen used hierarchical multiscale analysis for interfacial delamination by

using MD to model the chemical phase that bonds the two bulk materials together.
40

From MD they use the obtained traction-displacement information to define cohesive

zone parameters for larger scale FEA models. Their results predicted the failure force to

be about twice as large as the experimental data. They attributed this discrepancy to be

due to an increased interaction cross-link across the interface and the presence of voids

and impurities inside the real samples. Their approach for this application is

advantageous since it avoids the time-scale problem of concurrent multiscale.

 Coffman et al. used cohesive laws derived from atomistic simulations for

polycrystalline structures.
88

 They found that the levels of external stress are required to

fracture GBs. This indicates that fracture initiation is likely dominated by irregular

atomic structures along GBs. Thus the cohesive properties alone are not likely to be

77

sufficient for modeling the fracture of polycrystals using continuum methods. Their

explanation is similar to Fan and Yuen's for their adhesion force discrepancy.

 Vatne et al. used the QC method to investigate crack propagation in BCC Iron

under different crystallographic orientations in mode-I loading with various T-stresses.
89

They found that the mechanisms at the crack tip and the critical stress intensity factor, KI

are sensitive to both the crystallographic orientation and whether or not the boundary

conditions were isotropic or anisotropic. Due to their small model size their boundary

conditions become very important; in their implementation they provide boundary

conditions that match the LEFM displacement field. They observed such mechanisms as

cleavage, twinning, and dislocation emission.

 These techniques illustrate the possibility of coupling lower scale phenomena and

behavior to higher scale models.

B. Simulation Model and Methods

 The model used for the crack propagation simulations were essentially the same

as described in Chapter IV. Whereas in Chapter IV the model width was the same for

each model size in this Chapter the model height and width are the same so as the height

changes so does the width preserving the model as a square. Refer to the figure in

Chapter IV of the GP-FEA model as the GP model and the interface design is the same.

The only changes are in the FEA mesh used. However, it is worth noting that the GP

model has crystallographic orientation of (110) [001] such that a horizontal crack

propagating along the positive X direction [110] creates a crack plane parallel to (110).

This orientation was chosen as it is the most brittle having the lowest Griffith critical

stress intensity of about 0.84 MPa √m correlating with the lowest {011} surface energy

of about 1.65 J/m
2
.
89

 The Young's modulus chosen for the FEA continuum given this

orientation was 224 GPa.
89

 The Auto-Duality Domains (ADDs) were automatically decomposed when their

average maximum principal stress reached 12.0 GPa. There are a total of 25 ADDs each

2 x 8 nm
2
 spanning the crack propagation trajectory from X= -14nm to X=36nm. These

ADDs functioned the same way that the local domains used by Yamakov et al. were

monitored for their stress and displacement values used to derive an atomistically-based

78

cohesive traction separation (T-S) law.
68

 In this study the same concept is used to

calculate the critical energy release rate, GC, for each of these ADDs as the crack

propagates through them. This provides a picture of the energy required to further an

existing crack configuration; from an ideal initial notch to a nascent brittle crack as it

evolves.

C. Crack Propagation Results via GP-FEA

Just as the simulations described in the last chapter, before coupling to the FEA

mesh, the GP model equilibrated in the NPT ensemble for 100 ps at 100 K and 1 atm to

ensure configurational stability. The GP model then had its temperature increased to 300

K and allowed to equilibrate for 20 ps before being attached to the FEA mesh. The

loading procedure kept the thickness constant and no deformation was permitted along

the thickness direction to mimic plane-strain conditions. Load was applied in 0.5% strain

increments producing a strain rate of about 25% strain/nanosecond. For each increment

the strain was applied at the FEA mesh outer boundary then 20 ps of relaxation at 300 K

was allowed for the WG-GP subsystem or until the GP-FEA interface converged

triggering the next load step.

 When each model was at 1% strain, before the initial notch propagated, the stress

intensity was calculated based on the formula described in Chapter IV, their values are

plotted in Fig. 32. Each data point in the figure is accompanied by an image of the atoms

at the crack tip. The atoms of a lighter color (magenta) have local coordination of 13

(CN=13), meaning that they have only 13 nearest neighbors. It can be seen that the

smaller the model size the greater the stress intensity, but as the model size increases the

stress intensity converges to a constant value. This small variation is due to the different

model width sizes, it also corresponds to slightly different patterns of atoms with CN=13.

79

Figure 32. Size effect on the stress intensity factor KI at 1% strain, including the

atoms with CN=13 at the crack tip.

 As the crack propagated through the entire GP portion of the model, each ADD

recorded the transient stress and separation data in order to derive a cohesive zone model

and local fracture toughness. Certain phase transformations occurred at the crack tip and

will be discussed as a method of accuracy convergence analysis.

1. Fracture Energy

 The stress that was monitored in each of the AD Domains was integrated with

respect to the displacement that the domain underwent. When the traction goes down to

zero this provides the energy release rate of that material domain. This integration was

performed for each of the AD Domains for each model size. Figure 33 shows these

values for each AD Domain after the crack had propagated entirely through the model.

Since each domain is located at a specific distance from the initial pre-crack their

response can be correlated to the distance the crack had to travel before reaching the

specific AD Domain. A trend can be seen in Fig. 33 where the energy required to

propagate the crack increases farther from the initial pre-crack location. This is consistent

80

with the three stages of crack growth resistance behavior in small scale yielding.
83

 Where

during the initial stage the crack is essentially stationary; the constant slope is caused by

crack tip blunting. The stage at which the energy release rate increases is the transition

between blunting of a stationary crack and crack growth under steady state conditions

during which a rising R-curve is possible. For the small scale yielding assumption this

function (the J-R curve) is a material property.
83

Figure 33. Energy GIC distribution during cracking the local domains.

 Another more interesting trend that can be seen in Fig. 33 is that of the model size

comparison. Notice how the smaller model sizes have generally lower critical energy

release rates than the larger models. Not only do larger models have greater critical

energies but they also appear to converge as the model gets larger. This convergence can

be visualized in Fig. 34 that plots the Critical energy release rate, GIC for local domains 5

and 6, showing a strong convergence trend.

81

Figure 34. Critical energy release rate, GIC trend with model size for local domains 5

and 6.

 Since the GIC values from this figure are calculated by integrating the T-S curve,

various T-S curves are plotted in the following two figures below. The first figure shows

the T-S curves for ADD 6 and the second for ADD 7. Notice how the smaller models

have very sharp T-S relations, this is indicative of brittle fracture as a sudden event would

cause a rapid loss of strength, however the larger models have much fatter curves i.e.

large stresses continue even after appreciable displacement, indicating more ductile

failure, as material deforms it is able to accommodate larger strains at the cost of lower

strength.

82

Figure 35. T-S response for domain 6.

Figure 36. T-S response for domain 7.

83

 The model size effects can also be seen directly in the T-S relations. Notice how

the models larger than 500 nm have almost the same T-S relation. This is the case for

both AD Domains shown as well as those not shown.

 In an attempt to understand why some AD Domains behaved tougher than others,

a detailed look at the crystallographic orientations and ductile behavior was conducted.

2. Crack-Tip Phase Transformation

 Vatne et al. showed that this crystal orientation produced a BCC to FCC phase

transition perpendicular to the crack path symmetric about the crack plane.
89

 They

mention that the periodicity of this FCC phase is along the [001] direction with respect to

the BCC phase and [110] for FCC. The orientation relationship is (110)BCC//(111)FCC and

[001]BCC//[110]FCC which coincided with the Nishiyama-Wassermann orientation

relationship.
90

 This same phase transformation was found during MD simulations as a

meta-phase for grain formation within existing BCC grains in nano-structured iron.
91

 This

same phase transformation can be seen in the results of this study from Fig. 37.

 Wang et al. observed the same kind of structural phase transition in BCC

Molybdenum under deformation loads within a transmission electron microscope at room

temperature.
92

 They demonstrated that this transformation is accompanied by shear

deformation from the original <001>-oriented BCC structure to a <110>-oriented FCC

lattice at crack tips during straining at room temperature. Their crack orientation

corresponds to Vatne's orientation-4; (010)[001] with the cleavage plane 45 degrees from

the initial crack plane.
89

 This BCC to FCC phase is consistent with the Nishiyama-

Wassermann orientation relationship.
90

 However, Wang et al. also found that this FCC

domain reverted back to BCC, however in a <111>-orientation, equivalent to a lattice

rotation of 54.7 degrees. Although Vatne's work also illustrates a secondary BCC phase

that interacts with the FCC phase in front of the crack tip they do not go into detail about

the secondary BCC phase. Wang et al. corroborated their experimental findings with MD

simulations and found that the relation between the FCC phase and the secondary BCC

phase follows the Kurdjumov-Sachs relationships.
93

 This secondary BCC phase is

interesting although not observed for the orientation used in this study.

84

Figure 37. Example of crack-tip phase configuration for the 1 micron sized model.

Colored by CNA.

 The FCC phase is seen to be shrouded in an atomic layer of atoms with 13 nearest

neighbors (CN=13). For the characterization tool used to measure the coordination is set

to count the nearest and next nearest neighbors when in a BCC phase yielding a CN=14,

however it counts only the nearest neighbors for FCC phases, providing a CN=12. For

more information about Coordination Number (CN) and Common Neighbor Analysis

(CNA) please refer to Appendix F.2.a. Figure 37 shows the phase pattern within the

atomistic (S1) and scale-2 (S2) GP domains. Notice that scale-2 is able to reproduce the

phase transition in the appropriate configuration. This indicates that the GP scale

interface does not strongly inhibit the growth of the FCC phase.

85

Figure 38. FCC evolution during crack extension.

 For different crack propagation lengths the size of the FCC phase varies. For

small strain and short propagation distances the FCC phase is small but for longer

propagation distances the FCC phase grows until it reaches a steady state size. The

growth of this phase may be the reason for the growth in the J-R curve of the material.

Figure 38 shows the growth of the FCC phase by counting the number of FCC oriented

atoms in the S1 domain for each of the model sizes. Notice how the smallest model has

the smallest FCC phase for all load strains; but as the model size increases, the size of the

FCC phase converges to the same strain relation. Models 500nm and larger all are seen to

have the same FCC size for a given strain level. Figure 39 shows the number of atoms

that are part of the transition layer between the BCC and FCC phase. These curves show

a similar model size dependence, not so clearly defined by the number of the atoms but

rather by the delay. Smaller model sizes do not nucleate the FCC phase as soon as the

larger models do. Perhaps the smaller model's boundaries are too close and influence the

amount of freedom that the atomistic domain has to nucleate the FCC phase.

86

Figure 39. Mid-phase evolution from BCC to FCC.

D. Conclusion

 The results of this study show that the size of the model affects the material

behavior by influencing the atomistic phenomena at crucial locations as a crack tip. Two

effects were found that affect the phase transformation at the crack tip. First, it was seen

that smaller models do not have as many atoms in the FCC phase as larger models do for

the same loading strain. Second, the smaller models were delayed in their nucleation of

the FCC phase.

 These effects show that the chosen model size of the simulation can seriously

affect atomistic phenomena observed at crack tips. If the researcher is looking to derive

critical information from atomistic-based simulations the model size must be carefully

chosen as both the size and nucleation strain of the FCC phase is important if

characterizing a fracture resistance relation (J-R curve) for use in higher scale modeling.

87

 APPLICATIONS IN IMPACT

Many computational methods work by minimizing the potential energy which yields a

quasistatic model. For many cases this is sufficient, however for applications which

involve a decent amount of dynamics such as thermal activation, and kinetic energy

transfer, this approach is insufficient. Thermal activation can be included in stochastic

modeling but not explicitly. For explicit dynamics Newton's equations of motion are

usually used to model atoms or material particles. In many ways the propagation of stress

waves are very important when considering damage nucleation in materials under high

speed loading conditions such as an impact. To understand the material response to such

conditions, analysis at the atomic scale should be conducted, to investigate the nucleation

of dislocations, zones of amorphousness, nano-cracks, phase changes, etc. This atomic

phenomenon can better help us to understand the high scale material behavior. There has

been some work in the area of dynamic multiscale analysis with atomistically-based

methods. This chapter will describe some of them and show how the GP method may be

extended for use in such cases. It will also discuss how the GP method should grow to

better account for certain dynamic phenomena.

A. Introduction

 Continuum level modeling of dynamic impact of a thin glass sheet was simulated

by Hu et al. using the peridynamic method to investigate the dynamic fracture pattern

under various boundary conditions.
94

 Their model size was the same as the experiments

at 10x10x0.3 cm
3
, impact velocities ranged from 61 to 200 m/s. Their results show very

good qualitative agreement with the experiments. Although their work is very impressive

and useful, it does not explain nor imply what atomistic phenomena is involved. Their

only measure for fracture is a critical bond-stretch that correlates to the material's critical

energy release rate.
95

 Branicio et al. used a 200 million atom MD simulation to model atomistic damage

in AlN from a hypervelocity projectile impact at 15 km/s.
96

 They found a phase

transformation, following the initial elastic compression wave, from the usual wurtzite to

88

a rocksalt phase which is stable at lower volume and higher energies. Behind this phase

transformation wave is a source of nanocavities and kink bands. As the wave returns,

being reflected from the other side of the sample, mode-I cracks nucleated from the

nanocavities and mode-II from the kink band superdislocation boundaries. Although very

interesting results were found there are a couple draw backs to their simulation design.

Firstly the size of their impactor had 500,000 atoms which is supposed to represent an

armor pricing bullet; but was this sufficient to transfer the correct momentum and energy

flux? Secondly in order to have more realistic boundary conditions their model size had

to be extremely large; 200 million atom MD simulations still require a long time to run

even on the most advanced supercomputers. The authors may benefit from using an

atomistically-based concurrent multiscale technique that can handle the dynamics

required by their impact problem.

 Wang wrote a dissertation about an adaptive multiscale method for modeling

nonlinear deformation in nanoscale materials based on the QC method.
97

 Wang proposed

a remeshing technique using a critical strain or energy criterion when the homogeneity of

the microstructure/ deformation was violated and implemented finite temperature into the

QC method via a local harmonic approximation which integrates over all available

normal modes of vibration to derive the equilibrium entropy. The example application for

their method is nano-indentation using the Mixed Penalty functional in the perturbed

Lagrangian to implement contact from an impactor. Even though finite temperature is

implemented the simulation still maintains the quasi-static nature of the QC method, thus

the atomistic domain is not governed by MD or Monte Carlo (MC) but rather Molecular

Mechanics (MM). This means that high velocity impact cannot be accurately modeled

since stress waves would not propagate through time, an explicit version of QC would be

needed.

 Lidorikis et al. proposed a concurrent multiscale method that bridges the atomistic

domain with the continuum FE mesh through a linear average of each domain's

Hamiltonian
98,99

 which is similar to the Bridging Domain Method (BDM) by Xiao and

Belytschko
100

 as they both derive their methodologies from Broughton et al. for wave

reflection suppression.
101

 They show that their scale coupling method is accurate for both

static and dynamic cases. The dynamic case is illustrated with an impact on an Si/Si3N4

89

interface. Farrell and Park et al.
102,103

 used the Bridging scale method (BSM), although

without a hand-shake region for blending the energies, to study wave and intersonic crack

propagation capturing the formation of daughter cracks. They both found no wave

reflection from the scale interface region and both validate their models by comparing

them to the full MD simulations. These methods show an overall high accuracy for all of

their capabilities; however their methods require the element size to be the same as the

atomic lattice in the scale interface domain thus making it a direct coupling method (DC)

which is not the most efficient for saving degrees of freedom in the continuum.

 Guo et al. implemented a unique hand-shake domain composed of coarse-grain

like material points; their Material Point Method (MPM) is able to smoothly transfer the

atomistic information to the FE continuum via modified interpolation shape functions to

reduce artificial forces on the hierarchical background grids.
104

 They tested the MPM by

using a step-like wave and a wave packet propagating within a bar. They were able to

implicitly include the short-wavelength phonons and their dissipation into the MPM

region by weakly coupling the region to a Brownian heat bath whose dynamics are set to

the simulation temperature by invoking equipartition and correcting for the lost degrees

of freedom.
101

 Thus Newton's equations of motion are replaced by Langevin equations

for this higher scale.

 In the next section the GP method will be investigated for its ability to handle

dynamic wave propagation through the use of auto-duality domains to save degree of

freedom. Domains are used to decompose higher scale particles into atoms in regions that

have high energies in an attempt to maintain a degree of accuracy.

B. GP Model for Wave Propagation

 An MD model of two infinite Copper plates impacting each other will be used to

validate the auto-duality capability of the GP method for use in dynamic wave

propagation. Each plate was 5.262 nm thick, the simulation cell was 4.355 nm wide and

broad and periodic in those directions to mimic an infinite plate, see Fig. 40. The impact

surfaces of each plate were designed to match each other, such that upon impact they will

form a single crystalline copper plate. The plates equilibrated at 10 K about 4 nm apart

from one another; the low temperature was used to reduce the thermal noise in the results.

90

After 15 ps of equilibration each plate was given an initial velocity of v=143 m/s

opposing each other such that their impact velocity was the sum of each.

Figure 40. Impact model configuration, each numbered rectangle was individually

monitored for stresses and energies and was later used as an Auto-Duality

domain.

 For the dynamic case, the auto-duality routine as described in Section II.A.4

needs to be augmented. As it was previously described, the imaginary atom domain

follows the deformation of the real scale-2 particles, such that when decomposed the

newly made real atoms will be in approximately the same deformation field as the now

imaginary S2 particles. This works well enough for quasi-static simulations where the

primary state variable to be minimized is the potential energy of the system. For the

dynamic case, the new atoms, after decomposition, will need to be assigned the proper

velocities and accelerations in the same way as they are given positions in the

deformation field.

 For this initial test case, the newly made real atoms/particles' positions are

determined by the average position of the constituents in their former NLC. In the same

way as position is determined, their velocity and acceleration is also determined. In this

way both the potential and kinetic energy are approximately conserved before and after

the decomposition/Lumping process. A word of caution: after decomposition the

averaged field variables for the new degrees of freedom will roughly follow the same

distribution as the particles had. This will not produce the correct Boltzmann distribution

of velocities to maintain the temperature, which is the main reason for running this test at

10 K.

91

C. MD Results for Wave Propagation

 The global pressure average and kinetic energy was monitored to confirm general

wave consistency. Figure 41 shows their evolution in time; since negative and positive

pressure correspond to greater strain energy it makes sense for the pressure frequency to

be half that of the kinetic energy.

Figure 41. Kinetic energy and pressure evolution for the pure atomistic model at the

time of impact. The average kinetic energy oscillates around 250 eV, and the

pressure has amplitude around 4 GPa.

 Each of the local domains shown in Fig. 40 was monitored for their maximum

principal stress evolution and is illustrated in Fig. 42. These values will be compared later

and used as criteria for auto-duality. Notice how ADD1 is the first domain to experience

the impact; however it first feels a tensile force due to the adhesion forces between the

atoms of each plate. This adhesion force adds kinetic energy to the plates hastening their

eventual meeting. After this tensile force there is a compressive stress which is from the

impact velocity. This wave can be seen to propagate into the neighboring AD Domains at

a constant rate and reflect off of the back of the plate in ADD7.

92

Figure 42. Max principal stress evolution of auto-duality domains 1-7.

 For this pure atomistic model the impact configuration is found to be consistent

with what was expected, considering that scale-1 of the GP method corresponds directly

to Molecular Dynamics. These results set a firm foundation for the subsequent tests.

D. Scale-2 Results for Wave Propagation

 A pure scale-2 model is necessary to choose an appropriate decomposition stress

for the auto-duality algorithm. The pressure and kinetic energy evolution results for the

pure scale-2 impact model are shown in Fig. 43. Two main differences are immediately

noticeable, first that the frequency of both pressure and kinetic energy are twice as the

atomistic model; this indicates that the elastic wave speed is twice as fast as it should be

for this material. The second is that the kinetic energy levels are much higher than the

atomistic. However the total energy is roughly consistent as evidenced from the proper

relation between pressure and kinetic energy.

93

Figure 43. Kinetic and Potential energy evolution for the pure Scale-2 model at the

time of impact.

 The kinetic energy oscillates around 1300 eV, and potential around -56025 eV.

The potential energy deviates by 550 eV from the pure atomistic model at about 1%

error, and the kinetic by about 1050 eV, 420% error. It is also seen from the period of the

waves that the wave speed in scale-2 is twice as much as the atomistic model. This wave

speed discrepancy comes from the difference in strain gradient between GP scales. This

causes a factor of two difference between the strain gradient and the acceleration of a

given material point for a scale-2 domain, effectively increasing the perceived wave

speed.

94

Figure 44. Max principal stress evolution of auto-duality domains 1-7.

 The total energy of the scale-two model is about -54725 eV, about a 1600 eV

difference from the pure atomic model. Could this difference be explained by surface

effects? Since both models impact forming a single crystalline plate the interatomic

potentials cause the two approaching surfaces to be attracted to each other, this attraction

force causes the plates to accelerate toward each other. However, scale-2 surfaces feel

twice the attraction force as an atomic surface, since each scale-2 particle interaction feels

the equivalent force of all the atoms it represents. Thus an S2 particle force equals

𝐹2 = 𝑘3𝐹1 or 8F1 when k=2. This equates to the same acceleration as an atom would feel

due to the larger mass of the particle. Since the acceleration is the same as an atom would

feel but the distance to traverse is twice as large the particle's Work of Attraction is twice

as much as an atomic surface. This also means that a scale-2 surface spends a longer time

under the attraction field as an atomic surface and would have an impact velocity of

v0+v1√2, where v1 is the velocity from the atomic surface attraction.

 These surface factors explain the difference in kinetic energy and illustrate the

need for using auto-duality to reduce these effects. It also explains the source of higher

95

scales' increased surface effects which necessitate the use of surface images as described

in Chapter II.A.3. In the next section will show whether the auto-duality concept is

sufficient for minimizing these dynamic scale problems.

E. Auto-Duality Results for Wave Propagation

 Once the decomposition stress criterion has been chosen the scale-2 model can be

simulated again with the auto-duality algorithm switched on. The expectation is that the

auto-duality results should better represent the MD results compared to the scale-2

model. The criterion for decomposition was set to 1.0 GPa and the criterion for lumping

to 0.5 GPa. Figure 45 shows the lumping and decomposition events during the

simulation. The same wave propagation in each AD Domain can be inferred from this

figure. Recall that ADD1 impacts ADD8 of the other plate.

Figure 45. Lumping and Decomposition events for each AD Domain as a function of

time. ADD 1 and 8 interfaced at impact.

 Notice the rapid lumping and decomposition of ADD8 and ADD1 right before

impact. This is due to the previously discussed problem with scale-2 having a longer

interaction distance. When the two domains are lumped as S2 particles the two plates can

feel each other and feel a tensile force which is large enough to cause decomposition,

96

however upon decomposition the newly made atoms have a smaller interaction distance

and the two plates cannot feel each other and do not have the tensile stress thus they relax

and become lumped as S2 particles again. This rapid sequence causes an additional stress

oscillation to the surface of the plates. However this effect occurs only initially right

before impact and will be neglected for the general comparison.

Figure 46. Kinetic energy and Pressure evolution for the auto-duality model at the

time of impact.

 From a global perspective the oscillation of the pressure and kinetic energy appear

to be very similar to the frequency of the pure scale-2 model suggesting that the auto-

duality procedure does little to prevent the increased wave speed in the material. The

average kinetic energy is about 600 eV which is 140% error from the atomistic, but is

much less than the pure scale-2 which had an error of 420%. The auto-duality model still

suffers from an increased kinetic energy from the scale-2 surface adhesion, however to a

lesser extent due to the decomposition. It is also noticed that pressure oscillations decay

which the pure scale impacts do not exhibit. This decay or energy loss is due to

conservation errors during the composition processes, i.e. both the decomposition and

97

lumping procedures. When changing the scale the imaginary become real and the real

become imaginary. The newly real particles or atoms are positioned based on a simple

geometric average of the positions of their NLC constituents. For a propagating wave this

simple average produces a numerical error which manifests as an energy loss. This

energy loss may be minimized by improving the averaging algorithm or by applying a

correction distribution.

Figure 47. Max principal stress evolution of auto-duality domains 1-7.

F. Summary and Recommendations

 It is shown in this Chapter that the auto-duality feature of the GP method can be

used to help mitigate the unrealistic wave propagation dynamics caused by higher scale

GP representations. This illustrates the need for atoms in locations where the deformation

gradient is large and that higher scale particles may be used in areas of small

deformations. There are two dynamic problems that occur within GP scales higher than

the atomistic scale.

 GP Dynamic Problem 1. The wave speed in higher scales is proportional to the

scale ratio. This is due to the farther reaching influence of higher scales for the same

98

reason why higher scales naturally have a proportionally greater surface effect. It causes

the gradient of the strain field to be smaller than it would be for a pure atomistic

representation while keeping the acceleration consistent. This mismatch between

acceleration and strain gradient causes a perceived increase in the wave speed; it changes

the wave equation.

 In order to address this problem a more accurate way to calculate the strain

gradient must be made. The current inverse mapping method is a very fast and

convenient method that is appropriate for quasi-static problems due to its assumption

based on the Cauchy Born rule. However, when the strain gradient is non-zero it causes a

deviation in the wave equation. If there was a way to interpolate the local/atomistic strain

gradient at a given particle location then this problem could be mitigated. Put another

way, the non-locality of GP high scale domains increases proportionally with the scale

ratio. To maintain the atomistic strain gradient, the same degree of non-locality as on the

atomistic scale is needed.

 GP Dynamic Problem 2. The temperature of high scales is not well defined;

using only the inverse mapping method to calculate temperature does not make sense due

to the multiscale nature of velocity distributions that compose thermal energy. Since a

particle's velocity is the average of the atoms' that it is composed of, there is no guarantee

that the kinetic/thermal energy of those atoms is consistent with the particle that

represents them.

 From this perspective the temperature of a high scale domain could be represented

by a sum of two terms, the particles' kinetic temperature plus the internal kinetic energy

of the implicit atoms the particles represent. The larger the particle scale the greater the

internal thermal contribution of the implicit atoms (lost DOF) to the domain temperature.

The heat from the lost DOF due to lumping may be calculated in the same way as is used

in the MPM multiscale method.
104

 This brief dynamical study of the GP method for use in dynamic applications is

instructive. It clearly illustrates the needs still wanting in the GP method and suggests

certain possible solutions to these tough problems. Current work in this field will help to

guide the development of the GP method into a more advanced future incarnation.

99

 PARTICLE-BASED MULTISCALE ANALYSIS PROGRAM (PMAP)

STRUCTURE

A. Introduction

 Many theoretical models seek to investigate the effects of material defects such as

pores, dislocations, microcracks, etc. on the actual applications of processing, loading and

service conditions. These applications tend to be continuum level fields such as strain,

fatigue, electric field, temperature, pressure, etc. To have these material defects evolve

naturally in these fields there must be sufficient freedom such that boundary and model

size effects do not modify the natural defect evolution. This multiscale capability is the

main goal of the GP and GP-FEA methods that differentiate it from traditional Molecular

Dynamics (MD). The features of the GP and GP-FEA methods allow them to contend for

this goal opening the gateway to pursue other applications such as materials

strengthening and toughening by tailoring the design of the nano and microstructure or as

a tool for designing nanotechnological devices and microsystems for different functions.

 In order to model these multiscale characteristics of materials and to realize

multiscale modeling theories, certain numerical methods must be utilized. Computer

programs effectuate these methods; quantitatively tracking the motions of atoms and

particles as they move through space and time. Most simulation programs are designed

for one type of length and time scale, such as molecular dynamic and coarse-graining

programs like LAMMPS
105

, DLPOLY
106,107

, GROMACS
108

, NAMD
109

, the discrete

dislocation dynamics method which can be simulated by software such as, ParaDis
110

,

microMegas
111

, TRIDIS
112

 and finite element analysis software like ABAQUS
79

, and

ANSYS
113

. There are coarse graining methods that can reduce an atomic structure into

representative particles or beads, MARTINI
23

 is an example and can be run within MD

software like NAMD
109

 and GROMACS
108

. They are able to handle two different model

scales hierarchically, the atomistic and one level up, a coarse-grained representation

within a single program framework. These are mainly designed for soft materials in

biological applications their accuracy is based on the atomistic structure thus they are a

100

Class-I multiscale technique. However it is advantageous for all hierarchical scale

simulation methods to be able to run within a single framework where one scale's

information can be used in higher scale simulations and results can be directly compared

in a simple and easy way.

 This is the philosophy that caused the development of the OCTA
114

 and

VOTCA
115

 the Versatile Object-oriented Toolkit. The former is an integrated simulation

system which utilizes four different meso-scale simulation engines: COGNAC
116

(COarse Grained molecular dynamics program by NAgoya Cooperation), PASTA
117

(Polymer rheology Analyzer with Slip-link model of enTAnglement), SUSHI
118

(Simulation Utilities for Soft and Hard Interfaces), and MUFFIN
119

 (MultiFarious FIeld

simulator for Non-equilibrium system).

 Concurrent multiscale frameworks also exist and commonly come in a single

framework. Perhaps the most well-known is the Quasi-Continuum Method (QC).
120

 Their

code is available publicly and is able to set up the material lattice, grains and the FE

mesh, eliminate the ghost force and run the simulation without the need of any third party

software. It is currently limited to 2D, crystals with BCC or FCC and the original code

does not allow for finite temperature calculation although there has been work to extend

it,
121-123

 QC is not MD but can do Molecular Mechanics (MM) calculations i.e. energy

minimization. There is also LibMultiScale
124

 which is a parallel framework for coupled

multiscale methods. This framework provides an API which makes it possible to

program coupled simulations of pre-existing codes. MD codes such as Stamp from CEA

and LAMMPS
105

 have been coupled to a unique FEM code libMesh
125

. It currently is

based on the Bridging Domain Method (BDM) of T. Belytschko and S. Xiao.
100

 Which

uses a Lagrange multiplier method or augmented Lagrangian method for enforcing the

kinematic constraints in the overlapping subdomain where the total Hamiltonian is a

linear combination of the molecular and continuum Hamiltonians which can handle the

spurious wave reflection problem in the overlapping domain.
102,103

 They have also

developed an explicit algorithm and a multi-time step method for BDM. Most simulation

codes used in literature are in-house private codes that are designed for specific

applications or to prove a concept. Never the less these private codes are extremely

important for the advancement of multiscale simulation techniques; one cannot advance

101

computational simulation methods without writing source code for the computers to

execute. Without computer code brilliant ideas will flounder and die; an intimate

knowledge of the physical mechanisms, equations, and algorithms are essential for

correct simulations.

 The program used in this work is a particle-based multiscale analysis program

(PMAP) with the capacity of simulating molecular dynamics with numerous interfaces

coupling higher-scale particle dynamics concurrently to the atomistic domain via the

Generalized Particle Dynamics Method (GP). The model size may be further extended by

coupling the high-scale particle domains to finite element meshes. These coupled scales

are designed to provide the atomistic domain with realistic boundary conditions so that

real world applications may be investigated. This illustrates PMAP as a complete

framework for concurrent multiscale analysis, including MD, various particle scales and

ultimately an FEM continuum. In this chapter the structure of PMAP will be discussed

first as a brief overview, then in more detail about its three parts, initialization,

equilibration, and loading. Explaining the structure and process flow of this multiscale

framework is important for those who wish to develop their own multiscale simulation

code; it is best to begin with the general idea of how the code works before delving into

the details of particular subroutines and functions. These details are discussed in the

Appendix for instructive purposes.

B. Functionality, constitution and flow charts of three basic processes of PMAP

 Molecular Dynamic Simulation codes such as DL_POLY
106,107

, LAMMPS
105

, and

GROMACS
108

 have very similar structures; they use essentially the same types of

algorithms for atom management, integration of motion, and ensemble controls like

thermostats and barostats. The long history of molecular dynamic simulation provides a

wealth of information to those who desire to learn the methods and implement them

within their own codes.
126

 As is usual for most processes, initial conditions are declared as input and

calculated followed by a minimization and/or equilibration procedure, lastly with the

obtained equilibrated state particular non-equilibrium loading conditions may be applied,

102

such as applied strain or electric field. These three processes are shown in Fig. 48 and are

contained within three separate subroutines in the code with one following the other.

Figure 48. Main flow process of the PMAP.

 The initialization and equilibration processes will be described in the next two

subsections since these routines are unique to the GP simulation technique. The Load

process can have two different process flow styles, one for GP models and another when

coupling GP models to FEA meshes. These two styles will be discussed in the subsequent

subsections.

1. Initialization Process

 The initialization process is vital to any procedure; it is the one time overhead that

prepares the tasks to be set into motion. The initialization process flow can be seen in Fig.

49. The first thing that PMAP does is to read the simulation input file. This file contains

the ensemble controls for the entire simulation both equilibration and loading procedures.

This includes the duration of the time-step used in the integration of motion, the duration

of the equilibration process, the temperature if it is to be controlled, and the pressure if

that's to be controlled as well. It also specifies configuration output frequencies and the

output frequency of general ensemble statistics. It may also have various loading styles

for the loading procedure, such as monotonic and cyclic strain rate, electric field, and

thermal ramping. Domains may be specified to be fixed with relation to the simulation

box, thermostatted locally, or just monitored for the domain's stress. Lastly, but arguably

the most important aspect, the atomic species and their inter-atomic potentials must be

declared. Any arbitrary atom may be defined given a symbol, number, mass, radius, and

103

charge. Atoms may interact via analytical potential functions such as the Morse, Lennard-

Jones, Buckingham, and Johnson potentials, or from potential tables (in the format used

in DL_POLY). The EAM potential can also be used in one of two formats, the TABEAM

format from DL_POLY or the more commonly used setfl format. For the calculation of

coulomb potentials the Damped Shifted Coulomb potential algorithm is used, see

Appendix A.2. From all of this information the simulation input file is the main control

file for the entire simulation process.

 Once the simulation process parameters are read from the simulation input file the

GP model file is read. This file is typically named “Model.MD” and contains the number

of total and real atoms and particles, the simulation boxsize followed by a long list of the

atom and particle positions, scales and ID information. This is used as the initial structure

or configuration of the material model. This is the next most important thing for a

successful simulation. This model file is generated separately before simulation by using

lattice programs such as Materials Studio
127

, GULP
128

, etc. In this work an in-house code

was used to generate the crystal structure as well as higher Generalized Particle scales

and their coupling domains, more about the model generation procedure please refer to

Appendix C. If the simulation is reviving from a previous run the “Revive.MD” file will

be read and will overwrite the “Model.MD” configuration including velocities and

accelerations of each atom and particle.

 After reading the simulation input and the GP model configuration this

information is shared among the other compute nodes when running PMAP in parallel

across several processors. Most of the details of the parallel process, which utilizes the

Message Passing Interface (MPI),
129

 will be ignored in this chapter as it is not essential to

understand the process flow. The potentials identified from the simulation input file are

then used to create tabular arrays that are used during the dynamic processes. Using

tabular interpolation for the potentials saves calculation time for the simulation.

104

Figure 49. Initialization process flow, where Nei List stands for Verlet Neighbor

List, SI for Surface Images, ADuality for Auto-Duality, and ADD for Auto-

Duality Domain.

 After the potential tables are created Verlet neighbor lists
126

 are generated for

each imaginary particle and those real particles in ADDs. The neighbors included in the

lists are of adjacent scales not of the same scale. For example, an imaginary scale-1

particle, i, will have a list of scale-2 neighbors, J. The purpose of this kind of neighbor

list is for the next process of creating the NLCs for imaginary atoms and particles. The

NLCs link images to real particles hence the adjacent scale neighbor lists. Creating these

Verlet neighbor lists is important since it considerably speeds the neighbor searching

process for a given particle, even if the search process occurs only once for each

imaginary particle. The NLC generation procedure collects a list of candidate real

particles and sorts them according to distance; such that those real particles that are

closest to the image will be included in the NLC and those that are farther away will not

be included. The maximum number of real particles allowed in a NLC is twelve. This

was decided based on the number of nearest neighbors for FCC and HCP crystal lattice

structures. For an imaginary particle, I, the real atoms, j, in its NLC need not necessarily

be the atoms that lump to form the imaginary particle, I. Rather, the NLC constituents, j,

act as positional data points to ensure that the imaginary particle, I, follows the same

deformation as the real atoms.

 After the NLCs are generated all of the real atoms and particles are given new

Verlet neighbor lists that contain atoms and particles of the same scale. So that an atom, i,

will have atom neighbors, j. This is a more traditional use of Verlet neighbor lists for use

when calculating interatomic forces for dynamic integration. But before the dynamic

105

integration of the equilibration process, there may still be more things to initialize. If

surface images have been declared in the simulation input file then the domains identified

to become surface images will be made into images and then linked to the same scale real

particles of the model, see Section II.A.3 about the specifics of surface images. Lastly if

the model has auto-duality domains (ADD) identified they are checked to make sure that

the mass of the imaginary atoms is the same as the real particles in each ADD. If the

masses are not consistent the boundary of the ADD is modified gradually until the masses

are consistent.

 At this point the initialization process is complete and the simulation will continue

to the equilibration process.

2. Equilibration Process

 The equilibration procedure is the first dynamics routine, the second being part of

the loading procedure. These dynamic routines and those that support them are the heart

of the simulation. The concept of the equilibration procedure is to allow the forces on

each atom and particle to come to zero by relaxing the material structure. The way to do

this is to calculate the total force on each particle based on the current configuration.

From these forces the acceleration, velocity and finally displacement can be found at a

specific later time, defined as the integration timestep. These displacements are then

applied to the particle positions to create a new configuration. From this new

configuration the process begins again for the next timestep, t+1. This calculation cycle

is repeated for a particular amount of time by which the structure is determined to have

come to equilibrium.

106

Figure 50. Equilibration process flow. The lightly shaded area is the Velocity Verlet

algorithm forming the core of the dynamic algorithm.

 The specific subprocesses involved in the equilibration process are shown in Fig.

50. At the bottom right of the figure is where the process begins at time step t=0. The

main loop is entered and the first subprocess is the determination of the imaginary

particle positions, at the top left. As discussed before imaginary particle positions are

determined by the position average of the constituents of their NLCs. This requires only

the real particle positions. Once the imaginary particle positions are determined the real

particle positions are calculated based on the previous timestep's velocities and

accelerations. When t=0 these values are zero. It is possible to prescribe an initial

temperature to the model by applying a Boltzmann distribution to the initial velocities,

but PMAP does not support this feature at this time, however it does provide initial

positional perturbation to make it more realistic when raising the system temperature.

The temperature of the system is calculated at this time in preparation for a possible

thermostat procedure. Half of the new velocity contribution is added to the existing

velocities such that the velocity of atom i is:

 Δta+v=v tt

i

+t

i
2

10.5 (31)

107

If there is a thermostat on the system, these new velocities will be scaled via a

modification to the old velocity term vi
t
. Such that the equation becomes:

 Δta+
T

T
v=v t

t

reqt

i

+t

i
2

10.5 (32)

Where T
t
 is the temperature at time t and Treq is the requested temperature.

 After the half velocities are calculated and the system was checked for a

thermostat it is then checked for a barostat. If there is a barostat then the simulation

boxsize will be scaled to reduce the system pressure. This works because all particle

positions are normalized to the simulation boxsize, thus they are essentially a function of

the boxsize. The details of this procedure can be seen in Appendix A.5.

 Another condition that is checked before the calculation of the interatomic and

interparticle forces is whether the particles have moved too much. This condition is to

determine whether to regenerate the Verlet neighbor lists. If there is large deformation of

local material then the neighbor lists should be regenerated to be sure that the correct

neighbors are accounted for. This check helps to speed the calculation by reducing the

number of times that the neighbor lists are regenerated.

 After these checks are completed the interatomic forces are calculated for all

particles based on their inverse mapped atomic distances. These forces provide new

accelerations to be used in the second half of the velocity Verlet algorithm.

 Δta+v=v +t+t

i

+t

i

0.50.51

2

1
 (33)

Thus the complete integration for the timestep is realized. Now based on these new

velocities the temperature of the system is recalculated and ensemble statistics and

configuration files may be written to later data analysis.

 When the entire equilibration process is complete, i.e. t=ttotal the equilibration

loop exits and a specific configuration is written of the equilibrated structure.

3. Loading Process

 The loading procedure is basically the same as the equilibration procedure; the

main difference is the addition of subprocesses to modify the simulation behavior.

Loading processes such as monotonic and cyclic strain rate, electric field, and thermal

108

ramping can be used here. For loads like strain loads are implemented in a step-wise

manner with a relaxation time in between loading steps. The load increment and

relaxation time are simulation parameters that are specified in the input file.

Figure 51. General flow of the GP load process.

 From Fig. 51 the load step L begins at zero, so there is a relaxation without any

load for the given relaxation time trelax. The relax process follows the same procedures as

the equilibration process. However, alternate boundary conditions (e.g. fixed domains)

may be applied in the load process. When the relaxation is done it is checked to see if the

total load step, Ltotal, has been reached, if not another load increment is applied to the

system. If the total load steps have been reached then the simulation is complete.

 The main difference in the process flow, when coupling with a finite element

mesh, is within the Load procedure. Right before the Load procedure is the initialization

routine for the FEA mesh (“FEA_init” of Fig. 52). Another difference occurs periodically

within the Loading procedure when the FEA mesh is calculated to provide updated

positions to the WG boundary layer to the embedded GP domain (“FEA_calc” of Fig.

52). Figure 52 shows the modified GP load process with the FEA procedures shown as

white boxes. The light colored region is the GP-FEA iteration loop wherein the GP-FEA

interface is tested for convergence, if it has not converged then the WG-GP subsystem

continues to relax and the WF-FEA subsystem is recalculated. When the interface has

converged the next load increment is made, unless it was the last load increment in which

case the simulation completes.

109

Figure 52. General flow of the GP-FEA load process.

 There is another subtlety when coupling with an FEA mesh which involves the

WF and WG domains. At the end of the FEA calculation it sends new interpolated WG

particle positions to the relaxation process which uses them as a fully fixed boundary

layer. While the WG-GP subsystem relaxes with this WG boundary it samples the

position average of the WF particles every ten timesteps since the last FEA calculation.

When the relaxation process is done the WF particle positions are averaged and applied

as WF node displacements for the WF-FEA subsystem boundary condition.

C. Constructions and Executions

 There are about three input files that PMAP reads, the model including the atomic

and particle coordinate and ID data, if coupling to a FEA mesh the FE mesh data and

material properties are read from an FEA input file, and most importantly the global

PMAP input file which contains all of the simulation control parameters. The first two

input files have been discussed in Section II.B. and Appendix C.6.; the development of

the GP model is performed with a separate crystal tessellation code, the usage of which is

described in detail in Appendix C.1. The main input file's directives are listed and

described in full detail in Appendix D. along with instructions to compile and run PMAP.

Also included in Appendix D are the corresponding input files for the examples described

in Chapter II. The purpose of this is for the reader to become familiar with the simulation

110

process and the data files that are required to carry out these kinds of concurrent

multiscale simulations. By explaining this we hope that more people will become

involved in developing not only new multiscale methods but also to be able to write code

to realize their creations.

1. Post-processing

 Most of the utility programs used with PMAP are for post processing purposes.

These include conversion programs to convert the output files of PMAP to other formats

usable by other mainstream programs such as VMD
130

, AtomEye
131

, and gnuplot
132

 for

visualization. Other programs are for data analysis, model manipulation and detailed

debugging of simulations. A full list of these programs is provided in Table VIII of

Appendix E. General post processing program explanations are described in Appendix E

and deeper analysis programs are described in Appendix F, such detailed molecular

structure analysis which can identify atomic defects using several different techniques

including, Coordination Number, Common Neighbor Analysis
133

, Near Neighbor

Grouping
134

, Coordination Vector, and void identification.

 With these utility programs the PMAP output data files can easily be manipulated,

analyzed, and phenomena debugged and understood. Many of these programs are not

restricted for use with PMAP but are programed to have general functionality for use in

many other applications.

D. Summary

 The PMAP procedures have been described in detail and the capabilities

illustrated. The general structure of PMAP is very similar to most MD simulation

programs for the GP computational contribution. For FEA coupling a simple FEM solver

is used periodically during the iterations. Both of these components are easy to be

recognized individually, but the strength of PMAP comes from their combination.

 Common topics for code improvement are better memory consumption, more

efficient computational techniques, parallel algorithms, and more intuitive model

development programs. However the most important improvements to be made are

theoretical in nature and will be discussed in the recommendations in Chapter VIII.

111

 CONCLUSIONS AND RECOMMENDATIONS

Although there has been great progress in the use of MD to investigate crack propagation

and the origins of failure there are two main shortcomings:

 First, most work concentrates on crack propagation rather than crack nucleation.

These defects are both theoretically and practically important since they are the key

properties for understanding the underlying mechanisms of failure.

 Secondly, much work has imposed special treatments to ensure that the crack

propagates along a desired path. These treatments are convenient when using the

cohesive zone model (CZM) to investigate and model the crack propagation behavior;

however their effectiveness must be further validated because the crack propagation

essentially depends on how it was nucleated.

 From the modeling perspective, the methods used today have a difficult time

linking the behaviors of materials on the nanoscale to the large scale bulk properties.
19

This is mainly due to the complicated question: what is the minimum size of material that

can be considered a continuum? The answer to this question is highly material

dependent. Another reason for ambiguous answers to this question is due to the strong

surface effects at the nanoscale. These effects become more significant when the

area/volume ratio increases. This indicates that the surface energy is very important to

consider on the nanoscale and must be included if an accurate material model is to be

used at these small scales. In the elastic range continuum models are incredibly reliable

and can be applied to discrete materials having a size of a few nanometers.
47

 However

these continuum models break down when plasticity is involved at these small scales,

such that the minimum required model size for plasticity remains unsolved.

 This gap in capability prevents atomistic-based models from predicting large scale

material behavior thereby failing to link the two classes of multiscale analysis together. If

micron sized models can be developed it would open a door to solving important

problems in engineering based on a fundamental atomistic foundation.

112

 The GP method and the related GP-FEA method have been introduced as

candidates for this gap in capability. It has been seen to have a natural interface between

scale domains where physical variables such as displacement and force may smoothly

pass from one scale to another. Atomic phenomena such as dislocations may be passed

into higher scale domains via the scale-duality concept
50

 by decomposing particles into

their constituent atoms. In addition, it has been mathematically proven
48,50

 that all

calculations in the particle domain can be conducted at the atomistic domain scale using

the same potential, parameters and numerical algorithm as is used for the model's

atomistic scale. Thus the GP method is essentially an extension of MD and can be easily

delivered to applications by modifying existing MD codes.

A. Conclusions

 There are two basic issues for extending applications of concurrent multiscale

simulations. They include how to quantify the accuracy of atomistically-based multiscale

simulation and how to enlarge the model size to the minimum necessary to guarantee the

accuracy. These solutions have been discussed with the GP and GP-FEA methods. The

GP-FEA method, is a new multiscale method which can make the model size as large as

needed in the microsystem. Apart from the conventional verification method with the full

atomic solution (e.g. MD), a classic elastic stress solution of a two-dimensional specimen

with a central hole under tensile load is used to compare its displacement distribution.

This provides an effective tool for accuracy verification of the GP and GP-FEA

multiscale methods by comparison of their simulation data with the analytical solution.

The result of the comparison is encouraging. Main conclusions from the work include:

 The GP-FEA model embeds an inner multiscale particle system within a

surrounding continuum FE domain. It moves the atom-FEA interface of the DC

method far away to the particle-FEA interface. This greatly reduces DOF of the

system while not disturbing any important phenomena in the focused atomistic

domains, thus the artificial forces and deformation caused by, say, ghost forces

can be avoided.

 It should be noted that the elastic analytical solution is obtained under the

condition that the width of the specimen be larger than four times the hole

113

diameter to keep the error of the solution, e.g., (𝜎𝜃)𝑚𝑎𝑥 from exceeding 6 per

cent. Our design satisfies this requirement. However, model size effects are

problem-dependent. It may relate to material property, environmental conditions,

the variables involved, etc. Thus, it is difficult to get a general answer

analytically. In many cases one should carry on numerical simulations for models

with different size to find the minimum necessary for accuracy.

 The satisfactory agreement between the displacement data obtained by the

proposed GP-FEA methods with the classical analytical solution establishes a

foundation to use these multiscale methods to investigate model size effects.

 Encouraged by the successful comparison of the displacement field predicted by

the GP-FEA method with the continuum solution for a 2D plate with a central cylinder

hole, this newly proposed multiscale method has been further developed and applied to

the crack-tip analysis. Results show excellent agreement of the simulation results with the

LEFM two-term solutions by Rice and others.

This successful comparison with the continuum solution and the powerful

capability of the GP-FEA multiscale method in developing a large micron-scale model

are promising. It allows for the investigation of model dimension effects on the accuracy

of the atomistically-based multiscale method realistic and attractive. The significance of

this investigation should be further emphasized even though the model size choice is a

common problem that appears frequently during model design. It can be further

addressed from the following four aspects. Firstly, accuracy verification for low scales is

important to find the deformation mechanisms. Secondly, if the model size is small the

BC disturbances may likely affect the local fields of forces and displacements which are

near the atomistic regions of interest. In turn, it will change the behavior of highly

important domains such as interfaces, crack-tips and flaws. Thirdly, some mathematical

solutions for the continuum require the medium to be sufficiently large to make the

LEFM crack-tip solution realistic for a tiny crack inside of a bulk material. In this case,

model size must not be small for a reasonable result. The fourth aspect is that for

microsystems and nanotechnology, the model size should be equal/larger than

micrometers or at least being sub-micrometers so the problem of micro- or nano-

114

sensors/activators can be more accurately simulated. Thus, investigating the model size

effects and choosing a minimum model size necessary for the accuracy requirement is

essential.

With the proposed GP-FEA method, the model size effects on the crack-tip

displacement fields of a Mode-I edge crack embedded in a single crystal of BCC iron are

extensively investigated. All models were subjected to the remote BC displacement along

the Y-direction [1̅10] with 1% strain. The accuracy is verified by the LEFM two-term

solution from the results the following observations and conclusions can be made.

 It is seen that the smaller the model size the larger the error produced in the

simulation-obtained uy relation. Specifically, for the case of Ly=120 nm, the error

can reach about 50%. Indicating the small model has high rigidity to produce

small deformation. Our work shows that using stress intensity factor K to

investigate the model size effects is not sufficient since that value is obtained by a

model with infinite size. Changing the model size and comparing the behavior

with the LEFM solution will show the size effect quantitatively. This result serves

as a serious warning: since many existing simulation models are below this size,

the accuracy of these models may be questionable and need to be carefully

verified.

 When the model size increases from 120 nm to 500 nm, the accuracy quickly

increases. However, further increases of the model size from 500 nm to 5000 nm

results have basically the same accuracy as the case of 500 nm. This result is

significant since it lays a foundation for introduction of a new concept of critical

model size, LCR. In fact, the comparison tell us that if the model size is less than

LCR, say 500 nm, the results obtained from atomistically-based multiscale

simulations will have unrealistic crack-tip behavior, including a large percent of

inaccuracy in comparison with the LEFM result. On the other hand, the case for

designing the model size larger than LCR should also be avoided since it may not

greatly improve the accuracy with the penalty of increasing a large of DOF.

115

 The results of this study show that the size of the model affects the material

behavior by influencing the atomistic phenomena at crucial locations as a crack tip. Two

effects were found that affect the phase transformation at the crack tip. First, it was seen

that smaller models do not have as many atoms in the FCC phase as larger models do for

the same loading strain. Second, the smaller models were delayed in their nucleation of

the FCC phase.

 These effects show that the chosen model size of the simulation can seriously

affect atomistic phenomena observed at crack tips. If the researcher is looking to derive

critical information from atomistic-based simulations the model size must be carefully

chosen.

B. Recommendations for Future Work

 Most of the recommendations fall under the category of improving the GP and

GP-FEA methods within the PMAP. However, there is a clear need to continue to

develop a guideline for the least-required model size, LCR, to improve the accuracy in

bridging atomistic and continuum scales. Fortunately, the newly proposed GP-FEA,

which can develop large model sizes, has proven so far to be an effective tool to face this

challenge.

Practice has taught us that the extension of multiscale analysis to more

applications requires essential development of computer code. While codes for model

generation have also been developed, models still require some manual work to design

transition domains such as WF, WG, Wn and Wn+1. This shortcoming will be overcome

such that these domains can be formed automatically after the boundary line and its width

and depth are given, etc.

 It has also been shown that the auto-duality feature of the GP method can be used

to help mitigate the unrealistic wave propagation dynamics caused by higher scale GP

representations. This illustrates the need for atoms in locations where the deformation

gradient is large and that higher scale particles may be used in areas of small

deformations. There are two dynamic problems that occur within GP scales higher than

the atomistic scale.

116

 First, the wave speed in higher scales is proportional to the scale ratio. This is due

to the farther reaching influence of higher scales for the same reason why higher scales

naturally have a proportionally greater surface effect. In order to address this problem a

more accurate way to calculate the strain gradient must be made.

 Second, the temperature of high scales is not well defined; using only the inverse

mapping method to calculate temperature does not make sense due to the multiscale

nature of velocity distributions that compose thermal energy. Since a particle's velocity is

the average of the atoms' that it is composed of, there is no guarantee that the

kinetic/thermal energy of those atoms is consistent with the particle that represents them.

 From this perspective the temperature of a high scale domain could be represented

by a sum of two terms, the particles' kinetic temperature plus the internal kinetic energy

of the implicit atoms the particles represent. The larger the particle scale the greater the

internal thermal contribution of the implicit atoms due to the loss of DOF to the domain

temperature. The heat from the lost DOF due to lumping may be calculated in the same

way as is used in the MPM multiscale method.
104

 Aside from the obvious improvements to be made to the PMAP code such as

better memory consumption, more efficient computational techniques, parallel

algorithms, and more intuitive model development programs, the main obstacles are

theoretical. For example, how to maintain stability and the general loss of vibrational

energy during auto-duality transitions in rapid succession, as described in Chapter VI for

the impact application, this is one topic at the front of GP theory development. Another is

degree of freedom related; even though the GP method and the GP-FEA methods are able

to reduce the system degree of freedom significantly, in some cases it is still not enough.

At this time the FEA implementation in PMAP is only two-dimensional, thus the GP

embedded domain must be relatively thin to have a meaningful coupling. Three-

dimensional FEA is relatively easy to implement, however the cost of a 3D model is

much larger than a quasi-2D model for both FEA and GP. When modeling a

polycrystalline structure it is almost required to have the atomistic domain all along each

of the grain boundaries (GB), the only way to save DOF is to place higher scale domains

inside of the bulk of the grains. However, due to the nature of polycrystals the DOF saved

is seriously limited by the GB interface to grain volume ratio and to study the plasticity

117

effects such as dislocation storage and twinning within grains requires atomic resolution

to correctly capture the dislocation density.

 This brief dynamical study of the GP method for use in dynamic applications is

instructive. It clearly illustrates the needs still wanting in the GP method and suggests

certain possible solutions to these tough problems. This research work is continuous and

further developments to improve the GP and GP-FEA methods as well as efficiency

improvements to PMAP will be achieved. However the current capabilities of PMAP

have been seen and show promise for a wide range of real world engineering

applications. Current work in this field will help to guide the development of the GP

method into a more advanced future incarnation.

118

REFERENCES

1. F. Shackelford, Introduction to Materials Science for Engineers, 6
th

 ed., Prentice

Hall., Upper Saddle River, New Jersey, 2004.

2. C. R. A. Catlow, “Point Defect and Electronic Properties of Uranium Dioxide,”

Proc. R. Soc. Lond. A, 353 [1675] 533-561 (1977).

3. V. Amakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, “Dislocation

Processes in the Deformation of Nanocrystalline Aluminum by Molecular

Dynamics simulation,” Nat. Mater., 1 [1] 45-49 (2002).

4. R. E. Williford, W. J. Weber, R. Devanathan, and A. N. Cormack, “Native Vacancy

Migrations in Zircon,” J. Nucl. Mater., 273 [2] 164-170 (1999).

5. N. F. Mott and M. J. Littleton, “Conduction in Polar Crystals, I. Electrolytic

Conduction in Solid Salts,” Trans. Farad. Soc., 34 [1] 485-499 (1938).

6. J. D. Gale and A. L. Rohl, “The General Utility Lattice Program (GULP),” Mol.

Simul., 29 [5] 291-341 (2003).

7. D. S. Balint, V. S. Deshpande, A. Needleman, and E. Van der Giessen, “Discrete

Dislocation Plasticity Analysis of the Grain Size Dependence of the Flow

Strength of Polycrystals,” Int. J. Plasticity, 24 [12] 2149–2172 (2008).

8. H. D. Espinosa, M. Panico, S. Berbenni, and K. W. Schwarz, “Discrete Dislocation

Dynamics Simulations to Interpret Plasticity Size and Surface Effects in

Freestanding FCC Thin Films,” Int. J. Plasticity, 22 [11] 2091–2117 (2006).

9. D. M. Kochmann and K. C. Le, “Dislocation Pile-ups in Bicrystals within

Continuum Dislocation Theory,” Int. J. Plasticity, 24 [12] 2125–2147 (2008).

10. M. Kaluza and K. C. Le, “On Torsion of a Single Crystal Rod,” Int. J. Plasticity, 27

[3] 460–469 (2011).

11. H. Liang and F. P. E. Dunne, “GND Accumulation in Bi-crystal Deformation:

Crystal Plasticity Analysis and Comparison with Experiments,” Int. J. Mech.

Sci., 51 [4] 326-333 (2009).

12. M. F. Horstemeyer, D. Farkas, S. Kim, T. Tang, and G. Potirniche,

“Nanostructurally Small Cracks (NSC): A Review on Atomistic Modeling of

Fatigue,” Int. J. Fatigue, 32 [9] 1473-1502 (2010).

13. T. L. Anderson, Fracture Mechanics Fundamentals and Applications, 3
rd

 ed., CRC

Taylor & Francis, London, 2005.

119

14. Y. Wei and J. W. Hutchinson, “Toughness of Ni/Al2O3 Interfaces as Dependent on

Micron-scale Plasticity and Atomistic-scale Separation,” Philos. Mag., 88 [30-

32], 3841-3859 (2008).

15. H. B. Fan and M. F. Yuen, “A Multi-scale Approach for Investigation of Interfacial

Delamination in Electronic Packages,” Microelectron. Reliab., 50 [7] 893-899

(2010).

16. W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park, “An Introduction to

Computational Nanomechanics and Materials,” Comput. Method. Appl. Mech.

Eng. 193 [17-20] 1529-1578 (2004).

17. W. K. Liu, E. G. Karpov, and H. S. Park, Nano Mechanics and Materials: Theory,

Multiscale Methods and Applications, John Wiley & Sons, Hoboken, NJ, 2006.

18. J. Fan, L. He, and R. Stewart, “Concurrent and Hierarchical Multiscale Analysis for

Layer-Thickness Effects of Nanoscale Coatings on Interfacial Stress and

Fracture Behavior,” J. Eng. Mater. Tech., 134 [3] 114-124 (2012).

19. J. Fan, Multiscale Analysis of Deformation and Failure of Materials, John Wiley &

Sons, Ltd., Chichester, United Kingdom, 2011.

20. J. A. Elliott, “Novel Approaches to Multiscale Modelling in Materials Science,” Int.

Mater. Rev., 56 [4] 207-225 (2011).

21. A. Lyubartsev, A. Tu, and A. Laaksonen, “Hierarchical Multiscale Modelling

Scheme from First Principles to Mesoscale,” J. Comput. Theor. Nanos., 6 [5]

951-959 (2009).

22. P. Ortoleva, A. Singharoy, and S. Pankavich, “Hierarchical Multiscale Modeling of

Macromolecules and their Assemblies,” Soft Matter, 9 4319-4335 (2013).

23. L. Monticelli, S. Kandasamy, X. Periole, R. Larson, D. P. Tieleman, and S.

Marrink, “The MARTINI Coarse-Grained Force Field: Extension to Protein,” J.

Chem. Theory Comput., 4 [5] 819-834 (2008).

24. J. R. Rice and R. Thomson, “Ductile Versus Brittle Behavior of Crystals,” Philos.

Mag., 29 [1] 73-97 (1974).

25. J. R. Rice and G. E. Beeltz, “The Activation Energy for Dislocation Nucleation at a

Crack,” J. Mech. Phys. Solids, 42 [2] 333-360 (1994).

26. G. E. Beeltz and J. R. Rice, “Dislocation Nucleation at Metal-ceramic Interfaces,”

Acta Metal. Mater., 40 [supplement] S321-S331 (1992).

27. R. E. Peierls, “The Size of Dislocation,” Proc. Phys. Soc., 52 [1] 34-37 (1940).

120

28. F. Cleri, S. Yip, D. Wolf, and S. R. Phillpot, “Atomic-scale Mechanism of Crack-

tip Plasticity: Dislocation Nucleation and Crack-tip Shielding,” Phys. Rev. Lett.,

79 [7] 1309-1312 (1997).

29. F. Cleri, D. Wolf, S. Yip, and S. R. Philpot, “Atomistic Simulation of Dislocation of

Nucleation and Motion from a Crack Tip,” Acta Mater., 45 [12] 4993-5003

(1997).

30. F. Cleri, S. R. Phillpot, D. Wolf, and S. Yip, “Atomistic Simulations of Material

Fracture and the Link Between Atomic and Continuum Length Scales,” J. Am.

Ceram. Soc., 81 [3] 501-516 (1998).

31. L. E. Shilkrot, R. E. Miller, and W. A. Curtin, “Multiscale Plasticity Modeling:

Coupled Atomistics and Discrete Dislocation Mechanics,” J. Mech. Phys.

Solids, 52 [4] 755-787 (2004).

32. E. Saether, V. Yamakov, and E. H. Glaessgen, “An Embedded Statistical Method

for Coupling Molecular Dynamics and Finite Element Analysis,” Int. J. Numer.

Meth. Eng., 78 [11] 1292-1319 (2009).

33. E. B. Tadmor, R. Miller, R. Phillips, and M. Ortiz, “Nanoindentation and Incipient

Plasticity,” J. Mater. Res., 14 [6] 2233-2250, (1999).

34. R. E. Miller and E. B. Tadmor, “The Quasicontinuum Method: Overview,

Applications and Current Directions,” J. Comput. Aided Mater. Des., 9 [3] 203-

239 (2002).

35. L. E. Shilkrot, R. E. Miller, and W. A. Curtin, “Multiscale Plasticity Modeling:

Coupled Atomistics and Discrete Dislocation Mechanics,” J. Mech. Phys.

Solids, 52 [4] 755-787 (2004).

36. W. A. Curtin and R. E. Miller, “Atomistic/continuum Coupling in Computational

Materials Science,” Modelling Simul. Mater. Sci. Eng., 11 [3] R33- R66 (2003).

37. R. E. Miller and D. Rodney, “On the Nonlocal Nature of Dislocation Nucleation

During Nanoindentation,” J. Mech. Phys. Solids, 56 [3] 1203-1223 (2008).

38. Z. Q. Wang and I. J. Beyerlein, “An Atomistically-informed Dislocation Dynamics

Model for the Plastic Anisotropy and Tension-compression Asymmetry of BCC

metals,” Inter. J. Plasticity, 27 [10] 1471-1484 (2011).

39. D. Warner, W. Curtin, and S. QU, “Rate Dependence of Crack-tip Processes

Predicts Twinning Trends in F.C.C. Metals,” Nature Mater., 6 [11] 876-881

(2007).

40. H. Fan and M. Yuen, “A Multi-scale Approach for Investigation of Interfacial

Delamination in Electronic Packages,” Microelectron. Reliab., 50 [7] 893-899

(2010).

121

41. J. L. Tsai, S. H. Tzeng, and Y. J. Tzou, “Characterizing the Fracture Parameters of a

Graphene Sheet Using Atomistic Simulation and Continuum Mechanics,” Int. J.

Solids Struct., 47 [3- 4] 503-509 (2010).

42. X. W. Zhou, N. R. Moody, R. E. Jones, J. A. Zimmerman, and E. D. Reedy,

“Molecular-Dynamics-Based Cohesive Zone Law for Brittle Interfacial Fracture

under Mixed Loading Conditions: Effects of Elastic Constant Mismatch,” Acta

Mater., 57 [16] 4671-4686 (2009).

43. J. T. Lloyd, J. A. Zimmerman, R. E. Jones, X. W. Zhou, and D. L. McDowell,

“Finite Element Analysis of an Atomistically Derived Cohesive Model for

Brittle Fracture,” Modelling Simul. Mater. Sci. Eng., 19 [6] (065007) 1-18

(2011).

44. K. J. V. Vilet, J. Li, T. Zhu, S. Yip, and S. Suresh, “Quantifying the Early Stages of

Plasticity through Nanoscale Experiments and Simulations,” Phys. Rev. B, 67

[10] (104105) (2003).

45. N. Hansen, “Hall-Petch Relation and Grain Boundary Strengthening,” Scr. Mater.,

51 [8] 801-806 (2004).

46. H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, “Size-dependent Effective

Elastic Constants of Solids Containing Nano-inhomogeneities with Interface

Stress,” J. Mech. Phys. Solids, 53 [7] 1574-1596 (2005).

47. B. Yakobson and R. E. Smalley, “Fullerene Nanotubes: C-1000000 and Beyond,”

Am. Sci., 85 [4] 324-337 (1997).

48. J. Fan, “Multiscale Analysis Across Atoms/continuum by a Generalized Particle

Dynamics Method,” Multiscale Model. Simul., 8 [1] 228-253 (2009).

49. A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, A. N. Cormack, “Molecular

Dynamics Studies of Stress-Strain Behavior of Silica Glass under a Tensile

Load,” Chem. Mater., 20 [13] 4356-4366 (2008).

50. J. Fan, R. J. Stewart, and X. Zeng, “A Multiscale Method for Dislocation

Nucleation and Seamlessly Passing Scale Boundaries,” Int. J. Plasticity, 27 [12]

2103-2124 (2011).

51. T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in

Engineering, 3
rd

 ed., Prentice Hall, Upper Saddle River, NJ, 2002.

52. C. Hua, “An Inverse Transformation for Quadrilateral Isoparametric Elements:

Analysis and Application,” Finite Elem. Anal. Des., 7 [2] 159-166 (1990).

53. R. E. Miller and E. B. Tadmor, “A Unified Framework and Performance

Benchmark of Fourteen Multiscale Atomistic/continuum Coupling Methods,”

Modelling Simul. Mater. Sci. Eng., 17 [5] 053001-51 (2009).

122

54. D. L. McDowell and G. B. Olson, “Concurrent Design of Hierarchical Materials

and Structures,” Sci. Model. Simul., 15 [1-3] 207-240 (2008).

55. E. B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum Analysis of Defects in

Solids,” Phil. Mag. A, 73 [6] 1529-1563 (1996).

56. L. E. Shilkrot, R. Miller, and W. A. Curtin, “Coupled Atomistic and Discrete

Dislocation Plasticity,” Phys. Rev. Lett., 89 [2] 025501-4 (2002).

57. L. E. Shilkrot, R. Miller, and W. A. Curtin, “A Coupled Atomistic/continuum

Model of Defects in Solids,” J. Mech. Phys. Solids, 50 [10] 2085-2106 (2002).

58. L. E. Shilkrot, R. Miller, and W. A. Curtin, “Multiscale Plasticity Modeling:

Coupled Atomistics and Discrete Dislocation Mechanics,” J. Mech. Phys.

Solids, 52 [4] 755-787 (2004).

59. R. E. Rudd. and J. Q. Broughton, “Concurrent Coupling of Length Scales in Solid

State Systems,” Phys. Status Solidi B, 217 [1] 217-251 (2000).

60. V. B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, “An

Adaptive Methodology for Atomic Scale Mechanics: The Quasicontinuum

Method,” J. Mech. Phys. Solids, 47 [3] 611-642 (1999).

61. S. Kohlhoff, P. Gumbsch, and H. F. Fischmeiser, “Crack Propagation in BCC

Crystals Studied with a Combined Finite-element and Atomistic Model,” Phil.

Mag. A, 64 851-878 (1991).

62. W. K. Liu, E. G. Karpov, S. Zhang, and H. S. Park, “An Introduction to

Computational Nanomechanics and Materials,” Comput. Methods in Appl.

Mech. Eng., 193 [17-20] 1529-1578 (2004).

63. S. Timoshenko, History of Strength of Materials, McGraw Hill, New York City,

1953.

64. S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw Hill, New York

City, 1951.

65. M. I. Mendelev, S. Han, D.J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta,

“Development of New Interatomic Potentials Appropriate for Crystalline and

Liquid Iron,” Phil. Mag., 83 [35] 3977-3994 (2003).

66. P. S. Leevers and J. C. Radon, “Inherent Stress Biaxiality in Various Fracture

Specimen Geometries,” Int. J. Fracture, 19 [4] 311-324 (1983).

67. P. Gumbsch, “An Atomistic Study of Brittle Fracture: Toward Explicit Failure

Criteria from Atomistic Modeling,” J. Mater. Res., 10 [11] 2897-2907 (1995).

123

68. V. Yamakov, E. Saether, D. R. Phillips, and E. H. Glaessgen, “Molecular-Dynamics

Simulation-Based Cohesive Zone Representation of Intergranular Fracture

Processes in Aluminum,” J. Mech. Phys. Solids, 54 [9] 1899-28 (2006).

69. V. Yamakov, E. Saether, and E. H. Glaessgen, “Multiscale Modeling of

Intergranular Fracture in Aluminum: Constitutive Relation for Interface

Debonding,” J. Mater. Sci., 43 [23-24] 7488-94 (2008).

70. D. E. Spearot, K. I. Jacob, and D. L. McDowell. “Non-local Separation Constitutive

Laws for Interfaces and their Relation to Nanoscale Simulations,” Mech.

Mater., 36 [9] 825–847 (2004).

71. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom-Method Functions

for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys,” Phys. Rev. B, 33

[12] 7983-7991 (1986).

72. S. T. Choi and K. S. Kim, “Nanoscale Planar Field Projections of Atomic

Decohesion and Slip in Crystalline Solids. Part I. A Crack-tip Cohesive Zone,”

Phil. Mag., 87 [12] 1889-1919 (2007).

73. H. Krull and H. Yuan, “Suggestions to the Cohesive Traction-Separation Law from

Atomistic Simulations,” Eng. Fract. Mech., 78 [3] 525-33 (2011).

74. C. R. Dandekar and Y. C. Shin, “Molecular Dynamics Based Cohesive Zone Law

for Describing Al–SiC Interface Mechanics,” Composites: Part A, 42, [4] 355–

363 (2011).

75. X. W. Zhou, J. A. Zimmerman, E. D. Reedy, and N. R. Moody, “Molecular

Dynamics Simulation Based Cohesive Surface Representation of Mixed Mode

Fracture,” Mech. Mater., 40 [10] 832-45 (2008).

76. H. B. Fan, C. K. Y. Wong, and M. M. F. Yuen, “Multi-scale Interfacial

Delamination Model of CuSAM-Epoxy Systems,” In: Proc. International

Conference on Electronic packaging technology & High Density Packaging,

Shanghai, 2008.

77. C. R. Dandekar and Y. C. Shin, “Effect of Porosity on the Interface Behavior of an

Al2O3-aluminum Composite: A Molecular Dynamics Study,” Compos. Sci.

Technol., 71 [3] 350-356 (2011).

78. V. Yamakov, D. Warner, R. Zamora, E. Saether, W. Curtin, and E. Glaessgen,

“Investigation of Crack Tip Dislocation Emission in Aluminum using

Multiscale Molecular Dynamics Simulation and Continuum Modeling,” J.

Mech. Phys. Solids, 65 [1] 35-53 (2014).

79. Dassault Systèmes, ABAQUS Documentation. Providence, RI, 2011.

124

80. H. M. Westergaard, “Bearing Pressure and Cracks,” J. of Appl. Mech., 6 [1] 49-53

(1939).

81. G. R. Irwin, “Analysis of Stress and Strains near the End of a Crack Traversing a

Plate,” J. Appl. Mech., 24 [1] 361-364 (1957).

82. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack,” J.

Appl. Mech., 24 [1] 109-114 (1957).

83. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3
rd

 ed.,

Taylor & Francis, Florence, Kentucky, 2005.

84. S. G. Larsson and A. J. Carlsson, “Influence of Non-singular Stress Terms and

Specimen Geometry on Small-scale Yielding at Crack Tips in Elastic-plastic

Materials,” J. Mech. Phys. Solids., 21 [4] 263-277 (1973).

85. G. A. Kardomateas, R. L. Carson, A. H. Soediono, and D. P. Schrage, “Near Tip

Stress and Strain Fields for Short Elastic Cracks,” Int. J. Fracture, 62 [3] 219-

232 (1993).

86. J. Song, W. Curtin, T. Bhandakkar, and H. Gao, “Dislocation Shielding and Crack

Tip Decohesion at the Atomic Scale,” Acta Mater., 58 [18] 5933-5940 (2010).

87. E. Saether, V. Yamakov, and E. Glaessgen, “New Developments in the Embedded

Statistical Coupling Method: Atomistic/Continuum Crack Propagation,”

Structures, Structural Dynamics and Materials Conference,

AIAA/ASME/ASCE/AHS/ASC, 49
th

, 11 (2008).

88. V. Coffman, J. Sethna, G. Heber, M. Liu, A. Ingraffea, N. Bailey, and E. Barker, “A

Comparison of Finite Element and Atomistic Modelling of Fracture,” Modelling

Simul. Mater. Sci. Eng., 16 [6] 065008 1-15 (2008).

89. I. Vatne, E. Østby, C. Thaulow, and D. Farkas, “Quasicontinuum Simulation of

Crack Propagation in BCC-Fe,” Mat. Sci. Eng. A, 528 [15] 5122–5134 (2011).

90. Z. Nishiyama, “X-ray Investigation of the Mechanism of the Transformation from

Face Centered Cubic Lattice to Body Centered Cubic,” Sci. Rep. Tohoku

Imperial University, 23 [1] 637-664 (1934).

91. A. Latapie and D. Farkas, “Molecular Dynamics Simulations of Stress-induced

Phase Transformations and Grain Nucleation at Crack Tips in Fe,” Modelling

Simul. Mater. Sci. Eng., 11 [5] 745–753 (2003).

92. S. Wang, H. Wang, K. Du, W. Zhang, M. Sui, and S. Mao, “Deformation-induced

Structural Transition in Body-Centred Cubic Molybdenum,” Nat. Comm., 5

[3433] 1-9 (2014).

125

93. G. Kurdjumov and G. Sachs, “Over the Mechanisms of Steel Hardening,” Z. Phys.,

64 [5-6] 325-343 (1930).

94. W. Hu, Y. Wang, J. Yu, C. Yen, and F. Bobaru, “Impact Damage on a Thin Glass

Plate with a thin Polycarbonate Backing,” Int. J. Impact Eng., 62 [1] 152-165

(2013).

95. S. Silling and E. Askari, “A Meshfree Method Based on the Peridynamic Model of

Solid Mechanics,” Comput. Struct., 83 [19-20] 1526-1535 (2005).

96. P. Branicio, R. Kalia, A. Nakano, P. Vashishta, F. Shimojo, and J. Rino, “Atomistic

Damage Mechanisms during Hypervelocity Projectile Impact on AlN: A large-

scale Parallel Molecular Dynamics Simulation Study,” J. Mech. Phys. Solids, 56

[5] 1955-1988 (2008).

97. W. Wang, “An Adaptive Multi-Scale Computational Method for Modeling

Nonlinear Deformation in Nanoscale Materials,” The Department of Civil and

Environmental Engineering, Louisiana State University, 2006.

98. E. Lidorikis, M. Bachlechner, R. Kalia, R. Kalia, G. Voyiadjis, A. Nakano, and P.

Vashishta, “Coupling of Length Scales: Hybrid Molecular Dynamics and Finite

Element Approach for Multiscale Nanodevice Simulations,” Mat. Res. Soc.

Symp. Proc., 653 [Symposium Z] (2000).

99. E. Lidorikis, M. Bachlechner, R. Kalia, A. Nakano, and P. Vashishta, “Coupling

Atomistic and Continuum Length Scales in Heteroepitaxial Systems: Multiscale

Molecular- Dynamics/Finite- Element Simulations of Strain Relaxation in

Si/Si3N4 Nanopixels,” Phys. Rev. B, 72 [11] 115338 (2005).

100. S. Xiao and T. Belytschko, “A Bridging Domain Method for Coupling Continua

with Molecular Dynamics,” Comput. Method Appl. Mech. Eng., 193 [17-20]

1645-1669 (2004).

101. J. Broughton, F. Abraham, N. Bernstein, and E. Kaxiras, “Concurrent Coupling of

Length Scales: Methodology and Application,” Phys. Rev. B, 60 [4] 2391-2403

(1999).

102. D. Farrell, H. Park, and W. Liu, “Implementation Aspects of the Bridging Scale

Method and Application to Intersonic Crack Propagation,” Int. J. Numer. Meth.

Engng., 71 [5] 583-605 (2007).

103. H. Park, E. Karpov, W. Liu, and P. Klein, “The Bridging Scale for Two-

Dimensional Atomistic/continuum Coupling,” Phil. Mag., 85 [1] 79-113 (Jan

2005).

104. Z. Guo and W. Yang, “MPM/MD Handshaking Method for Multiscale Simulation

and its Application to High Energy Cluster Impacts,” Int. J. Mech. Sci., 48 [2]

145-159 (2006).

126

105. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J.

Comp. Phys., 117 [1] 1-19 (1995).

106. I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: New

Dimensions in Molecular Dynamics Simulations via Massive Parallelism,” J.

Mater. Chem., 16 [20] 1911-1918 (2006).

107. W. Smith, T. R. Forester, and I. T. Todorov, The DL_POLY Classic User Manual.

Daresbury Laboratory, United Kingdom, 2010.

108. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J.

Berendsen, “GROMACS: Fast, Flexible, and Free,” J. Comput. Chem., 26 [16]

1701–18 (2005).

109. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,

R. D. Skeel, L. Kale, and K. Schulten. “Scalable Molecular Dynamics with

NAMD,” J. Comput. Chem., 26 [16] 1781-1802 (2005).

110. M. Tang, G. Hommes, S. Aubry, and T. Arsenlis, “ParaDiS-FEM Dislocation

Dynamics Simulation Code Primer,” LLNL-TR-501662, Lawrence Livermore

Nat. Lab., 2011.

111. F. M. Ciorba, S. Groh, and M. F. Horstemeyer, “Parallelizing Discrete Dislocation

Dynamics Simulations on Multi-core Systems,” Int. Conf. on Comput. Sci., 10
th

[1] 2129-2137, (2010).

112. M. C. Fivel, T. J. Gosling, and G. R. Canova, “Implementing Image Stresses in a

3D Dislocation Simulation,” Modelling Simul. Mater. Sci. Eng., 4 [6] 581-596

(1996).

113. ANSYS, Inc., ANSYS Academic Research. Release 13.0, Canonsburg, PA, 2010.

114. M. Doi, The OCTA project, 2002, http://octa.jp.

115. V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, “Versatile

Object-oriented Toolkit for Coarse-Graining Applications,” J. Chem. Theory

Comput., 5 [12] 3211–3223 (2009).

116. T. Aoyagia, F. Sawaa, T. Shojia, H. Fukunagaa, J. Takimotob, and M. Doic, “A

General-Purpose Coarse-grained Molecular Dynamics Program,” Comput.

Phys. Comm., 145 [2] 267–279 (May 2002).

117. J. Takimoto, H. Tasaki, and M. Doi, “Prediction of the Rheological properties of

Polymers using a Stochastic Simulation,” Comput. Phys. Comm., 142 [1-3] 136-

139 (2001) in Proc. XIIIth Int. Cong. Rheology.

127

118. T. Honda, S. Urashita, H. Morita, R. Hasegawa, T. Kawakatsu, M. Doi, “Dynamic

Mean Field Theory for Mesoscale Polymer Simulations,” Kobunshi Ronbunshu,

56 [12] 762-771 (1999).

119. T. Aoyagi J. Takimoto, and M. Doi, “Molecular Dynamic Study of Polymer Melt

Confined Between Walls,” J. Chem. Phys., 115 [1] 552-559 (2001) in Proc. Int.

Conf. Adv. Polymers and Processing, 217.

120. R. E. Miller and E. B. Tadmor, QC Reference Manual version 1.3, May 2007,

url=www.qcmethod.com

121. W. Wang, “An Adaptive Multi-Scale Computational Method for Modeling

Nonlinear Deformation in Nanoscale Materials”; PhD. Thesis, The Department

of Civil and Environmental Engineering, Louisiana State University, 2006.

122. S. Li, N. Sheng, and X. Liu, “A Non-equilibrium Multiscale Simulation Paradigm,”

Chem. Phys. Lett., 451 [4-6] 293-300 (2008).

123. Z. Tang, H. Zhao, G. Li, and N. R. Aluru, “Finite-temperature Quasicontinuum

Method for Multiscale Analysis of Silicon Nanostructures,” Phys. Rev. B, 74 [6]

064110 (2006).

124. G. Anciaux, Libmultiscale. 2009, URL http://libmultiscale.gforge.inria.fr/.

125. B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh: A C++

Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations,” Eng.

Comput., 22 [3-4] 237-254 (2006).

126. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Oxford:

Clarendon Press, Gloucestershire, UK, 1991.

127. Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.0, San

Diego, CA, 2013.

128. J. D. Gale and A. L. Rohl, “The General Utility Lattice Program,” Mol. Simul., 29

[5] 291-341 (2003).

129. MPI Forum. Message Passing Interface (MPI) Forum Home Page. http://www.mpi-

forum.org/ (Dec. 2009)

130. W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual Molecular Dynamics,”

J. Molec. Graphics, 14 [1] 33-38 (1996).

131. J. Li, “AtomEye: an Efficient Atomistic Configuration Viewer,” Modelling Simul.

Mater. Sci. Eng., 11 [2] 173- (2003).

132. T. Williams, C. Kelley, et al., Gnuplot 4.4: an interactive plotting program, March

2010, url=http://gnuplot.sourceforge.net/

128

133. J. D. Honeycutt and H. C. Andersen, “Molecular Dynamics Study of Melting and

Freezing of Small Lennard-Jones Clusters,” J. Phys. Chem., 91 [19] 4950–4963

(1987).

134. R. Sibson, “SLINK: An Optimally Efficient Algorithm for the Single-link Cluster

Method,” Comput. J., 16 [1] 30-34 (1972).

Cited in the Appendices

135. M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta, “Analysis of Semi-

empirical Interatomic Potentials Appropriate for Simulation of Crystalline and

Liquid Al and Cu,” Phil. Mag., 88 [12] 1723-1750 (2008).

136. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, “Exact Method for the

Simulation of Coulombic Systems by Spherically Truncated, Pairwise r
-1

Summation,” J. Chem. Phys., 110 [17] 8254-8282 (1999).

137. C. J. Fennell and J. D. Gezelter, “Is the Ewald Summation Still Necessary? Pairwise

Alternatives to the Accepted Standard for Long-range Electrostatics,” J. Chem.

Phys., 124 [23] 234101 (2006).

138. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.

Haak, “Molecular Dynamics with Coupling to an External Bath,” J. Chem.

Phys., 81 [8] 3684-3690 (1984).

139. H. C. Andersen, “Molecular Dynamics Simulation at Constant Pressure and/or

Temperature,” J. Chem. Phys., 72 [4] 2384-2393 (1980).

140. M. Parrinello and A. Rahman, “Polymorphic Transitions in Single Crystals: A New

Molecular Dynamics Method,” J. Appl. Phys., 52 [12] 7182-7190 (1981).

141. M. Parrinello and A. Rahman, “Strain Fluctuations and Elastic Constants,” J. Chem.

Phys., 76 [5] 2662-2666 (1982).

142. A. Pedone, G. Malavasi, M. C. Menziani, U. Segre, and A. N. Cormack, “Molecular

Dynamics Studies of Stress-Strain Behavior of Silica Glass Under a Tensile

Load,” Chem. Mater., 20 [13] 4356-4366 (2008).

143. C. J. Bradley, The Algebra of Geometry: Cartesian, Areal and Projective Co-

ordinates, Bath: Highperception, Buckinghamshire, UK, 2007.

144. ImageMagick Studio LLC, ImageMagick Studio. 1999-2015.

http://imagemagick.org/index.php

145. E. Blaísten-Barojas, “Structural Effects of Three-body Interactions on Atomic

Clusters,” Kinem, 6 [A] 71–84 (1984).

http://imagemagick.org/index.php

129

146. S. Plimpton, P. Crozier, and A. Thompson, LAMMPS User Manual: Large-scale

Atomic/Molecular Massively Parallel Simulator. Sandia National Laboratories,

July 2009.

147. H. Tsuzuki, P. S. Branicio, and J. P. Rino, “Structural Characterization of Deformed

Crystals by Analysis of Common Atomic Neighborhood,” Comput. Phys.

Comm., 177 [6] 518–523 (2007).

148. P. Legendre and L. Legendre, Numerical Ecology. 2
nd

 English ed., 853 pages,

Elsevier Science, Melbourne, AU, 1998.

130

APPENDICES

There are six appendices attached to this thesis that act as supplementary material and

guides to understanding the technical aspects of the multiscale analysis used in this and

other work. The first Appendix A highlights some of the more interesting algorithms

involved in classical Molecular Dynamic simulation. Appendix B goes in depth about the

unique features of the GP method such as auto-duality and linking with FEA meshes.

Appendix C is a guide for GP and FEA model development including some useful tools

for more complicated geometries. The user manual for the multiscale code used in this

work: PMAP is given in appendix D along with the input files used for specific examples

discussed in Chapter II. The processing of the data files and forming useful results is

expounded upon in Appendix E and tools for an in-depth analysis are explained in the

last Appendix: F.

131

A. USUAL MOLECULAR DYNAMIC FEATURES

1. Reading EAM Tables

 There are many different EAM potential tables available, the most popular format

is “setfl” that is used by LAMMPS. The NIST website has a database of EAM potentials

located online at http://www.ctcms.nist.gov/~cbecker/, DL_POLY has a different type of

format but the concept is the same. The GP code, as of version 42, can use both formats,

the setfl and DL_POLY's format. Before its capability to read EAM tables, it had only the

use of Mendelev's 2008 potential for Copper.
135

 Similar functions and subroutines, as DL_POLY uses to read in the “TABEAM”

file, were developed in the GP code. Specifically, the subroutine JohnsonMix_

Potential_Tables has added to it a block to read the “TABEAM” file that DL_POLY uses

(lines 3898-3960 of version 42). Reading the “setfl” formated files another block was

added similar to the way that LAMMPS reads the data (lines 3961-3996). The new

subroutine metal_deriv was added on line 4205 to tabulate the derivatives of the EAM

potential functions read from the file by using five-point interpolation. This subroutine is

very similar to the one that DL_POLY uses.

 Potential arrays named: Tphir, Tpsir, Tfrho are read directly from the potential

table file. The arrays named: Tdphir, Tdpsir, and Tdfrho are their derivatives,

respectively, generated by the subroutine metal_deriv.

 The potential functions that the subroutine Compute_Forces uses [namely: phir(),

psir(), frho(), dphir(), dpsir(), and dfrho()] originally contained the analytical functions of

Mendelev's potential,
135

 but have been augmented to interpolate the potential arrays if

using a table file. It uses three-point interpolation for this. This method required no

changes to the Compute_Forces subroutine, only to the functions that it uses, so the

possibility of introducing errors is minimized.

 When using setfl potential files, it is important to make the potential cut off radius

consistent or rounded down from the value listed in the potential file, because all of the

data listed in the potential file is only for radii less than that value, if a larger cut off

radius is set in the GP input file then there will be potential interaction errors.

132

2. Damped Shifted Coulomb Potential (DSC)

 The inclusion of the coulombic potential is essential to accurately simulate ionic

materials. The first method that comes to mind when exploring coulomb potential

summation techniques is to simply sum the potential of all neighbors within a cutoff; this

is the practice for the Van der Waals (VDW) potentials. However, problems arise with

this method, most notably that the neighbors being summed, most of the time end up not

being charge neutral. Even using a larger cutoff radius does not solve this problem; this is

why most summation simulations use the Ewald summation method.
136

 The Ewald sum

effectively considers all atoms in a simulation by using their reciprocal lattice

coordinates, this method requires the system to have 3D periodic boundary conditions

and is an O(N
2
) algorithm.

137
 To compare, simple pair-wise calculations are an O(N)

algorithm. This means that the Ewald summation algorithm is much more

computationally intensive and a pair-wise solution would be much more efficient. Figure

53 shows the traditional relation between Ewald and pair-wise uses and their differences.

Figure 53. The Ewald sum (A) replicates the simulation box infinitely. Radial cutoff

methods (B) should be used for amorphous and geometrically unique systems[3].

 The idea behind the pair-wise coulomb summation method is to maintain charge

neutrality within the cutoff radius. This can be done by adding a negative charge, -qj on

the surface of the cutoff sphere for every charge, qj within the sphere, see Fig. 54.

 Wolf et al. compared this technique “to the classic problem of determining the

potential at the center of a conducting, grounded sphere due to the presence of a point

charge, q, at some point r = rń within the sphere”.
136

133

Figure 54. Every charge, qj has a corresponding charge -qj located in the same

direction but on the cutoff radius' spherical surface.
136

a. Implementation

 The equations describing this method can be seen in Eqs. (34) and (35) for the

pair potential and pair force interaction, where Rc is the potential cutoff radius, r is the

distance from atom i to j, and α is the damping parameter.
137,138

 
       

c

c

c

c

c

c

c

0

ji

DSF Rr,
R

Rα

π
+

R

αRerfc
+

R

αRerfc

r

αrerfc

πε

qq
=rV 

























 


22

2/12

exp2α

4
 (34)

 
       

c

c

c

c

c

0

ji

DSF Rr,
R

Rα

π
+

R

αRerfc

r

rα

π
+

r

αrerfc

πε

qq
=rF 

























 








 
22

2/12

22

2/12

exp2αexp2α

4
(35)

Specifically, in the GP code version 42, the potential and force functions are tabulated for

each type of atomic interaction. This is conducted in the subroutine

JohnsonMix_Potential_Tables on line 4015. There are two constants defined, vcon and

fcon. They are shown in Eqns. (36) and (37) and lines 3890-1:

 

c

c

R

αRerfc
=vcon (36)

   

c

c

c

c

R

Rα

π
+

R

αRerfc
=fcon

22

2/12

exp2α 
 (37)

 For example, there are arrays called, PhiTab and DPhiTab for potential and force

interactions, respectively (see lines 4015-6). These arrays are populated by calling a

function that takes four parameters. First, the type of interaction; this is an integer defined

at the beginning of the simulation. Second, the radius between two possible atoms; this is

defined to vary as increments of the cutoff radius divided by the TableSize. Third, an

134

array holding the potential parameters; this is given in the input file. Fourth, the charge

product of atom, i and j; this is used in the coulomb part. There are two such functions,

the first for the potential and the second for the force. They are, respectively, pot and dpot

located on lines 4093 and 4145. These functions can only be accessed in this subroutine.

The potential type must be specified, because these functions can produce three potential

equations. First, the Morse potential model as type 10, second, the Buckingham as type

20, and third, Lennard-Jones as type 30. The EAM potentials are not defined by these

functions but Mendelev's 2008 EAM potential for Copper has type 40, EAM tables in

DL_POLY's format as type 41, and EAM tables in setfl format as type 42. If the coulomb

potential is to be included, the potential type will increase by 1, so Morse would be type

11. For these types, the coulomb term will be added to the regular type. This addition can

be seen in the pot function on lines, 4115, 4126, and 4136. The GP code simply adds the

coulomb component to the base VDW potential; for interactions that are neglected for

their small VDW potential yet require the coulomb portion, a dummy VDW potential is

used with null values so that only the coulombic portion is included.

3. Simulation Revival

 When computational environments are unstable or time limits are imposed upon

simulations, it becomes desirable to continue the simulation where it left off. For a typical

MD simulation the required information to continue, is the initial simulation parameters

from a control type of input file, and the position, velocity, and force/acceleration of all

of the atoms, since these simulations are not history dependent.

 For GP simulations there is additional information needed for Revival. The

Neighbor Link Cells (NLCs) also need to be recorded as well as each scale's box size for

version 41 of the GP code. During a GP simulation, every time the configuration is

written, the Revive.MD file is rewritten with the timestep, loadstep, whether the

Revive.MD file has velocity, acceleration and NLCs, the Current Global BoxSize, and

the Equilibrated Global BoxSize, on the first line. After this is listed every atom and

particle. For example, below is shown the first 5 lines of a sample Revive.MD file

generated from GP code version 44.

135

82500 20 T 25681.86523 18561.95117 1197.940308 21581.39062 18561.95117

1197.940308

 5.101561546325684E-03 55.361032485961914E-03 999.718487262725830E-03

5 10029

 -1.113022976000000E+09 -1.516011392000000E+09 947.425088000000000E+06

 -8.760175275863441E+18 -9.640542141595779E+18 38.336949002595992E+18

 5.070656538009644E-03 55.314928293228149E-03 247.275263071060181E-03

5 10029

The particle scale and type are listed after the position. If the particle was clamped it will

have the clamp domain number multiplied by 10000 added to the particle type, so one

can see that the first two particles shown above are clamped. If the particle was in a

locally thermostatted domain it would have 9900 added to the type if in the first

thermostatted domain, and -100 for every additional local thermostatted domain. If the

particle was in an Auto-Decomposition Domain (ADD) also used as a local stress

domain, it would have that ADD number multiplied by 100 added to the type, this way

ADDomains or thermostatted domains can also be clamped and remain identifiable

throughout the simulation.

 To revive a simulation, make sure the Revive.MD file is in the simulation

directory and toggle the logical value in the input file to “.true.”. If the GP code version

being used is version 41 or above, the logical value in the input file for relinking the

NLCs can be “.false.” since the Revive.MD file contains all of the NLCs for every

imaginary particle. Version 34 did not have the correct NLCs recorded in the Revive.MD

file so when reviving from that version it is necessary for the NLCs to be relinked.

 If something happened to the Revive.MD file rendering it useless, it is possible to

revive from an MD3 configuration file. All that is required is the proper Revive.MD

header, the first line must be placed in the beginning of the MD3 file and the file must be

named “Revive.MD”. It is important that the logical value be set to “F” for false, since

there are no velocities, accelerations, or NLCs in the MD3 configuration files. It's also

important to make sure the correct load step is selected; otherwise the simulation could

revive at a different strain.

4. Periodic Boundary Conditions (PBC) using Verlet Neighbor Lists

136

 There are two parts to successfully implement Periodic Boundary Conditions

(PBCs) in an MD simulation using Link-Cells to find the neighbors of an atom. The first

is to refold atom positions if they wander beyond the boundary. The second is to make

sure that atoms near the boundary can “sense” the atoms on the other side, in essence, the

force interactions must also be refolded.

 The first is taken care of with the subroutine Refold_Positions on line 2536 of

Version 42. It works on the basis that all particle positions are normalized to the Global

boxSize, so all positions range from -0.5 to 0.5, after subtracting 0.5. This is convenient

because if a particle is outside of the box its position in that direction will round up to 1.0.

When this happens it will be repositioned to the other side of the box simply by

subtracting or adding 1.0, depending on which side of the box it was outside of. This

algorithm is accomplished following the method of Allen and Tildesley
126

 for particle, i,

in the X direction:

 if(PBC(1)) pos(1,i)=(pos(1,i) - anint(pos(1,i)-0.5))

This can be seen on line 2559. The position vector originally ranges from 0.0 to 1.0, so to

center it, 0.5 is subtracted. This gives -0.5 to 0.5. The function anint() rounds its

argument to the nearest integer preserving its REAL data type.

 In order to refold the forces across the boundary there needs to be neighbors

refolded across the boundary to provide those forces. Neighbors are found by searching

through a neighbor list. So these folded neighbors must be present in these lists otherwise

they won't even be considered for force calculations. These neighbor lists are generated

periodically through the simulation and must be able to add folded neighbors to particles'

neighbor lists. The lists are made by searching inside of Verlet Neighbor List Cells.

These cells are a little larger than the interatomic cutoff radius and fill the scale's Box

size, for version 41, or fill the entire model box size. Every particle in the model is inside

of one of these cells. So for any particle, i, the particles in the cells around it are

considered for its neighbor list. If one of these cells next to particle i's cell is outside of

the model, a different cell is used, specifically the cell on the other side of the model is

used in its stead, and the particles within are folded across the model to be used in the

neighbor list.

137

 The line of code that specifies which link-cell is being considered is line 3208 of

version 42:

 JCELL=ICELLVAL(tmpjcell(1),tmpjcell(2),tmpjcell(3),scl)

In this case IXYZ holds the coordinates of the current cell, the one with particle i in it.

The variables, k1, k2, and k3 are offset values that when added to IXYZ will specify the

neighboring link-cell, array: tmpjcell(:). It is this cell coordinate that must be refolded if

it's not part of the model. The procedure for doing this is similar to that in the subroutine

Refold_Positions.

 To accomplish this, a temporary JCELL array is needed to hold the values of

IXYZ(:)+k . This makes it easier to refold. Since the total possible value for a coordinate

of JCELL is not 1 as is the case with the position, NCELL must be used in the refolding

process. Before line 3208, the tempjcell(:) array should be defined as well as the

refolding statement:

tmpjcell(1)=IXYZ(1)+k1

tmpjcell(2)=IXYZ(2)+k2

tmpjcell(3)=IXYZ(3)+k3

tmpjcell(:)=tmpjcell(:)-

NCELL(:,scl)*anint(.95*(float(tmpjcell(:)+1)/float(NCELL(:,scl))))

 Here, in the anint() function tmpjcell(:) is divided by NCELL to normalize it, so

the same formula may be used as for refolding position. After the anint() function it is

multiplied by NCELL(:,scl) to bring it back to a dimensional value. This statement will

reset the JCELL to one that is on the opposite side of the model, rather than empty space

which would make it a surface, see Fig. 55.

Figure 55. Particle i with cut-off radius, including refolded area (dotted circle).

138

 There are two other places that must be altered that relate to the use of forces,

they are those that use the distance between an atom and its neighbor, these places should

also take into account the situation that an atoms neighbor may be on the other side of the

model. In this occasion, the distance must be reduced to a refolded distance. Lines 2750,

and 3222 are in subroutines Compute_Forces and UpdateLinkList respectively, and are

shown below for refolding in the X direction:

 Rij(1) = BoxSize(1)*(Sij(1)-anint(Sij(1)))

Where Sij is the normalized distance between atom i and j. The multiplication by

BoxSize(:) is to dimensionalize the distance into angstroms. After these three changes,

the program should be able to use PBCs in any direction.

5. Barostat (NPT)

 The NPT ensemble maintains a constant number of particles, pressure, and

temperature. A simulation achieves a constant number of particles easily by explicitly

defining each one and not spontaneously creating or destroying them. A simulation

maintains a constant pressure and temperature by using a barostat and thermostat

respectively. A barostat alters the system pressure by modifying the simulation cell size

and hence density according to the current pressure. The same goes for thermostats, but

with the velocity of the particles according to the system temperature. Since they are so

similar, similar algorithms can be used to control both quantities.

a. Berendsen Barostat

 The chosen barostat is one by Berendsen
138

 “[this] method does not drastically

alter the dynamic trajectories and is easy to program”. The equations used are listed

below. It begins with the average virial stress, w in equation (38).

 i

N

=i

i fr=w 
13

1
 (38)

The instantaneous pressure of a statistical system can be given by equation (40), derived

from (39).

 PV=NkB T+w (39)

139

 P=ρk BT+
w

V (40)

With these equations, the factor for repositioning the cell size and subsequent particle

positions is given by equation (41).

  PP
τ

δt
=χ req

P

1 (41)

How this factor is used to scale the positions and cell size is shown in the next equation.

 r'=χ
1/3

r (42)

 Implementing the Berendsen barostat was straight forward, by using equations

(41) and (42). The rescaling is performed right after the velocity scaling of the

thermostat. The coupling parameter, τP also called the “rise time” shown in equation (41)

is a difficult parameter to use, the larger the parameter the slower the changes to the box

size, and the smaller the value the more likely high frequency oscillations are to occur. At

the start of the simulation it was found that a very large rise time was needed until the

system settled down a bit, if too small of a rise was given, it would inflate the box size

very quickly and very largely. This is due to the initial high quantities of stress, pressure

and temperature at the early stages of simulation. However, as the simulation progresses

it tends to be necessary for the rise time to become smaller, so as to allow a faster

pressure equilibration. Using the analogy of a pressure piston, the larger the rise time the

more massive and higher inertia the piston has, and the smaller the rise time the more

light and less inertia it has.

b. Anisotropic barostat

 A closer look into the use of barostats with independent dimensionality was

performed. It was found that the Berendsen barostat has the capability to be modified for

anisotropic triclinic systems. In this case the instantaneous pressure becomes a tensor.
138

The Andersen barostat
139

 is only appropriate for systems assumed to be isotropic.

Parrinello and Rahman, providing examples,
140,141

 adapted the Andersen method by

introducing a time dependent shape using variable crystal lattice vectors and an

anisotropic stress tensor.

 The Parrinello and Rahman method based on Andersen's is very mathematically

intensive and difficult to implement compared to Berendsen's.
126

 Pedone et al.
142

140

modified DLPOLY to allow for unconstrained simulation of tensile loading under 3D

PBCs. The unconstrained aspect was accomplished using the Berendsen barostat to

anisotropically relax the strained system. The scaling they used is shown in eqn. 43 and

stress in eqn. 44.

  σP
τ

βΔt
=η ext

P

 11 (43)

 







 iβ

i

iαiiβ

i

iααβ fr+mpp
V

=σ /
1

 (44)

Where Pext is the applied pressure and the “1” indicates the loading direction. These

equations are consistent with those described by Berendsen
138

 where their scaling factor

and stress/pressure are as follows.

  PP
βΔt

=μ
P

 0
3τ

1 (45)









 T

ij

j<i

ij

T

ii

i

i Fr+vvm
V

=P
1

 (46)

Frequently the β/3 in equation 45 is included with the rise time. The particle coordinates

and box size are scaled by equation 14.

 r i
'
=μri (47)

 With these two sets of equal equations, it should be apparent how to implement

this anisotropic barostat for full 3D freedom.

 Detailing the computation involved when using the equations described above,

one finds that the scaling parameter μ as defined below in equation 48, is a 3x3 matrix

that is subsequently multiplied by the position vector to obtain the new positions, see

equation 49.

  PP
βΔt

=μ
P

 0
3τ

1 (48)

 r i
'
=μri (49)

 P0 is the requested pressure array, P is the current pressure array which comes

from the previously calculated stress with an additional kinetic term. 1 is the identity

matrix and ri is the position vector of particle i.

141

 In the code, the stress array has 6 components; the full matrix has 9 elements but

is symmetric, so it can be compressed into 6 components. Interestingly, the code's matrix

equation for equation 48 looks like equation 50, below.

   

   

   

   

   

   

   

   

   






















































































35

42

61

3050

4020

6010

35

42

61

3τ
___1

1

1___

PP

PP

PP

PP

PP

PP
βΔt

=

μμ

μμ

μμ

P

 (50)

Taking advantage of the symmetricalness of μ we have then, equation 49 looking like:

     

     

     
















































iz

iy

ix

'

iz

'

iy

'

ix

r

r

r

μμμ

μμμ

μμμ

=

r

r

r

345

426

561

 (51)

Equation 51 is used on all particle positions and the Box Size in a decomposed manner.

According to matrix multiplication we have the following three equations for each

component of the new positions:

     

     

      iz3iy4ix5

'

iz

iz4iy2ix6

'

iy

iz5iy6ix1

'

ix

rμ+rμ+rμ=r

rμ+rμ+rμ=r

rμ+rμ+rμ=r

 (52)

However the positions in the code are normalized to the current Box Size, so the true

particle positions are actually a function of Box Size, so if the Box Size is changed so are

all of the particle positions. The code takes advantage of this by only changing the size of

the current Box Size to control the pressure.

142

B. GP FEATURES

The GP code has many unique features that go above and beyond the average Molecular

Dynamics Simulator. In this section will be discussed the most interesting and important

features. Such as, domains that can automatically decompose into lower scale particles,

and connecting high scale particles with multiple FEA domains.

1. Automatic Duality Domains (ADD) with stress and energy (internal

duality)

 These local domains (ADDomains) are defined at the beginning of the simulation.

Everything inside of the domains are given an ID unique to that ADDomain. These

particles/atoms are tracked and their energy averaged. At the same time, the initial

ADDomains record the local stress, as material passes through them. These ADDomains

are specified in the input file and should be specified in a way that may be used for auto-

duality, meaning that they can change from being S2 particles to S1 atoms depending on

certain threshold values of maximum local Von Mises stress. What will be decomposed

are the particles that were assigned the unique ID numbers, identifying them to be a part

of that ADDomain. So the initial ADDomain is used for calculating the local stress while

the current ADDomain is the collection of atoms/particles that have a certain average

energy.

 The actual mechanism for auto-duality will be evaluated every output step,

usually every 0.5ps. It is a simple evaluation, and can be found on line 2457 of Version

44 of the GP code. If the largest value in the sum(VMavg(ADD,:))/10 array is

larger than the threshold value given in the input file for decomposition, it will

decompose that ADDomain which corresponds to the first dimension of the array element

of VMavg, and if the minimum value is below the lower threshold value, it will lump the

domain.

 Both lumping and decomposition is performed by the subroutine, composition,

located on line 4623, it simply changes the correct scale real-particle into an imaginary

one, and the imaginary particles into real ones. It then calls the subroutine LinkNLC,

(line 4678) which relinks all of the particles in the ADDomain that were just

143

“composed”. The LinkNLC subroutine is called at the beginning of the simulation, before

dynamics occur, to relink all of the NLCs properly.

 The GP code version 20 was developed to allow all particles, both real and

imaginary, to have NLCs. This is advantageous for the automatic scale duality feature.

There are two main parts of the auto-duality feature, first the preparation then the detector

and process. Separate from this is the ability for the NLCs to break under a specific

strain.

a. Preparation

 This preparation begins on line 1084, at the end of the Initialize subroutine. What

needs to be prepared are the NLCs for all particles. This preparation is only performed

when indicated from the input file; it asks if the user wants to relink the NLCs. If this is

true, then the preparation is prepared.

i. Special List

 To relink the particles, a special neighbor-list must be used. To create this special

neighbor-list to link NLCs, an option was added to the subroutine: Update_List. This new

parameter is a Boolean, when it is true, it creates neighbor-lists for regular dynamics of

the simulation, i.e. one scale only interacts with the same scale. When this parameter is

true, it creates neighbor-lists for the generation of NLCs. Specifically, one scale looks for

adjacent scales, excluding its own scale.

 The special call to Update_List is on line 1086, and the actual subroutine is on

line 3136. The main alteration to this subroutine is to the particle “filter”. On line 3258 is

the “filter” for neighbor-lists of regular dynamics. It makes sure that the candidate j

particles are the same scale regardless of their realness. On line 3275 is the “filter” for

neighbor-lists of NLC linking. It makes sure that the pair particles are not of the same

scale, and does not care whether they are imaginary or not. This means that an imaginary

particle can have an imaginary atom in its NLC, which should be fine.

ii. NLC Linking

 The generation of NLCs for either real or imaginary particles, is the same. On line

4678 begins the subroutine LinkNLC. Its general structure is a double loop, the outer

loop as particle, i, and the inner loop as particle, j. It acquires candidate j particles using

144

the neighbor-lists created by the subroutine Update_List(.false.) as previously described.

The core of this routine runs on particle pair differences, see line 4726. These particle

differences are tested and corrected for Periodic boundary conditions, line 4729. Also,

and most likely redundant, line 4743 filters out candidate j particles if they are too far

away, according to the NLC strain formula.

 This inner loop collects all candidate j particles (SymNei:line 4753), along with

their positional differences (banl:line 4751) and scaled distances (dist:line 4752). All

three of these collections are sorted from the smallest distance to the greatest, if there

exists any, using the sort algorithm by John Mahaffy in March 10, 1995, line 4758. Now

that they are sorted, they can be entered into the NLC for particle, i, lines 4775 & 4787.

The maximum number of NLC constituents is defined to be 12, line 4777. During the

population of the NLC, the positional differences (banl) are being summed into the

variable, neighsum, lines 4774 & 4781. This is divided by the number of NLC

constituents (CN), line 4788. This is the average position of all of the NLC constituents,

the negative of which is the error vector, errvect, line 4790.

iii. NLC Breakage

 NLCs can be allowed to break when their constituents separate from each other,

in a way, inducing a strain on the NLC. The NLC strain is determined when each

imaginary particle's position is evaluated from its NLC constituents' positions.

 The subroutine Evolve_Sample0 (for equilibrium) has additional debugging

information that is dumped to Standard Error (File unit=0) because there really should

not be any reason for an NLC to break during equilibration, unless under special

circumstances, hence the debugging info. There is on line 1835 a test for the option to

break NLCs, this option is specified in the input file, whether to allow NLCs to break or

not. The strain level of the NLC is a function of the largest scale. For example, whether

it's an imaginary atom linking to real particles or if it's an imaginary particle linking to

real atoms. It uses whichever is the larger scale. This scale factor is on the next line,

1840. If the NLC constituent is too far away, it will make a call to BreakingNLC. This

subroutine takes two arguments, the first is the global ID of the imaginary particle under

consideration, and the second is the global ID of the real particle that will be removed

from the NLC.

145

 The BreakingNLC subroutine is located on line 4817 and deletes the entry from

the NLC by moving all later NLC constituent IDs down, to cover it up, line 4842. Thus

removing the offending constituent and subtracting the number of NLC constituents by

one.

 There is another NLC strain detector in the same spot but in subroutine

Evolve_Sample, this is for the evolution between loading steps. It's located on line 2230

with the same parameters, but without any debugging output, since, for example, there

was a crack propagating, there would be a very large amount of NLCs breaking and

writing data every time slows the simulation tremendously.

b. Detector and Process

 The ADDomain energy detector is located in subroutine Evolve_Sample, because

this is the subroutine that evolves the sample between loading steps. So if an ADDomain

was going to change energy it would be after a load step, when the forces and dynamics

were being assigned.

i. Detector

 The detector is located on line 2457. It compares the maximum VM stress for

each ADDomain every Load-output step (LDOuts), which is specified in the input file,

when the ADuality variable is set to true, also specified in the input file. If ADuality is

true, that means that the simulation will attempt to automatically lump or decompose the

ADDomains according to their maximum VM stress values.

 It searches through all of the ADDomains' maximum VM stress and compares it

to the stress range specified in the input file. The first value is the threshold to lump and

the second is the threshold to decompose. After an ADDomain is decomposed or lumped,

a small array called ADrecord is set to -1 or 1 respectively, this array keeps track of

which domains have or have not been lumped or decomposed. This saves time trying to

compose domains that already have been. After the compositions, the Boolean variable

ListUpdateRequested is set to true, because after composition there is a different number

of real particles, and these new real particles need to be included in the neighbor-lists, so

that regular dynamics can be performed on them.

146

ii. Process

 The actual decomposition or lumping process is performed by the subroutine:

composition, located on line 4623. It takes three arguments, the first is the ADDomain

number, the second is the scale of the real particles/atoms, and the third is the

composition direction, for example, -1 for decomposition (going down a scale) or +1 for

lumping (going up a scale). This is why in the detector on line 2459 the call to

composition has “(i,2,-1)” this will decompose the S2 real particles in the ADDomain i;

and on line 2462 “(i,1,1)” this will lump the real S1 atoms in the ADDomain i.

 The subroutine, composition, simply searches all particles/atoms in the model for

the ones that are in the ADDomain. This “filter”, line 4641, uses implicit integer math;

since copper atoms have an atomic number of 29, the copper particles that are in

ADDomain 2, for example, will have an atomID of 229. So this filter divides their

atomID by 100 to test whether it is in the correct ADDomain. Then it tests whether it is

an imaginary particle, and if it is, whether it is of the correct scale. If it is then it turns it

into a real particle by making the ID positive. If it was a real particle, it would make sure

it is of the right scale, and then make its ID negative; to become an imaginary particle.

These determinations are made by the if statement on line 4643.

2. Link GP with FEA

 Currently the FEA domains used are two dimensional so coupling with GP

requires that the GP model be very thin in the Z direction and best be in a Periodic

condition.

 The typical equilibration time for GP models is used as equilibration for the GP

model without being connected to the FEA mesh. After this separate equilibration the

FEA mesh is connected to the GP model. See section 2.2.1 for details about the

connexion method. After this connexion the model is “loaded” at zero strain until the

FEA-GP interface converges. This acts as another equilibration for the entire global

model before any true loading begins. Loading is nonlinear with time, as the interface

must converge before the next load step begins. (or else time-out)

 The FEM domain is solved using The Cholesky decomposition computed using

the subroutine SPBSV of the Linear Algebra Package, LAPACK.

147

a. FEA-GP connexion

 The coupling between the GP and the FE nodes is through a two layered interface.

Figure 56 shows that the inner layer (WF) directly modify the nodes that they are

connected to, and the outer layer (WG) is defined by the FE nodes. In this way there are

no surfaces and the connection condition is through displacement or positions.

Figure 56. Two layer DC interface.

 This coupling can be done by carefully matching the element nodes in the

interface with the lattice positions of the material. This is relatively simple for simple

cubic structures but becomes much more difficult for more complicated structures. Since

this has a one-to-one correspondence between particle and node it would require a very

detailed FE pattern to be made in the interface. To avoid this, averaging particles for each

node is a better choice.

 Of these two interface domains, one is called the “WG” domain. The FE nodes in

the WG domain assign the GPs displacement from the FEM calculation. This allows the

other free GPs to interact with them. The GPs in the WG domain are fully fixed during

GP relaxation and are only moved when FEM gives them new displacements. This fact

will cause wave reflexion, but since the connexion is far from the atomistic domain these

reflexions' effect to the atomistic domain are minimized.

 The other interface domain is called the “WF” domain. This domain is inside of

the GP model and averages the GPs position in the WF domain to assign the FE nodes

148

new displacements. These displacements are used as boundary conditions for the next

FEM calculation.

 The WG and WF domains are defined at the beginning before loading but after

GP equilibration, before the simulation is run. These interface domains are special types

of clamping domains. There is an integer after the two clamp vectors for a given clamp

domain, this integer is -i if the clamp domain is a WG domain, and i if the clamp domain

is a WF domain, and it is 0 if it is not related to an FEA interface domain, also known as

a regular clamp domain; neither WG nor WF. The i is the number of the FEA mesh being

used, if there are two separate meshes from two separate files, this indicates which file

the domain is to be used with. Below are examples of clamp domains (as of Version 56):

rec T 0.0 0.0 123.5 142.0 0.0 0.0
1.0 1.0 1.0 0.0 0.0 0.0 -1 !WG (-i_FEA)
rec T 0.0 0.0 105.4 112.6 0.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 1 !WF (i_FEA)
rec T 0.0 0.0 -30.0 -22.5 0.0 0.0
1.0 1.0 1.0 1.0 0.0 1.0 0 !bottom clamp fixed in Y

 All “regular” clamp domains are defined based on the initial model's geometry,

before equilibration; all particles that start initially inside of any of the clamp domains

will be assigned to that clamp domain and remain in that clamp domain for the entirety of

the full simulation (both equilibration and loading). WG and WF domains are not, they

are determined after GP equilibration so that any surface deformation will not affect the

shape of the FEs. This clamp determination is performed in the subroutine Loading

because it can be easily done after equilibration and before loading, it can be seen on line

3725.

 After the GPs are defined to be in either the WG or WF domain they are used to

calculate which FE node they are closest to. For Version 14 of the FEA code, line 348

connects all WF GPs to their closest node, and line 378 connects the WG GPs. This will

assure the inclusion of all particles in the WG or WF domain.

 To interpolate the displacement between FE nodes for each WG GP. Then the

question becomes, “what nodes to use for this interpolation? And how do we find them?”.

Naturally the nodes around the particle needing to be interpolated should be used, but

how to find them? Using a radial search for the nearest three nodes could be inaccurate

and time consuming. Since the FEM already uses a nodal connectivity array for each

149

element, it makes sense to use that to find neighboring nodes. On line 414 of the FEA

code, is a routine that finds which element the WG particles are in. This will narrow

down the possible nodes to four. When assigning the new positions for the WG GPs, on

line 809, a function is called, named interp() that will interpolate the WG GP's position

given the element that it belongs to, The node that the GP is connected to and the GP's

initial position.

 When the GP is fully inside of an element, bilinear interpolation is used. This is

not trivial as the inverse transformation for quadrilateral isoparametric elements must be

performed. It is commonly believed that no explicit solution to the inverse transformation

exists.
52

 Following the solution technique described in detail by Chongyu Hua
52

 we are

able to perform the interpolation. However if the GP is on an edge or outside of the

element the solution becomes undefined. In such a situation the GP code is designed to

fall-back to a less accurate interpolation technique using barycentric coordinates
143

 with

only three of the closest element nodes. The advantage of this is that it can extrapolate

unlike the bilinear solutions.

 A position inside of a triangle is very easy to be used to interpolate it's third

variable by using Barycentric coordinate transformations,
143

 assuming that the third

variable is known at each vertex, which it is in this case since this will be interpolating

displacement and each vertex is an FE node with displacement, see Fig. 57.

 This interpolation procedure was made into a Fortran90 function that returned the

new particle position based on the interpolated displacement. This function can be seen

on line 934. Barycentric coordinates were introduced (1827) by August Ferdinand

Möbius
143

 where 3rr=λT  , λ is the vector of barycentric coordinates, r is the vector

of Cartesian coordinates, and T is a matrix given by:

 














3231

3231

yyyy

xxxx
=T (53)

thus:

     
 

     
     31233132

323332323332

1
yyxx+xxyy

yyxx+xxyy
=

Tdet

yyxx+xxyy
=λ




 (54)

     
 

     
     31233132

331313331313

2
yyxx+xxyy

yyxx+xxyy
=

Tdet

yyxx+xxyy
=λ




 (55)

150

 213 1 λλ=λ  (56)

Interpolating a point inside of the triangle for f(r) then becomes:

        321 rfλ+rfλ+rfλ=rf 321 (57)

This linear interpolation is automatically normalized since

 11 =λ+λ+λ 32 . (58)

For our case the function f(r)=u(xi).

Thus each GP in WG can have an interpolated displacement value.

Figure 57. Particle displacement interpolation.

 It was determined that using the FEA results to determine the position of the WG

domain immediately after applying load was causing compressive stress at the WG-WF

interface. The GP code was slightly modified from version 28 to 29 to prevent the WG

domain from being redefined after load. Figure 58 details this most current load flow.

This allows the WG domain to load with the GP particles and allow relaxation of GP in a

loaded state, see point (c) of Fig. 58. Then new WF positions are sent to FEA to

recalculate more appropriate positions for WG, see point (d) of Fig. 58. For a more

detailed flowchart of the FEA-GP code V29f10 see Fig. 59.

151

Figure 58. Current loading flow. as of FEA version 10 and GP version 29.

Figure 59. FEA-GP V29f10 Flowchart revision 3.

152

3. Using local/scale BoxSizes for Verlet neighbor Lists to save memory in

large models

 Mentioned briefly in Appendix A.4 each scale has its own BoxSize that is used to

generate the Neighbor list cells used only for that scale. This boxsize can be any size as

long as it is larger than the scale domain. The smaller this boxsize is, the less memory is

required for simulation. Prior to this feature, the entire model was used to generate the

neighbor list cells, and all cells were sized for the atomic domain. This caused problems

when the model size grew to the micron scale, where the atomic domain was very small

and did not occupy a very large volume. As of Version 43 of the GP code, the

determination of the scale boxsize is automatically calculated based on the maximum

position in each direction for each scale. The user does not need to manually determine

the boxsize. To prevent the scales from drifting outside of their respective boxsize, the

scale's boxsize is recalculated before the neighbor lists are updated. There is a small

subroutine in the GP code called FindBox that will redefine the scale's box size. This

subroutine is called first before the simulation begins on line 940, and before neighbor

list updates on line 3530. The subroutine is on line 5054. This change is box size does not

change the particle positions, because they are all normalized to the global box size not

the scale box size and the global box size is not redetermined in this subroutine.

153

C. MODEL DEVELOPMENT

The GP simulation code reads the model to be simulated from a file specified in the input

file. This file contains all of the coordinates of each atom and particle, what scale it is and

what kind of element it is. To generate these models, a material generator is used which

reads an input file usually called “model.in” and outputs the model file called

“Model.MD” to be used directly by the GP code. When coupling GP to an FEA mesh, a

separate input file is needed for the FEA mesh data, these data files are discussed and

explained in detail.

1. GP model development program

 There are three improvements that were made to the material generator program

for efficiency, cleanliness, readability, and configurability.

Source code: Mater_Model7.f90 # Version 7

Directory: /shared/DATA/crystals/

All of the main algorithms in this code came directly from the previous code:

“Mater_Multi_2010_4.f90”. The improvements in the program are listed below.

1) Only the size of each scale is used when generating the lattice for that respective scale.

In other words, lattices do not fill the entire model domain during development, which

saves computation time and resources. This also makes it possible to create very large

scale GP domains up to the micron scale without suffering from computation lagging.

2) Many processing steps were consolidated and only one temporary file is used. This

way, the data remains in memory saving computation time otherwise spent writing to

disk. This also makes the code cleaner and more fluent.

154

3) Previously, all crystal structure data was manually included into the code of the

program. This means that a user must modify the source code to add new crystal data.

Having the user modifying code is prone to cause errors.

 This program uses external crystal data files to assist in crystal structure definition

and allows for any number of crystals in any orientation. These crystal files can be

located in the same “crystals” directory as the program code. For example FCC

aluminum has a crystal file called AlFCC and inside of it is:

4.0559 a0

1.0 a

1.0 b

1.0 c

.false. hexagonal?

1.0 0.0 0.0 Base vectors

0.0 1.0 0.0

0.0 0.0 1.0

1 number of species/different elements

Al 13 element, atomic number

4 ncell, number of atoms in unit cell

0.0 0.0 0.0 13 atom vector and atomic number for each specie cell

0.5 0.5 0.0 13

0.5 0.0 0.5 13

0.0 0.5 0.5 13

 All of the crystal files follow this format. As a result the input file for the material

generator is slightly different. Instead of specifying the material for a block as a single

letter it is now the name of the material file. For example an input file for a two scale

block of Copper:

2 2 !The number of scales used, GP Scale ratio

177.821 10.887 10.887 !Half model sizes

4 !number of blocks below

CuFCC 2 1 !material structure, scale, number of cuts

-177.821 177.821 -10.887 10.887 -10.887 10.887

155

s

-127.015 127.015 -10.887 10.887 -10.887 10.887

CuFCC 1 1

-127.015 127.015 -10.887 10.887 -10.887 10.887

s

127.015 -127.015 10.887 -10.887 10.887 -10.887

CuFCC -1 1

-130.644 130.644 -10.887 10.887 -10.887 10.887

s

-127.015 127.015 -10.887 10.887 -10.887 10.887

CuFCC -2 1

-127.015 127.015 -10.887 10.887 -10.887 10.887

s

-119.757 119.757 -10.887 10.887 -10.887 10.887

 The Model Size is measured from the center of the model, so these values are

half-model size values. This means that the model must be centered about the origin to

correctly use periodic boundary conditions, also be sure that the largest scale is thick

enough in the periodic direction to accommodate two times the interatomic cutoff radius.

Also be sure that atomic layers are not being duplicated; in other words a structure that is

stacked with the sequence ABABAB does not end with the same type of layer that it

begins with, this would make the first layer and the last layer interact directly across the

periodic boundary and violate the stacking sequence.

 The number of material blocks refers to how many special material domains are

listed. For example, it would be 2 if the model was half Al2O3 and Fe. It can also help

when building irregularly shaped models and multiple scales.

 The scale should be 1 to use atoms, and third is the number of cuts being made in

this block. The next line is the full domain of the block in a, x-left, x-right, y-back, y-

front, z-lower, z-upper, format. The single letter below this specifies the type of cut to be

made (all blocks must have at least one cut). Cut types and their parameters can be seen

in the table below. If the lower bound parameter for a given dimension is LARGER than

the maximum bound parameter, it will invalidate the cut. In this way, it is possible to

circumvent the mandatory one-cut-per block, to allow for a solid block defined by the

material block domain. For example, to cut a cylindrical hole down the Y direction, use:

156

 c

 4.5 6.0 2.0

Where the first two parameters are the X and Z coordinates and the third is the radius of

the cylinder. The cut-types shown in bold are not cuts per se, they just modify the lattice

within or without the domain.

Cut type parameters

Cylinder c x-center, z-center, radius of cut

Ellipse e x-center, y-center, A-major-axis, B-minor-axis,

angle

Pore/Sphere P,w x-center, y-center, z-center, radius of pore

Tube T x-center, y-center, outer radius, inner radius

Perimeter p x-left, x-right, y-back, y-front, z-lower, z-

upper, depth, material angle

Rod r x-center, y-center, A-major-axis, B-minor-axis,

angle,material angle

perimeter v x-left, x-right, y-back, y-front, z-lower, z-

upper, depth

Rectangular s x-left, x-right, y-back, y-front, z-lower, z-

upper

Mirror m {x,y,z} x-left, x-right, y-back, y-front, z-

lower, z-upper

 There is a new cut type with identification letter ‘p’ this is a “perimeter” cut type

meaning that the first six parameters are the same as a typical rectangular cut, except that

the seventh parameter specifies a thickness in the x and y direction. This rectangular

perimeter is the material left over. The central part is what is actually cut. The eighth

parameter is the angle in radians from the x axis in the XoY plane to rotate the material,

this is just the material's orientation, it doesn't rotate the domain. Care must be taken

when rotating, since the rotation is made before the cutting, the overall material domain

must be able to accommodate the rotation, otherwise the corners may appear to be cut.

157

The cut type 'v' for perimeter does the inverse of 'p', it actually cuts within the perimeter

domain, rather than only leaving the perimeter as material.

 The “Mirror” cut is used to make twin boundaries. It reverses, or mirrors, the

lattice within the domain and is used, for example, as:

 m

 y

 -100.0 100.0 -25.0 25.0 -100.0 100.0

This will reverse the lattice across the Y axis following the formula:

 y = cdom(4)-abs(cdom(3)-y)

where cdom(4) is shown above to be 25.0 and cdom(3)=-25.0, for every lattice point, y

coordinate.

 The cut type “Rod” is designed to be used with the cut type “Ellipse” as the

ellipse will cut an elliptical hole and the rod can be used to fill the ellipse with a different

material and orientation.

 It is important to note that the block and model dimensions should be designed as

multiples of the unit-cell lattice constants, a, b, and c. These values can be found in the

material files (e.g. AlFCC).

 It is important that the imaginary scales, denoted as the negative of their real

counterpart, correctly overlap into a real domain. Scales must also be sufficiently large

enough to reduce any scale boundary effect.

An example to run this program to generate a model is shown below.

$ /shared/DATA/crystals/Mater_Model7.exe model.in_example

 The first part is the program executable to run and the first and only parameter is

the name of the “model.in” file to be generated from. This program generates a file

called: “Model.MD” which can be used immediately for simulation. It is best to rename

this file to be more descriptive, such as: “Model.MD_example”. It also makes a file

called “Model.xyz” which can be viewed directly with VMD.

158

a. Auto-Scale Interface Creation

 A new version of the model development code was created that will automatically

create appropriate scale interfaces given only the inter-atomic cutoff radius. This new

code is “Mater_Model8.f90”. The main advantage of this code is to make GP model

development easy for the user; all that the user needs to do is to define the real atom and

particle domains. For example the “model.in” input file described before could reduce to

the following:

2 2 !The number of scales used, GP Scale ratio

177.821 10.887 10.887 !Half model sizes

5.3 !Cutoff radius

4 !number of blocks below

CuFCC 2 1 !material structure, scale, number of cuts

-177.821 177.821 -10.887 10.887 -10.887 10.887

s

-127.015 127.015 -10.887 10.887 -10.887 10.887

CuFCC 1 1

-127.015 127.015 -10.887 10.887 -10.887 10.887

s

127.015 -127.015 10.887 -10.887 10.887 -10.887

Notice that the third line is new, this is to define the depth of the Wnimage domain from the

interfaces which should be the same size as the cutoff radius used. Also notice that the

previously defined imaginary domains are simply removed from the input file, see how

much more simple this file appears!

 This automatic capability is based on image particle proximity to real particles of

the same scale. Specifically, for every real domain that the user specifies, a corresponding

imaginary particle scale is made that has a scale n+1 and n-1 of the real scale, n (unless it

doesn’t make sense, if n=1 then n-1 is not used, and if n is the number of scales then n+1

is not used). This follows the scale-duality principal described in Section II.A.4. In this

example, when the scale-2 domain is generated a corresponding imaginary atomic

domain is also made in the same location. Then when the real atomic domain is generated

a corresponding imaginary scale-2 domain is made in the same location. At this point the

scale interface is already made, however it is grossly over designed. The imaginary

159

particles in the center and far from the interface are superfluous. Thus after this type of

model is made it is filtered into an image removal routine that will only keep the

imaginary particles and atoms that are within a cutoff radius of a real atom or particle of

the same scale. In this way all superfluous images are removed. This routine increases the

computational cost and time of model development, but with the utilization of Verlet

Neighbor Lists the speed is greatly increased.

 The drawback of this automatic scale interface creation is that specific imaginary

domains that would be needed for auto-decomposition (see Sections II.A.4.a and

Appendix B.1) would be automatically removed since they are not a part of the scale

interface. For this situation either the user could use the older version 7 of the code or

they could add an imaginary domain to the model separately, outside of the program. The

latter process would require two “model.in” files, one for the main GP model and the

other for the imaginary domain. The imaginary domain would need to be made as a real

domain first, to prevent it from being automatically removed, and then after it’s made it

should be converted to images with the utility “chScale.exe”. This model should then be

appended to the GP model. If the user is knowledgeable about proper scale interface

design then the former approach is recommended as it is more concise, but for users

uncomfortable with scale interface design the latter method is recommended.

2. Nano-structure generation

 There is a way to create a simple nanostructure. The easiest way is to cut many

holes in a single material crystal and fill the holes with a different material and/or

orientation. These holes can be of different geometric shapes randomly distributed and

not intersecting. These shapes are ideally elliptical in the XoY plane and extend through

the z direction, like a cylinder. In order for them not to intersect, the larger primary axis,

a, is assumed to be the radius of a circle for intersection detection. This is an

overestimation, meaning that the volume of the shapes cut into the matrix can only easily

reach about 50% of the model.

 The program to conduct this operation is called: nanoStructGen.f90 it is not an

ideal program, meaning that the user must change specific parameters inside of the code

for each application. The beginning of the code file has several modules for domain tools

160

and randomization. At about 85% of the total lines of code begins the actual program. To

start, line 521 and 522 specify the volume percent of the model to be cut/filled with

nanograins and the other line is the domain array of the model box, as xmin, xmax, ymin

ymax, zmin, zmax.

PercentVolume=20.0

boxsize=(/-235.2422, 235.2422, -219.0186, 219.0186,-24.82, 24.72/)

 On line 533-536 are specified the ranges for the a and b axis for the cutting and

plugging of the holes. Random values will be chosen within these ranges.

mina=5.0

maxa=30.0

minb=5.0

maxb=25.0

 On line 540-547 define two domains, elliptical shown below, these domains will

be avoided when creating the nanostructure. This is useful when generating a bimodal

material. These two domains would be two large elliptical grains, clearly Not part of the

nanostructure being generated. The variable: e1 and e2 stand for ellipse 1 and 2. These

are specially defined variables or objects, as such they have subvariables associated with

each object. The ‘ct’ variable of the e1 object, defined as “e1%ct" is for cut type or the

shape of the domain. This is a three letter string, “ell" for ellipse and “rec" for

rectangular. The ‘axis’ variable, defined as “e1%axis" specifies the direction or plane of

the ellipse, here 3 is the z direction meaning that the ellipse is in the XoY plane. The

‘inside’ variable is a logical or boolean type which determines whether the volume

defined by the domain is inside or outside. The last variable, 'parm’ of the “e1“ and “e2“

objects is an array that holds the domain values for the specific domain geometry. For

ellipses there is needed six values, the x and y coordinates to locate the center of the

ellipse, the a and b values of the ellipse, and the angle in radians from the x axis to rotate

the ellipse, and the same angle but for the rotation of the material.

e1%ct="ell"

e1%axis=3

e1%inside=.true.

e1%parm=(/-96.5,96.5,124.,124.,0.0,0.0,0.0/)

161

e2%ct="ell"

e2%axis=3

e2%inside=.true.

e2%parm=(/96.5,-96.5,124.,124.,0.0,0.0,0.0/)

 On lines 550-552 specifies the domain type for the nanostructures being cut into

the crystal matrix.

dom(i)%ct="ell"

dom(i)%axis=3

dom(i)%inside=.true.

 The parameters for these domains are randomly distributed and checked for

interaction. For these domains to be useful in model development the cuts into the matrix

are output to standard output as a format compatible for “model.in” files. The material to

be placed inside of the cuts is output on standard error.

 A shell script was designed to more easily use this program to generate a

“model.in” file for nanostructure generation. It is simply called “nanoStructGen.sh” and it

is listed below:

echo "running for 30 seconds..." #to maximize the volume to the requested

./nanoStructGen.exe 2>err >out & sleep 30s ; kill $!

echo `tail -n2 err | head -n1 | awk '{print $2}'` " percent nanostructured"

echo "Generating the model.in file"

lines=`wc -l out | cut -d " " -f1`

echo "5 3 This value is not used

10582.164 9112.419 587.898 Half model sizes

T T T Periodic boundaries in X Y Z

2 number of blocks below

CuFCC 5 $((lines/2))

-10582.164 10582.164 -9112.419 9112.419 -587.898 587.898" >model.in

cat out >>model.in #append the cuts to the model.in

lines=`wc -l err | cut -d " " -f1`

echo "CuFCC 5 $((lines/2))

-10582.164 10582.164 -9112.419 9112.419 -587.898 587.898" >> model.in

cat err >>model.in #append the plugs to the model.in

echo "Generating the Model.MD file" #run the new model generator

/shared/DATA/crystals/Mater_Model5.exe model.in

162

echo "Removing Particles that are too close"

delMDdup.exe 1.0 1 -10582.164 10582.164 -9112.419 9112.419 -587.898 587.898

<Model.MD \ 2>ModelDups.MD >ModelNew.MD

 The last part is very important, the part about removing the duplicate particles.

This is to make sure that the material used to plug the holes cut is not too large for the

hole. This program is explained in detail in Appendix C.4.

3. External Decomposition (blind) versions: 2W 3, 5, 6one

 External decomposition is performed after a GP simulation to increase the particle

resolution in a particular area; this could be to follow the tip of a crack or dislocation

propagation. The concept is similar to Auto-Duality discussed in Appendix B.1.

 These 'decomp' programs have a duplicate checking routine that is run before any

particle is placed in output except for the last version: 6one. This routine searches

through all of the currently outputted positions for a possible duplicate. The last version,

6one must have an external duplicate check.

a. decomp2W.f90

 This program decomposes a specified domain using shape functions in

combination with a deformation gradient as a means of interpolating lower scale

positions from higher scale particle positions. The details of how this is done have been

explained in previous works.

 There are two parameters defined in the code, the first is, a0, the lattice constant

for an FCC material such as Copper or Aluminum, the other is, duptol, this is the

duplicate tolerance. Meaning that if there is a particle/atom closer than this value to

another, their positions will be averaged together to make a single point.

 The program takes three arguments. The first is the initial Model.MD file of the

simulation, the second is a “current” snapshot of the configuration in an MD3 format and

the third is the output; the decomposed model. By default this program will reduce all

domains by one scale. So if there is a three scale model, it will keep S1 the same, reduce

S2 to S1 and S3 into S2. Needless to say the output has a significantly larger Degree of

Freedom. An example command line is shown below:

163

$./decomp2W.exe Model.MD 0001200.MD3 decomped.MD3

 The program, when executed, will ask, “Decompose a specified local region?

(y/n) “. If the user responds with the letter, y, then it will ask, “Please specify box

coordinates: xmin xmax ymin ymax zmin zmax”. The user is requested to input a

rectangular domain for the local decomposition. Otherwise the entire model domain is

used for decomposition.

 This program assumes that the scale ratio is equal to two (k=2) and it is designed

only for scales two and three. It begins by identifying the eight octants or unit cells

around a particle. This octant is used as an element using hexahedral shape functions to

use with the deformation matrix to interpolate decomposition points.

b. decomp3.f90

 Like the program above, this decomposes a specified domain, or the entire model,

using only interpolation or shape functions to estimate lower scale particle positions

without the use of the deformation gradient.

 Version 3A is able to decompose scale three directly to scale one, and version 3B

is able to decompose surfaces by extrapolation rather than the usual bulk interpolation.

This version 3 has an additional feature; it has the option to neglect all scales except the

atomic and one of choice. This choice scale may be specified as an optional fourth

parameter.

 Other than these changes this program is executed in the same way as

“decomp2W.f90“

c. decomp5.f90

 Regular Inverse Mapping is used to gather information, such as positions and

other properties, from high scale particles for use in equations and data processing

procedures that are confined to use input at the atomic scale. In other words, Inverse

mapping reduces the high values from particles into lower manageable values as if it was

the atomic scale. Realizing this, one could draw the conclusion that Inverse Mapping

164

might be used to decompose particles into lower scales or atoms. This decomposition

process is designed to increase the model's “data resolution” by interpolating positions

for the particle's constituent atoms. In general, increasing resolution doesn't truly increase

resolution; the best that can be done with the finite amount of data is to use an accurate

interpolation scheme. Herein will be introduced and described the Enhanced Inverse

Mapping Method designed to be used for particle decomposition.

 Inverse Mapping uses a one dimensional scheme involving only two particles at a

time, and divides that distance by the particle's scaling factor to be used to represent an

atom's placement. This would work fine for a perfect crystalline structure, but is too

inaccurate to be used with a model under any deformation. The proposed method uses not

two, but three particles along a line. For decomposition of a particle 'i', being the first

particle in a line, with the second, 'j', being a nearest or next nearest neighbor, the third,

'k', a particle beyond the second by generally the same distance. When finding these

particles the initial configuration is used for the simplicity of using a regular structure.

Once the particles are defined, their positions at some other time and possibly with some

deformation are used.

 This method assumes that the strain gradient of the particle domain is the same for

the decomposed domain. The principal used is that of proportions, the distance-ratio from

particle 'i' to 'j' and the distance from 'i' to 'k' is the same as from particle 'i' to the atom, 'a'

to be placed, and from 'i' to 'j', see Fig. 60.

Figure 60. Distance ratios are the same for the atom 'a' as for the particles.

 The implementation of this enhanced method is in the developed

decomposition code `decomp5.f90`.

165

 Its usage is also the same as “decomp2W.f90”. This decomposition technique

only works when the scale ratio is equal to two (k=2).

d. decomp6one.f90

 This program uses Inverse Mapping for General Particle decomposition like

version 5 but without initial configuration data and only uses particle pairs for

interpolation rather than the three of version 5.

 This program has three optional parameters but the last one must be the “current”

file to decompose. The options are to specify the search radius, -a, the scale ratio, -k, and

the periodic boundary conditions, -p. Each of these three options take a parameter. An

example command line can be seen below.

$./decomp6one.exe -a 6.3 -k 3 -p FFT Equilib.MD3 >decomped.MD3

 The result from this program does contain duplicates due to the structure and

method of looping, so the resulting file should be filtered through the program

“delMD3dup.exe”, see Appendix C.4.

 For this method there are two ways to achieve decomposition when starting from

a high scale model. First, a Fast-Decomposition where the scale is decomposed then the

result is decomposed until the atomistic scale is reached. The disadvantage of this is that

with every decomposition there is error introduced to the structure, so every scale

decomposed from a decomposed scale just accumulates these errors, so much so that the

resultant atomic scale may be in a state of disorder. Second, Let the model equilibrate,

then decompose one scale, then equilibrate again before decomposing down a further

scale. The included equilibration between decompositions in an effort to reduce the errors

introduced from the decomposition.

 There are two scripts that were made as an example of both ways. The fast

decomposition script runs straight through since it decomposes from S5 all the way down

to S1. The slow decomposition script just decomposes one scale at a time and is run four

times to decompose a S5 model. The fast decomposition script was developed first and is

more application specific, below is shown this script. The general layout of the scripts is

166

to define some helpful variables in the beginning for the location and geometry of the

domains to decompose. Then there are subroutines defined for each scale to decompose

to the next scale. For this fast decomposition all of these subroutines are run sequentially

and depend on one another. After these subroutines the program actually begins by

calling these decomposition routines. Then once all of the decomposed domains are

created they are compiled into a Model.MD formatted file called: “decompedModel.MD”

for simulation. This script takes one parameter, which is the configuration file to be

decomposed. For example:

 $./FastDecomp.sh Equilib.MD3

Below is listed the contents of the “FastDecomp.sh” file.

#!/bin/bash

#axis direction, central coordinates for left most scales and angle

#xy1="3 -4222.2 2000.0"

xy1="3 -2777.7 -500.0"

#th1="0.610865" # 35 degs

th1="1.57079632675" # 90 degs

#axis direction, central coordinates for center most scales

xy2="3 -666.6 666.6"

th2="0.785398" # 45 degs

the a and b for the ellipse and the height range

 # Volume Ang^3 est DOF ~DOF in file

S4abz="1440.0 720.0 -601.7464 601.7464" # 3920020675.33609 16668 S4

<33336

Si4abz="1602.0 882.0 -601.7464 601.7464" # 5342253176.60646 22716

S4all=45432

S3abz="468.0 234.0 -234.0 234.0" # 161011700.305603 18485 S3

<36970

Si3abz="522.0 288.0 -288.0 288.0" # 272041616.538188 31232

S3all=62464

S2abz="144.0 72.0 -72.0 72.0" # 4690372.69893427 14539 S2

<29078

167

Si2abz="162.0 90.0 -90.0 90.0" # 8244795.7598454 25557

S2all=51114

S1abz="36.0 18.0 -18.0 18.0" # 73287.073420848 6133 S1

=12266

Si1abz="42.0 24.0 -24.0 24.0" # 152002.818946944 12722

S1all=25444

 # over estimation=257583 DOF

file="$1"

echo "Decomposing from file: " $file

Scale 5 ###3

function makeS5 () {

echo "extract only the final S5 part"

domainExtract.exe ell F $xy1 $S4abz $th1 <"$1" | \

 domainExtract.exe ell F $xy2 $S4abz $th2 >S5

echo "Total Real Scale 5: " $((`wc -l S5 | cut -d " " -f1`-1))

echo "extract only the imaginary S-5 part (in the S4 domain)"

domainExtract.exe ell T $xy1 $S4abz $th1 <"$1" | \

 domainExtract.exe ell F $xy1 $S3abz $th1 | sed 's/\ \ 5\ \ \ /\ -5\ \ \ /' >Si5

domainExtract.exe ell T $xy2 $S4abz $th2 <"$1" | \

 domainExtract.exe ell F $xy2 $S3abz $th2 | sed 's/\ \ 5\ \ \ /\ -5\ \ \ /' |

tail -n +2 \ >>Si5

echo "Total imaginary Scale 5: " $((`wc -l Si5 | cut -d " " -f1`-1))

}

Scale 4 ##

function makeS4 () {

echo "extract all scale 5 particles in the S4 and S-4 domain to decompose"

domainExtract.exe ell T $xy1 $Si4abz $th1 <"$1" >S4s

domainExtract.exe ell T $xy2 $Si4abz $th2 <"$1" | tail -n +2 >>S4s

echo "decompose Scale 5 to Scale 4; PBC in Z"

decomp6one.exe -a 6.3 -k 3 -p FFT S4s >S4tooMany

#rm S4s # remove temporary file

echo "check for duplicate Scale 4 particles"

delMD3dup.exe $((`wc -l S4tooMany | cut -d " " -f1`-1)) 1.5 0 <S4tooMany

2>S4dups >S4all

echo "create only S4 domain"

domainExtract.exe ell T $xy1 $S4abz $th1 <S4all | \

 domainExtract.exe ell F $xy1 $S3abz $th1 >S4

domainExtract.exe ell T $xy2 $S4abz $th2 <S4all | \

168

 domainExtract.exe ell F $xy2 $S3abz $th2 | tail -n +2 >>S4

echo "Total Real Scale 4: " $((`wc -l S4 | cut -d " " -f1`-1))

echo "create outer S-4 domain"

domainExtract.exe ell F $xy1 $S4abz $th1 <S4all | \

 domainExtract.exe ell F $xy2 $S4abz $th2 | sed 's/\ \ 4\ \ \ /\ -4\ \ \ /'

>Si4

echo "create inner S-4 domain"

domainExtract.exe ell T $xy1 $S3abz $th1 <S4all | \

 domainExtract.exe ell F $xy1 $S2abz $th1 | sed 's/\ \ 4\ \ \ /\ -4\ \ \ /' |

tail -n +2 \ >>Si4

domainExtract.exe ell T $xy2 $S3abz $th2 <S4all | \

 domainExtract.exe ell F $xy2 $S2abz $th2 | sed 's/\ \ 4\ \ \ /\ -4\ \ \ /' |

tail -n +2 \ >>Si4

echo "Total imaginary Scale 4: " $((`wc -l Si4 | cut -d " " -f1`-1))

}

Scale 3 ##

function makeS3 {

echo "extract all scale 4 particles in the S3 and S-3 domain to decompose"

domainExtract.exe ell T $xy1 $Si3abz $th1 <S4all >S3s

domainExtract.exe ell T $xy2 $Si3abz $th2 <S4all |tail -n +2 >>S3s

echo "decompose Scale 4 to Scale 3"

decomp6one.exe -a 6.3 -k 3 S3s >S3tooMany

#rm S3s # remove temporary file

echo "check for duplicate Scale 3 particles"

delMD3dup.exe $((`wc -l S3tooMany | cut -d " " -f1`-1)) 1.5 0 <S3tooMany

2>S3dups >S3all

echo "create only S3 domain"

domainExtract.exe ell T $xy1 $S3abz $th1 <S3all | \

 domainExtract.exe ell F $xy1 $S2abz $th1 >S3

domainExtract.exe ell T $xy2 $S3abz $th2 <S3all | \

 domainExtract.exe ell F $xy2 $S2abz $th2 | tail -n +2 >>S3

echo "Total Real Scale 3: " $((`wc -l S3 | cut -d " " -f1`-1))

echo "create outer S-3 domain"

domainExtract.exe ell F $xy1 $S3abz $th1 <S3all | \

 domainExtract.exe ell F $xy2 $S3abz $th2 | sed 's/\ \ 3\ \ \ /\ -3\ \ \ /'

>Si3

echo "create inner S-3 domain"

domainExtract.exe ell T $xy1 $S2abz $th1 <S3all | \

 domainExtract.exe ell F $xy1 $S1abz $th1 | sed 's/\ \ 3\ \ \ /\ -3\ \ \ /'

|tail -n +2 \ >>Si3

169

domainExtract.exe ell T $xy2 $S2abz $th2 <S3all | \

 domainExtract.exe ell F $xy2 $S1abz $th2 | sed 's/\ \ 3\ \ \ /\ -3\ \ \ /'

|tail -n +2 \ >>Si3

echo "Total imaginary Scale 3: " $((`wc -l Si3 | cut -d " " -f1`-1))

}

Scale 2 ##

function makeS2 {

echo "extract all scale 3 particles in the S2 and S-2 domain to decompose"

domainExtract.exe ell T $xy1 $Si2abz $th1 <S3all >S2s

domainExtract.exe ell T $xy2 $Si2abz $th2 <S3all |tail -n +2 >>S2s

echo "decompose Scale 3 to Scale 2"

decomp6one.exe -a 6.3 -k 3 S2s >S2tooMany

#rm S2s # remove temporary file

echo "check for duplicate Scale 2 particles"

delMD3dup.exe $((`wc -l S2tooMany | cut -d " " -f1`-1)) 1.5 0 <S2tooMany

2>S2dups >S2all

echo "create only S2 domain"

domainExtract.exe ell T $xy1 $S2abz $th1 <S2all | \

 domainExtract.exe ell F $xy1 $S1abz $th1 >S2

domainExtract.exe ell T $xy2 $S2abz $th2 <S2all | \

 domainExtract.exe ell F $xy2 $S1abz $th2 |tail -n +2 >>S2

echo "Total Real Scale 2: " $((`wc -l S2 | cut -d " " -f1`-1))

echo "create outer S-2 domain"

domainExtract.exe ell F $xy1 $S2abz $th1 <S2all | \

 domainExtract.exe ell F $xy2 $S2abz $th2 | sed 's/\ \ 2\ \ \ /\ -2\ \ \ /'

>Si2

echo "create inner S-2 domain"

domainExtract.exe ell T $xy1 $S1abz $th1 <S2all | sed 's/\ \ 2\ \ \ /\ -2\ \ \

/' |tail -n \ +2 >>Si2

domainExtract.exe ell T $xy2 $S1abz $th2 <S2all | sed 's/\ \ 2\ \ \ /\ -2\ \ \

/' |tail -n \ +2 >>Si2

echo "Total imaginary Scale 2: " $((`wc -l Si2 | cut -d " " -f1`-1))

}

Scale 1 ###

function makeS1 {

echo "extract all scale 2 particles in the S1 and S-1 domain to decompose"

domainExtract.exe ell T $xy1 $Si1abz $th1 <S2all >S1s

domainExtract.exe ell T $xy2 $Si1abz $th2 <S2all |tail -n +2 >>S1s

echo "decompose Scale 2 to Scale 1"

170

decomp6one.exe -a 6.3 -k 3 S1s >S1tooMany

#rm S1s # remove temporary file

echo "check for duplicate Scale 1 particles"

delMD3dup.exe $((`wc -l S1tooMany | cut -d " " -f1`-1)) 1.5 0 <S1tooMany

2>S1dups >S1all

echo "create only S1 domain"

domainExtract.exe ell T $xy1 $S1abz $th1 <S1all >S1

domainExtract.exe ell T $xy2 $S1abz $th2 <S1all |tail -n +2 >>S1

echo "Total Real Scale 1: " $((`wc -l S1 | cut -d " " -f1`-1))

echo "create outer S-1 domain"

domainExtract.exe ell F $xy1 $S1abz $th1 <S1all | \

 domainExtract.exe ell F $xy2 $S1abz $th2 | sed 's/\ \ 1\ \ \ /\ -1\ \ \ /'

>Si1

echo "Total imaginary Scale 1: " $((`wc -l Si1 | cut -d " " -f1`-1))

}

main program starts here

These are subroutines

makeS5 $file

makeS4 $file

makeS3

makeS2

makeS1

making the Model.MD file ##############################

calculate number of reals and imaginary

NReal=$((`wc -l S1 | cut -d " " -f1`-1+`wc -l S2 | cut -d " " -f1`-1+\

`wc -l S3 | cut -d " " -f1`-1+`wc -l S4 | cut -d " " -f1`-1+`wc -l S5 | cut -d

" " -f1`-1))

NIdeal=$((`wc -l Si1 | cut -d " " -f1`-1+`wc -l Si2 | cut -d " " -f1`-1+\

`wc -l Si3 | cut -d " " -f1`-1+`wc -l Si4 | cut -d " " -f1`-1+`wc -l Si5 | cut

-d " " \ -f1`-1))

write the head of the MD file

echo "NTotal $((NReal+NIdeal)) NIdeal $NIdeal"

echo " 5 $((NReal+NIdeal)) $NReal" >decompedModel.MD

echo -e " F \c" >>decompedModel.MD #"

cat S5 >>decompedModel.MD

tail -n +2 Si5 | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

tail -n +2 S4 >> decompedModel.MD

171

tail -n +2 Si4 | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

tail -n +2 S3 >> decompedModel.MD

tail -n +2 Si3 | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

tail -n +2 S2 >> decompedModel.MD

tail -n +2 Si2 | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

tail -n +2 S1 >> decompedModel.MD

tail -n +2 Si1 | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

The slow decomposition file works in generally the same way but only decomposes down

one scale specified at a time. For example if decomposing from an S5 model down one

scale to S4 the command line would be:

 $./SlowDecomp.sh 4 Equilib >decompedModel.MD

Below is the SlowDecomp.sh file.

#!/bin/bash

###

Script to automatically decompose a higher scale domain to the one lower.

Must specify the decomposition domains i.e. the scale domains to be created

Must specify the scale to decompose TO and the file to decompose in MD3

format

Output is in Model.MD format, ready for simulation

Usage: ./SlowDecomp.sh 4 Equilib.MD3 2>err >out &

Author: Ross J. Stewart

Date: Friday, November 30, 2012

###

172

#axis direction, central coordinates for scales and angle

xy="3 -666.6 666.6"

th="0.785398" # 45 degs

the a and b for the ellipse and the height range (Vol=pi*a*b*h)

 # Vol/11.9480285290791*k^3*(scale-1) = CuFCC_DOF

 # Volume Ang^3 est DOF ~DOF in file

 # S5 72970

S4abz="1498.0 778.0 -601.7464 601.7464" # 4406408734.64214 18736 S4 <

Si4abz="1660.0 940.0 -601.7464 601.7464" # 5899691610.69566 25086 S4all=

S3abz="526.0 292.0 -292.0 292.0" # 281793723.328496 32352 S3 <

Si3abz="580.0 346.0 -346.0 346.0" # 436274731.095901 50088 S3all=

S2abz="202.0 130.0 -130.0 130.0" # 21449538.0016497 66490 S2 <

Si2abz="220.0 148.0 -148.0 148.0" # 30277916.0130616 93856 S2all=

S1abz="94.0 76.0 -76.0 76.0" # 3411417.76342131 285521 S1 =

Si1abz="100.0 82.0 -82.0 82.0" # 4224813.80054755 353599 S1all=

 # over estimation=595599 DOF

tol="1.5" # duplicate tolerance

k="3" # Scale ratio, k, as in k^3*(scale-1)

ra="6.3" # Decomposition radius used for version 6one of the

decomposition code

scale="$1" # first parameter: scale to decompose TO

file="$2" # second parameter: File to decompose

echo "Decomposing from file: " $file

Scale 5 to 4 ###3

function S5_4 () {

echo "extract only the external final part"

domainExtract.exe ell F $xy $S4abz $th <"$1" >upper

echo "Total Real Upper Scales: " $((`wc -l upper | cut -d " " -f1`-1))

echo "extract only the imaginary S-5 part (in the S4 domain)"

domainExtract.exe ell T $xy $S4abz $th <"$1" | \

 domainExtract.exe ell F $xy $S3abz $th | sed 's/\ \ 5\ \ \ /\ -5\ \ \ /'

>SiUpper

echo "Total imaginary Scale 5: " $((`wc -l SiUpper | cut -d " " -f1`-1))

173

echo "extract all scale 5 particles in the S4 and S-4 domain to decompose"

domainExtract.exe ell T $xy $Si4abz $th <"$1" >lowers

echo "decompose Scale 5 to Scale 4; PBC in Z"

decomp6one.exe -a $ra -k $k -p FFT lowers >lowertooMany

#rm lowers # remove temporary file

echo "check for duplicate Scale 4 particles"

delMD3dup.exe $((`wc -l lowertooMany | cut -d " " -f1`-1)) $tol 0 <lowertooMany

2>lowerdups\

 >allLower

echo "create only S4 domain"

domainExtract.exe ell T $xy $S4abz $th <allLower >lower

echo "Total Real Scale 4: " $((`wc -l lower | cut -d " " -f1`-1))

echo "create outer S-4 domain"

domainExtract.exe ell F $xy $S4abz $th <allLower | sed 's/\ \ 4\ \ \ /\ -4\ \

\ /' >SiLower

}

Scale 4 to 3 ###3

function S4_3 () {

echo "extract only the external final part"

domainExtract.exe ell F $xy $S3abz $th <"$1" >upper

echo "Total Real Upper Scales: " $((`wc -l upper | cut -d " " -f1`-1))

echo "extract only the imaginary S-4 part (in the S3 domain)"

domainExtract.exe ell T $xy $S3abz $th <"$1" | \

 domainExtract.exe ell F $xy $S2abz $th | sed 's/\ \ 4\ \ \ /\ -4\ \ \ /'

>SiUpper

echo "Total imaginary Scale 4: " $((`wc -l SiUpper | cut -d " " -f1`-1))

echo "extract all scale 4 particles in the S3 and S-3 domain to decompose"

domainExtract.exe ell T $xy $Si3abz $th <"$1" >lowers

echo "decompose Scale 4 to Scale 3; PBC in Z"

decomp6one.exe -a $ra -k $k -p FFT lowers >lowertooMany

#rm lowers # remove temporary file

echo "check for duplicate Scale 3 particles"

delMD3dup.exe $((`wc -l lowertooMany | cut -d " " -f1`-1)) $tol 0 <lowertooMany

2>lowerdups\

 >allLower

echo "create only S3 domain"

domainExtract.exe ell T $xy $S3abz $th <allLower >lower

echo "Total Real Scale 3: " $((`wc -l lower | cut -d " " -f1`-1))

174

echo "create outer S-3 domain"

domainExtract.exe ell F $xy $S3abz $th <allLower | sed 's/\ \ 3\ \ \ /\ -3\ \

\ /' >SiLower

}

Scale 3 to 2 ###3

function S3_2 () {

echo "extract only the external final part"

domainExtract.exe ell F $xy $S2abz $th <"$1" >upper

echo "Total Real Upper Scales: " $((`wc -l upper | cut -d " " -f1`-1))

echo "extract only the imaginary S-3 part (in the S2 domain)"

domainExtract.exe ell T $xy $S2abz $th <"$1" | \

 domainExtract.exe ell F $xy $S1abz $th | sed 's/\ \ 3\ \ \ /\ -3\ \ \ /'

>SiUpper

echo "Total imaginary Scale 3: " $((`wc -l SiUpper | cut -d " " -f1`-1))

echo "extract all scale 3 particles in the S2 and S-2 domain to decompose"

domainExtract.exe ell T $xy $Si2abz $th <"$1" >lowers

echo "decompose Scale 3 to Scale 2; PBC in Z"

decomp6one.exe -a $ra -k $k -p FFT lowers >lowertooMany

#rm lowers # remove temporary file

echo "check for duplicate Scale 2 particles"

delMD3dup.exe $((`wc -l lowertooMany | cut -d " " -f1`-1)) $tol 0 <lowertooMany

2>lowerdups\

 >allLower

echo "create only S2 domain"

domainExtract.exe ell T $xy $S2abz $th <allLower >lower

echo "Total Real Scale 2: " $((`wc -l lower | cut -d " " -f1`-1))

echo "create outer S-2 domain"

domainExtract.exe ell F $xy $S2abz $th <allLower | sed 's/\ \ 2\ \ \ /\ -2\ \

\ /' >SiLower

}

Scale 2 to 1 ###3

function S2_1 () {

echo "extract only the external final part"

domainExtract.exe ell F $xy $S1abz $th <"$1" >upper

echo "Total Real Upper Scales: " $((`wc -l upper | cut -d " " -f1`-1))

echo "extract only the imaginary S-2 part (in the S1 domain)"

domainExtract.exe ell T $xy $S1abz $th <"$1" | sed 's/\ \ 2\ \ \ /\ -2\ \ \ /'

>SiUpper

175

echo "Total imaginary Scale 2: " $((`wc -l SiUpper | cut -d " " -f1`-1))

echo "extract all scale 2 particles in the S1 and S-1 domain to decompose"

domainExtract.exe ell T $xy $Si1abz $th <"$1" >lowers

echo "decompose Scale 2 to Scale 1; PBC in Z"

decomp6one.exe -a $ra -k $k -p FFT lowers >lowertooMany

#rm lowers # remove temporary file

echo "check for duplicate Scale 1 particles"

delMD3dup.exe $((`wc -l lowertooMany | cut -d " " -f1`-1)) $tol 0 <lowertooMany

2>lowerdups\

 >allLower

echo "create only S1 domain"

domainExtract.exe ell T $xy $S1abz $th <allLower >lower

echo "Total Real Scale 1: " $((`wc -l lower | cut -d " " -f1`-1))

echo "create outer S-1 domain"

domainExtract.exe ell F $xy $S1abz $th <allLower | sed 's/\ \ 1\ \ \ /\ -1\ \

\ /' >SiLower

}

Make the Model.MD file ##############################

function mkMD () {

grep ". -. " upper >>SiUpper # Append all imaginary in

upper(MD3) to SiUpper

grep -v ". -. " upper >>upper.tmp # extract all real in upper(MD3)

to a temp file

mv upper.tmp upper # rename the temp file to upper

NReal=$((`wc -l upper | cut -d " " -f1`-1+`wc -l lower | cut -d " " -f1`-1))

NIdeal=$((`wc -l SiUpper | cut -d " " -f1`-1+`wc -l SiLower | cut -d " " -f1`-

1))

echo "NTotal $((NReal+NIdeal)) NIdeal $NIdeal"

echo " `sort -r -k 4 -g $file | head -n1 | awk '{print $4}'` $((NReal+NIdeal))

$NReal" \ >decompedModel.MD

echo -e " F \c" >>decompedModel.MD #"

cat upper >>decompedModel.MD

tail -n +2 SiUpper | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

tail -n +2 lower >> decompedModel.MD

tail -n +2 SiLower | awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> decompedModel.MD

}

176

MD3 to Model.MD ###

function MD3_MD () {

grep ". -. " $file >Ideal # extract imaginary from MD3

grep ". . " $file >Real

NReal=`wc -l Real | cut -d " " -f1`

NIdeal=`wc -l Ideal | cut -d " " -f1`

echo "NTotal $((NReal+NIdeal)) NIdeal $NIdeal"

echo " `sort -r -k 4 -g $file | head -n1 | awk '{print $4}'` $((NReal+NIdeal))

$NReal" \ >Model.MD_${file}

echo " F `head -n 1 $file`" >>Model.MD_${file}

cat Real>>Model.MD_${file}

awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' Ideal \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' > Model.MD_${file}

}

Main Program Starts Here

if [$scale = "4"]; then

 S5_4 $file

 mkMD

elif [$scale = "3"]; then

 S4_3 $file

 mkMD

elif [$scale = "2"]; then

 S3_2 $file

 mkMD

elif [$scale = "1"]; then

 S2_1 $file

 mkMD

elif [$scale = "rebuildMD"]; then # rebuild the Model.MD output

 mkMD

elif [$scale = "makeMD"]; then # turn an MD3 file into a Model.MD

 MD3_MD $file

fi

###

########

177

These two decomposition scripts rely heavily on the external program called,

“domainExtract.exe” this is a simple but a very useful utility, and it is described in

Appendix E.3.

4. Delete duplicate positions within a cutoff: delMDdup & delMD3dup

 This utility is not always necessary but can be useful. It checks an input stream of

positions in a domain for duplicate positions according to the given tolerance parameter.

Its only parameter is the tolerance in the unit used in the data.

 If another position is within this tolerance radius it is output on standard error, the

pure results without duplicates is output on standard output. Images are ignored since

they have NLCs. The only parameter to be aware of is kScale on line 12 specifying the

scale ratio, this is important to make sure the duplicate tolerance is proportionately

scaled.

 There are two versions of this code, one for Model.MD formatted files and the

other for MD3 configuration files. The latter requires an additional parameter for the total

number of particles. Their respective usage is as follows:

$ delMDdup [dupTol] [numBox] [domains..] < dupFILE.MD > uniqFILE.MD"

$ delMD3dup [NTotal] [dupTol] [numBox] [domains..] < dupFILE.MD > uniqFILE.MD"

The parameters needed to execute these programs include the duplicate tolerance

(dupTol), an example value is 1.5 Angstrom. These programs also have the ability to

operate on local rectangular domains. The number of these domains is specified by

“numBox” and are listed in the primitive format of “xmin xmax ymin ymax zmin zmax”.

The file to be rid of duplicates is read on standard input.

5. Considerations when designing very large micron scale models

 The greatest concern when making very large models is the degree of freedom. To

most effectively reduce the DOF is to have a large scale ratio. Theoretically this greatly

reduces the local resolution and hence accuracy. A recommended scale ratio is k=3. In

practice the majority of the micron sized models would best be S5. The domain of highest

interest, such as a grain boundary or other interface, should be the atomistic domain. The

178

intermediate scales between 1 and 5 should be as small as possible, to quickly achieve the

fifth scale.

 These intermediate scales should ideally be greater than or equal to the size of the

cutoff radius for the scale above, so that the higher scale’s imaginary domain can fit

inside when ideally sized. The Program to generate such a large model must be the model

generation program described in Appendix C.1. The reason for this is due to the

improved efficiencies in this code compared to the older traditional one which is still

suitable for MD and small GP models.

 These large models also tend to have large DOFs and are difficult to visualize in

programs like VMD. Efficient ways to view the model is scale-by-scale. To extract a

specific scale see the code described in Appendix E.3.

6. FE Mesh input file for the GP-FEA simulation.

 The FE code currently used within the GP program requires exclusive use of

quadrilateral elements, so before meshing the part, be sure that the element type is set to

quadrilateral and not set to other types, e.g., not use mixed triangle and quadrilateral

elements. What are required in the FEA input file are the FE nodal positions, element

connectivity and the BCs. In this study Abaqus was used for mesh generation and a script

entitled mkFEAinp.sh has been developed to convert the Abaqus input file xxx.inp into

the simple FEA-GP mesh input file. Its format is shown below. Note, the comment lines

with symbol “#” are important to show the meaning of the subsequent data and are

required even if there are no parameters to list. After each “#” comment line, are

generally several lines with numerical data whose meaning and line numbers are given in

the previous comment lines. Specifically, the second comment line lists basic parameters

in which variables NN NE NM NDIM NEN NDN are, respectively, Node Number (NN),

Number of Elements (NE), Number of Materials (NM), Number of dimensions (NDIM),

Number of Element Nodes (NEN) and Number of Dimensions per Node (NDN).

Parameters related to load by displacement and force on the boundary is given in the third

comment line where ND NL NMPC stand for Number of Displacements (ND), Number of

Loads (NL), and Number of Multi-Point Constraints (NMPC). The comment lines of 4

and 5 are common in any FE input file, in turn; they give the node coordinates, element

179

connectivity conditions including materials and thickness. Line 6 gives the DOF of each

node and its constraint condition at the displacement boundary, and line 7 present similar

data for the load boundary. Comment line 8 gives the material property for Young’s

modulus, Poisson’s ratio and alpha, the coefficient of thermal expansion for each type of

material. Line 9 lists the parameters required for Multi-Point constrains. In this code,

NMPC=0 since only displacement BC are applied there is no data used under this line.

The last comment line lists the FEA tolerance value that the GP-FEA interface is to

converge to and the second number (e.g. number 19) is the maximum allowed number of

GP-FEA interface iterations, km, after which the model will load regardless of whether

the interface converged or not. The third value is multiplied by the WG interpolated

displacements as an effort to help accelerate convergence.

Title: FEA_GP02.inp

NN NE NM NDIM NEN NDN

3628 3540 1 2 4 2

ND NL NMPC

20 0 0

Node# Coordinates

1 -128.710007 -347.

...

3628 122.416016 -566.217102

Elem# Nodes(1-4) Mat# Thickness TempRise

1 1 27 849 60 1 45.7 0.00

...

3540 3623 3617 3472 3507 1 45.7 0.00

DOF# Displacement

37 0.0

38 1.0

51 0.0

52 1.0

40 1.0

...

1694 1.0

1696 1.0

180

DOF# Load

Mat# E Nu Alpha

1 224.0 0.3 12.e-6

B1 I B2 j B3 MPC

FEAtoll, MaxIter, kaccel

0.001 19 1.0

In this code, only displacement BC are applied, hence NL=0 and NMPC=0. The total

number of DOF that are applied for the displacement BC is 20 (i.e., ND=20). They are

ranged from 37, 38... 1696 (see lines after the 6
th

 comment line) and they are all even

numbers except for 37 and 51. Here odd and even numbers denote the X- and Y- DOF of

the node. In the code we use the numbers 0.0 and 1.0 for whether the particular DOF is

fixed or to be loaded. If an FE node DOF is not listed it is free to deform without

constraint. The fact that only two DOF (i.e., 37 and 51) is zero indicates that only two

boundary nodes are fixed along the X-direction. Furthermore, these constraint conditions

are re-written from the finite element input file, say, FEAxx.inp. If performing uniaxial

load, be sure to set the center top and bottom FE nodes to be fixed (i.e., put “0.0” after

that DOF) to prevent rigid body motion in the X direction. For the example here, the X

direction is fixed at DOF=37 and 51, which corresponds to the DOF of node 19 and 104.

181

D. THE PARTICLE-BASED MULTISCALE ANALYSIS

PROGRAM (PMAP)

Chapter VII discusses the general structure and flow of the Particle-Based Multiscale

Analysis Program (PMAP) to allow the reader to understand the concept of the program.

This appendix, goes into the technical details related to the source code of PMAP;

conceptually connecting the actual subroutines and functions to the procedures described

in Chapter VII.

1. PMAP Structure: Subroutines and functions

 Behind all of the processes and procedures described in section VII.B there are

specific subroutines and functions called to perform these procedures. Conceptually

connecting the subroutines to their respective process is the purpose of this section. The

initialization process discussed in section VII.B.1 calls specific subroutines and functions

diagrammed on the left of Fig. 61. As mentioned in section VII.B.3 the loading process

uses a relaxation procedure almost identical to the equilibration process. This relaxation

procedure is “Evolve_Sample” the equilibration procedure is “Evolve_Sample0”, as can

be seen from Fig. 61 both of these subroutines call most of the same subroutines. These

mutually called subroutines, “Compute_Temperature”, “Update_List”,

“Compute_Forces”, “print_stresst”, and “OutputResult” correspond to the flow

procedures shown in Fig. 50. The subroutines that the “Evolve_Sample” or the load

relaxation procedure calls that the equilibration process “Evolve_Sample0” does not call

include “composition” and “FEA_calc”. These subroutines correspond to the auto-duality

and FEA mesh procedures.

 Table I is a detailed list of the subroutines and functions of PMAP with a brief

description. The main routines are shown in Fig. 61. Routines 1-9 are specifically used

when parsing the input file to extract information such as local domains. Routines 44-55

are specific to the FEA calculations and are not used at all for pure GP simulations.

182

Figure 61. Subroutine tree of PMAP, initialization routines on the left and time

evolution routines on the right.

Table I. List of Subroutines and Functions in the PMAP

ID Routine Name Description

1 readDomain Extracts domain information from a string

2 writeDomain Writes the specified domain to standard error

3 s_word_count* counts the number of "words" in a string.

4 s_get_word get the n
th

 word from a string.

5 left_of returns the string, s, as everything left of the character or

183

word, w

6 inDomain Returns whether position (x,y,z) is within the specified

domain

7 DomainVolume returns the volume of the specified domain

8 DomainCenter Returns the center position of the specified domain

9 fullangle Returns the angle from x axis to vector, v

10 Initialize Initialization procedure, called once at the beginning

11 Read_Sample Reads the initial GP model file and revives if told

12 Read_Input Read parameters controlling the simulation from standard

input.

13 Initial_Printout Prints informations on the run parameters on standard output

14 Evolve_Sample0 Equilibration procedure; time evolution of the system.

15 Evolve_Sample Relaxation procedure between load steps; time evolution

16 Refold_Positions Particles that left the box are refolded back into the box by

PBC

17 Compute_Forces Computes forces on each particle/atom based on the

interatomic potentials.

18 Compute_Temperature Calculates instantaneous temperature based on total kinetic

energy

19 Update_List Update the Verlet neighbor list

20 MovedTooMuch True if the sum of the two largest displacements are greater

than skin

21 constraint Modifies displacement vectors according to prescribed

constraints

22 Terminate called once at the end, to deallocate and finalize

23 UpdateLinkList assigns each particle to a subdomain, ICELL

184

24 ICELLVAL Returns the subdomain ID provided a particle position

(x,y,z)

25 OutputResult Writes MD3 and Revive.MD files

26 Loading Calls first the equilibration then handles the loading

procedure

27 JohnsonMix_Potential_

Tables

Tabulates all interatomic potentials and their derivatives.

Handles analytical forms as well as tabular such as EAM.

28 pot Returns analytical potential forms

29 dpot Returns the derivative of analytical potential forms

30 metal_deriv Calculates derivative of tabular data using five-point

interpolation

31 phir interpolation of EAM pairwise potential

32 dphir interpolation of EAM pairwise potential derivative

33 psir interpolation of EAM contribution to the electron charge

density

34 dpsir interpolation of EAM contribution to the electron charge

density derivative

35 frho interpolation of EAM embedding function

36 dfrho interpolation of EAM embedding function derivative

37 print_vmd Writes the model configuration to an XYZ file to view in

VMD

38 print_stresst Writes the global and local stresses to the “stresst.out” and

“d**stresst.out” files

39 composition Transforms the real scale particles in the initial ADD, up or

down a scale.

40 LinkNLC Generates the NLC for imaginary particles.

185

41 BreakingNLC Severs a constituent of an Imaginary particle's NLC

42 refineADDs refines the ADDs so that the atom to particle ratio conserves

mass

43 FindBox Determines each Scale's BoxSize for use with Verlet

Neighbour Lists

44 natcoord calculate natural coordinate of an arbitrary point for a given

element

45 shapef Returns quadrilateral shape functions

46 interp Bilinear interpolate position based on element node

displacements

47 FEA_init initialize the FEA mesh and read the FEAinp file

48 FEA_calc Solves for the node displacements given boundary

conditions

49 interptri Interpolate the displacement of a position in an element

using Barycentric coordinates for half of the element

50 INTEG

Calculates Integration Points

51 DMATX

Creates D Matrix and Element Nodal Coordinates

52 ELSTIF

Creates Element Stiffness and Temperature Load

53 DBMAT

Creates DB MATRIX

54 BAND

Equation Solving Using Banded Storage, forward

elimination and back substitution.

55 BandLA Equation Solving Using LAPack SPBSV routine

*Modified for fortran90 from routines licensed under the GNU LGPL written by John

Burkardt

#
Modified for fortran90 from Routines from Chandrupatla and Belegundu,

“INTRODUCTION TO FINITE ELEMENTS IN ENGINEERING”, 4
th

 edn.

186

a. Compiling and running

 PMAP is composed of two source codes, “Multi-Input57.f90” and “FEA19.f90”.

The former is the code specific to GP simulations, and the latter is specific to solving

FEA models. When compiled together it forms PMAP. The numbers at the end of the

source files represents their version number and it typically carries over to the PMAP

executable for clarity and to prevent confusion.

 The FEA19.f90 code uses the LAPACK routine SPBSV to solve the matrix

equation. Only the subroutines required for this routine are included in a subdirectory

called “LA”, within which is a compiled library called “libmat.a”. When compiling the

code on a new machine this library must also be compiled. In this directory is a script

called “makelib.sh” which will compile the library; be sure to check the compiler being

used for consistency with the machine being compiled for. This library is reason why the

compilation command includes the library path “-LLA/” as well as the name of the

library to use “-lmat”.

 mpif90 Multi-Input57.f90 FEA19.f90 -LLA/ -lmat -o PMAP57f19.exe

This command uses the fortran90 compiler for use with the Message Passing Interface

(MPI) which enables PMAP to run in parallel, at this time only the GP portion of the

code leverages parallel computing, the FEA process runs in serial and does not take much

time compared to the GP portion.

2. PMAP Input file

 PMAP uses a Free form input file with Key-Value type directives. By Free form,

it is meant that directives can appear on any line within the input file or not at all, by

virtue of default values. In this way, it is possible to “comment” lines that are

unnecessary or not desired, using the Fortran comment character “!” rather than the

typical Unix comment character “#”. The Key-value type directives allow this to be

possible by pairing a keyword to a property or directive which is modified by parameters

and values that follow. For example:

 Key Value

187

specifically could be something like:

 CutoffRadius 5.3

Where the Key=CutoffRadius and the Value=5.3. Some keys may take multiple values.

Table AIV-II is a list of all directives possible for PMAP, some directives are not

recommended for users to use as they may do sensitive or complicated things. The only

directives that require a specific sequence are Species and Potentials, Species must be

specified before Potentials, as the Potentials directive requires the data from Species.

These directives are also both mandatory.

 The smallest possible input file would contain only the mandatory directives and

be an NVE simulation in a rigid box:

START_GP

Model Model.MD

Species 1

 Fe 26 55.847 0.0 1.26

Potentials 1

 Fe Fe M 0.4172 2.845 1.389

END_GP

Table II. Available Directives for PMAP

START_GP Flag to start reading GP input directives

Title string Set 'string' to be the title of the simulation. Default=”GPrun”

Model file Set 'file' to be the path of the “Model.MD” file. Mandatory.

Temperature real Set the global average temperature of the simulation to 'real',

Default=300.0 K

LocalTemperature int List 'int' domains below this that specify domains to have

unique temperatures, specify their temperature as the last column after the

domain. Default: not present

FEAinput filelist Connect the GP model to FEA mesh data specified in

“FEA**.inp” files listed in 'filelist', Default: no FEA mesh.

188

Skin real Set skin value to 'real'; allows some deformation before requiring a

recalculation of Verlet neighbour lists. Default=0.5 Ang

ScaleRatio int Set the GP scale ratio to 'int'. Default=2

Perturb real Perturb the initial structure by a scaled displacement of a random value

[0,1] times 'real'. Default=0.002

PBC logical(3) Defines the global box to be periodic along any of the three

directions. Default F F F

FixGlobal real(3) Globally fix all displacement in any direction, where 'real(3)'

elements can be either 0.0 or 1.0, where 1.0 is free and 0.0 is fixed in the

respective direction. Use this to prescribe strict plane strain. Not

recommended for more than one direction at a time. Note that a barostat

will still be able to scale their positions in that direction. Default=1.0 1.0

1.0

FixLocal int Fix 'int' local domains listed below. Below each domain are two 3-

element arrays for equilibration and loading similar in function to the

FixGlobal parameters. These can also take two optional angle parameters

to change the axis orientation. Default: one spherical domain, includes

matter outside of a 1000Ang radius from origin.

WGdomains int List 'int' domains to be WG below, the last column is an integer

representing the FEA input file number in the filelist of 'FEAinput',

Default: not present

WFdomains int List 'int' domains to be WF below, the last column is an integer

representing the FEA input file number in the filelist of 'FEAinput'.

Default: not present

EquiTime real Time to equilibrate (sec). Default=100.e-12 (100ps)

EquiDataFreq int Every 'int' timesteps a line of data will be written to

"Check_out.md", "stresst.out" and the local "d**stresst.out" files during

Equilibration. Default=10

LoadDataFreq int Every 'int' timesteps a line of data will be written to

"Check_out.md", "stresst.out" and the local "d**stresst.out" files during

Load. Default=100

189

EquiMD3Freq int Every 'int' an MD3 file will be written with the simulation

configuration etc. during equilibration. Default=1000

LoadMD3Freq int Every 'int' an MD3 file will be written with the simulation

configuration etc. during loading. Default=1000

MD3parameter char 'char' specifies what the sixth column of the MD3 file

represents, options are "v,f,e" where 'v' is atomic von Mises stress, 'f' is the

atomic force magnitude, 'e' is the atomic potential energy. Default=e

EquiTimestep real Set Integrator time step to 'real' for equilibration Default=1.e-15

sec

LoadTimestep real Set Integrator time step to 'real' for Loading, Default=1.e-15 sec

EquiBarostat [real] Use a barostat during equilibration to maintain pressure to 'real',

Default=no barostat, default_real=0.0, default isotropic barostatting unless

otherwise specified.

LoadBarostat [real] Use a barostat during equilibration to maintain pressure to 'real',

Default=no barostat, default_real=0.0, default isotropic barostatting unless

otherwise specified.

anisotropic Has the barostat function anisotropically, i.e. reduce each direction to the

requested pressure. Default=isotropic

isotropic Has the barostat function isotropically, i.e. reduce the average system

pressure to the requested, ignoring the stress differences in other

directions. Default: present

EquiBaroRiseTime real Specify the rise time for the Berendsen barostat during

equilibration to be 'real'. Default=10.e-12.

LoadBaroRiseTime real Specify the rise time for the Berendsen barostat during

loading along periodic directions and not the loading direction to be 'real'.

Default=10.e-12.

EquiBaroRiseTimeRamp real int This ramps the rise time from 'real' to

"EquiBaroRiseTime" within 'int' timesteps. Not ramping by Default.

LoadSteps int Number of loading increments (load is applied in these steps, with

relaxation between), Default=0

190

RelaxationSteps int Number of timesteps for relaxation between each load

steps, Default=1000

CyclicLoad real Applies a cyclic load with one complete cycle every 'real' Load

steps.. Cycle amplitude is equivalent to the Strain specified in

"StrainIncrement". Default: not present, Default_real=20

StrainIncrement real(6) Strain increment for each direction (X Y Z yz zx xy)

(strain/loadstep) ex.: yz (y-disp/z-const), Default(6)=0.0.

ElectricField real(3) Applies an Electric Field, 'real(3)', units of Volt/Ang.

Fi=Fi+qi*'real(3)', Default=0.0.

ThermalRamp real The thermal ramp will change the temperature of the simulation at

the rate of 'real' degree K per second. Default=0.0

BreakNLC This will allow the links in imaginary particles to break if they become too

far away from the central average. (not a very physical criterion) Default:

not present

Irms Use the root mean square displacement of the constituents of imaginary

particle's NLC instead of the arithmetic mean of constituents' current

position.

ADuality real1 real2 If a local stress domain has a maximum principle stress less

than 'real1' it will recompose or lump into S2 particles, if the maximum

principle stress is greater than 'real2' it will decompose to S1 atoms.

Default: not present, Default_reals=0.0

LocalStress int List 'int' domains below that should be monitored for local stress

and energy, these domains can decompose or recompose if the directive

'ADuality' is used. Default: one spherical domain, includes matter outside

of a 1000Ang radius from origin.

SIdomains int1 int2 real List 'int1' domains below that will be converted to Surface

Images (SI) with a maximim of 'int2' links for each; Default=12. 'real'

specifies the angle (radians) tolerance used when linking surface images;

Default=0.15. If 'real' is specified then 'int2' must also be. Default: not

present

191

FOppDomains int1 int2 List 'int1' domains below that will have an opposing force

applied to it along the 'int2' direction, such that acc=acc_new-acc_old

along that direction. Used for pseudo 2D models. Default: not present,

Default_int2=3 the Z direction.

OutputPotTable This will create a file of the inter-atomic potentials used in the

simulation, used mainly for debugging purposes. Default: not present

CutoffRadius real This specifies the cutoff radius to be used for the atomistic (S1)

scale, it is automatically scaled for the higher scale particle interactions.

(Make sure that this parameter corresponds to the potential used).

Default=10.0 Ang

NeiCutoffRadius real This cutoff is used when finding neighbors to use as

Neighbor-Link-Cells, also used for linking Surface Images and in the

'BreakNLC' directive. This value can range from 0.0 to

'CutoffRadius'+'Skin'. When using surface images it is best to keep this

value large. The only benefit of this directive is to save a little time when

relinking. Default='CutoffRadius'

Species int List 'int' rows of the Specie table below following the pattern:

ElementSymbol AtomicNumber AtomicMass AtomicCharge

AtomicRadius. Mandatory.

Potentials int 'int' number of different potential interactions, List 'int' of them

below. Mandatory to define after 'Species' directive. The interaction table

takes the pattern: ElementSymbol1 ElementSymbol2 PotentialType real(3).

 Where PotentialType can be one of (M,Mc,Mq,B,Bc,L,Lc,Td,J,E,Ed,Es)

corresponding to (Morse,Morse with coulomb, Morse with quadratic

repulsion,Buckingham,Buckingham with coulomb,Lennard-Jones,LJ with

coulomb, TABLE pair-potential in DLPOLY format,Johnson pair-

potential,Hard-coded analytical EAM for Cu,EAM from DLPOLY

TABEAM file,EAM from setfl file) All potential types must have three

parameters, even those that do not need parameters such as those that read

table files and those that need only two parameters. Those that require

192

potantial tables must have the path to the table listed on the line below the

interaction.

Revive This will tell the simulation to read the “Revive.MD” file and apply position,

velocity, acceleration, and scaleID to the model. If reviving during FEA

loading it also reads the domainID, so you cannot add local domains to

that revived simulation. This is because the WG and WF domains need to

be constant and are based on the equilibrated structure not the initial

model. Default: not present

ReLink [reals] Forces the relinking of all imaginary particles and even the real

particles in local stress domains if 'ADuality' is present. If [reals] is

specified it will only relink the real particles in the local stress domains;

done automatically if 'ADuality' and 'Revive' are present. Relink is done

automatically at the start of simulation, i.e. when 'Revive' is not present.

The 'ReLink' directive is usually not required, it is usually done

automatically, and should only be used if you know what you're doing.

NoReNew This will not apply the domains of the input file to the model. However, if

domains are present they must be listed in the input file. DEFAULT not

present, i.e. ReNew=.true.

DSCalpha real The damping parameter for the Damped Shifted Coulomb

summation, alpha='real'. Default=0.2

ListInputParameters This will output all parameters read from the input file as well as

those set to the default. This is used for debugging purposes to make sure

that parameters are being set properly.

END_GP flag to end reading GP input file

a. Examples

 This section contains example input files that came from a set of simulations

designed to teach a student how to use PMAP and to learn the GP method and the

capabilities of multiscale analysis. These simulations were also described in Chapter II to

193

explain the capabilities of PMAP. Here they are below along with the model development

input files where relevant.

Table III. Model-1. Input File for the Crystal Generation Code for a Pure

Scale 1 Model Specimen. Referred to in Section II.A.1

 1 2

21.774 36.29 21.774

1

CuFCC 1 1

-21.774 21.774 -36.29 36.29 -21.774 21.774

s

21.774 -21.774 36.29 -36.29 21.774 -21.774

Table IV. Input-1. Scale 1 Model in Tensile Load, the Same Script can be

used for any Scale Model the Only Change would be the Model File.

Referred to in Section II.A.1

START_GP !!

Model ../../9_ModelS2/Model.MD_S1 ! file for MD model data

PBC T T T !PBC Periodic Boundary Conditions in X Y Z, DEFAULT=F F F

Temperature 300.0 !Temperature of the simulation

!!!!!!!!!!!!!!!!!!!!!!!!!

EquiTime 15.e-12 !Equilibration time (sec)

EquiBarostat !.000101 !requested pressure for barostat, DEFAULT=0.0 GPa

!!!!!!!!!!!!!!!!!!!!!!!!!

LoadSteps 20 !Number of load steps DEFAULT=0

StrainIncrement 0.0 0.5e-2 0.0 0.0 0.0 0.0 !X Y Z yz zx xy (strain/loadstep) ex.: yz (y-

disp/z-const)

!!!!!!!!!!!!!!!!!!!!!!!!!

CutoffRadius 6.5 !cutoff radius (Ang)

Species 1 !number of species; list them below

 Cu 29 63.546 0.0 1.28 !name number mass(amu) charge(e) radius(Ang)

194

Potentials 1 !number of interactions; list them below

 Cu Cu M 0.3429 2.866 1.359 !Morse potential

!!!

ListInputParameters

END_GP !!

Table V. Model-2. Two Coupled Scale Model Input File, it used the Same

PMAP Input File as Input-1. Referred to in Section II.A.2

2 2

21.774 36.29 21.774

4

CuFCC 1 1

-21.774 21.774 -36.29 0.0 -21.774 21.774

s

21.774 -21.774 36.29 -36.29 21.774 -21.774

CuFCC 2 1

-21.774 21.774 0.0 36.29 -21.774 21.774

s

21.774 -21.774 36.29 -36.29 21.774 -21.774

CuFCC -1 1

-21.774 21.774 0.0 36.29 -21.774 21.774

s

-21.774 21.774 6.5 29.79 -21.774 21.774

CuFCC -2 1

-21.774 21.774 -36.29 0.0 -21.774 21.774

s

-21.774 21.774 -23.29 -13.0 -21.774 21.774

Table VI. Input-2. Scale 1 Model in Tensile Load with Surface Images.

Referred to in Section II.A.3

START_GP !!

Model ../Model.MD_S1 ! file for MD model data

PBC F T T !PBC Periodic Boundary Conditions in X Y Z, DEFAULT=F F F

Temperature 300.0 !Temperature of the simulation

195

!!!!!!!!!!!!!!!!!!!!!!!!!

EquiTime 15.e-12 !Equilibration time (sec)

EquiBarostat !.000101 !requested pressure for barostat, DEFAULT=0.0 GPa

SIdomains 1 12 1.8 !number of domains, [max links, [tolerance angle(rads)]]

 rec F -21.774 21.774 -50.0 50.0 -50.0 50.0

!!!!!!!!!!!!!!!!!!!!!!!!!

LoadSteps 40 !Number of load steps DEFAULT=0

StrainIncrement 0.0 0.5e-2 0.0 0.0 0.0 0.0 !X Y Z yz zx xy (strain/loadstep) ex.: yz (y-

disp/z-const)

!!!!!!!!!!!!!!!!!!!!!!!!!

CutoffRadius 6.5 !cutoff radius (Ang)

Species 1 !number of species; list them below

 Cu 29 63.546 0.0 1.28 !name number mass(amu) charge(e) radius(Ang)

Potentials 1 !number of interactions; list them below

 Cu Cu M 0.3429 2.866 1.359 !Morse potential

!!!

ListInputParameters

END_GP !!

Table VII. Model-3. Two Coupled Scale Model Input File, it used the Same

PMAP Input File as Input-1. Referred to in Section II.A.2

 2 2

43.548 72.58 21.774

4

CuFCC 1 1

-43.548 43.548 -36.29 36.29 -21.774 21.774

T

0.0 0.0 20.0 10.0

CuFCC -2 1

-43.548 43.548 -36.29 36.29 -21.774 21.774

T

0.0 0.0 20.0 10.0

CuFCC -1 1

196

-43.548 43.548 -72.58 72.58 -21.774 21.774

T

0.0 0.0 61.6 20.0

CuFCC 2 1

-43.548 43.548 -72.58 72.58 -21.774 21.774

T

0.0 0.0 92.58 20.0

197

E. DATA PROCESSING

After a simulation has been run there are some special programs to assist in the

understanding and transformation of the data. If there are several stages to a complicated

simulation, there may be a need to alter the configuration after a simulation. For example,

the slow decomposition process is just such a case; after each decomposition is required

an equilibration since the configuration has become more “resolved” meaning that there

is now much more particles and higher DOF.

 Here will be discussed configuration format changes for visualization and post-

processing, scale and local domain extraction, domain transformation, FEA contour

plotting, local stress plotting and movie making. Table VIII lists all the programs

available with a brief description of each.

Table VIII. List of Utility Programs to Augment the Capability of PMAP; IDs

Suffixes Stand for Topics (a) Analysis, (c) Conversion, (m) Model

Manipulation, (d) Debugging Information, and (u) General Utility.

ID File Name Description

a Analysis

1a avgADD.sh Takes a given column of the d*stresst.out files and outputs

them all together side-by-side with the global strain as the first

output column.

2a Multi_local_stress_

Stoich.f90

Calculates local stress for DLPOLY output as well as MD3

files. Requires an input file to operate, does not include the

EAM potential.

3a matterInvert.f90 Outputs inverse matter file. It removes all matter and includes

matter where there was none, i.e. voids and vacuums.

4a Multi_local_stress_

EAM.f90

Calculates local stress for DLPOLY output as well as MD3

files. Requires an input file to operate. Includes the EAM

198

potential (MAY HAVE BUGS)

5a dispMD3_hole.f90 Calculates displacement between two MD3 files for each

particle. Also outputs an analytical solution for a plate with a

central hole.

6a ADDxyz.f90 Extracts a range of AD Domains from an MD3 file to view in

VMD. Each ADD is given a unique atom type.

7a CNeval5.f90 Analyzes MD3, and DLPOLY HISTORY files for each

particle's Coordination Number (CN), vector (CV), CNA, etc.

It outputs these values onto stdout in an xyz format to be

viewed in VMD. There is a CN summary on stderr

8a dCN.f90 determine the change in CN from equilibrium configuration.

Reads the output from CNeval.f90.

9a dispMD3_Bcrack.f

90

Calculates displacement between two MD3 files for each

particle. Also outputs an analytical solution for a plate with an

edge crack using the two-term solution.

10a dispBatch_crack.sh Averages particle displacements for a set of small domains

around a crack tip. Makes graphs to compare with the

analytical solution.

11a getDs.sh Concatenates the “d*stresst.out” files from simulation

continuation directories into one file “D*”

12a getTS.sh Outputs the ADD size for each D* information.

13a allts.sh Runs `getTS.sh` for each ADD.

14a getGe.sh Outputs the change in energy per unit area from the peak

energy to the final energy of each ADD.

15a getG.sh Integrates the traction-separation information from `getTS.sh`

to produce the energy release rate for each ADD.

16a getTSGdat.sh Pastes the Ge, G, and max stress into one file for plotting

199

purposes.

17a TSG.gnu A gnuplot script to plot the output from `getTSGdat.sh` for

each ADD.

c Conversion

1c mkMD.sh Convert MD3 or Revive.MD files to Model.MD format

2c MD32lammps.sh Converts an MD3 file into LAMMPS format. Must be

programed for specific elements. Currently only Na, Si, Al,

and O are supported

3c mkCONFIG.f90 converts MD3 input into CONFIG file for DL_POLY

simulation

4c mkxyz.f90 Converts Model.MD, CONFIG, and MD3 files to XYZ format

for visualization in VMD.

5c mkMD3.f90 Converts input stream to MD3 format. Readable formats

include LAMMPS trajectory, HISTORY, CONFIG,

REVCON, Model.MD and XYZ.

6c mkMD.f90 Convert MD3 files to Model.MD format.

7c mkFEAinp.sh Generates an “FEAinp” file from an “abaqus.inp” file for use

with GP-FEA, material and fixed point data must be manually

modified.

m Model

Manipulation

1m randComp.f90 Random Composition Generator, good for glasses, makes

CONFIG file for DLPOLY. Reads an input file.

2m delMDdup.f90 checks for duplicate particle positions within a radius of

dupTol for Model.MD files.

3m catREVCON.f90 Concatenates two REVCON files together into one.

4m domainRotate.f90 Rotates all positions in the XY plane according to angle.

200

Coordinates must be first three columns, x y z.

5m domainMove.f90 Moves all positions according to displacement vector. Can

read CONFIG, REVCON, LAMMPS, XYZ, MD3, and

Model.MD files.

6m domainFold.f90 Folds all positions to be within the box assuming PBCs.

7m delMD3dup.f90 checks for duplicate particle positions within a radius of

dupTol for MD3 files

8m mapADD.f90 maps AD Domain number, ADD, from file1 onto file2

9m chADD.f90 changes AD Domain number, add0 to add1, from standard

input

10m chScale.f90 changes scale number, s0 to s1, from standard input.

11m domainScale.f90 Scales (multiplies) all domain positions according to A B C

pre-factors

12m domainMod.f90 Changes atomID properties within specified domain. Such as

clamp domain ID, ADD, and element type.

13m domainRevMod.f90 Adds or sets velocities and accelerations within domains of

Revive.MD files. Useful for setting initial velocity and

accelerations.

14m domainExtract4.f90 Outputs points within the given domain, reads MD3 files.

15m Mater_Model7.f90 Builds Atomic and General Particle Models based on

crystalline unit-cells. Reads an input file.

16m Mater_Model8.f90 Same as above, but does not require the definition of explicit

imaginary domains, so it’s easier to use.

17m domainMater.f90 Generates a given crystal structure and scale within a specified

domain. Useful for augmenting Model configurations.

d Debugging

1d getNeighbours.f90 Outputs all points within a radius, r, centered at coordinates, p.

201

Can read from XYZ and MD3 files.

2d getNLC.f90 outputs NLC information given a Revive.MD file and an

MD3.

u Utilities

1u mathSub.sh Reduces any mathematic expressions in a file with its

simplified numeric value. Can read variables from file, all

variables are considered global. Convenient for model

development.

2u minMaxSumCol.sh Calculates the minimum, maximum, sum, and average of a

given column of data using the shell program 'awk'.

3u minMaxSumCol.f9

0

Calculates the minimum, maximum, sum, and average of a

given column of data using the fortran90 language.

4u integrate.f90 Numerically integrates a column of data with respect to

another column.

5u domainFind-rec.f90 Find the X, Y, and Z positional extents of an MD3 file.

6u getADD.sh Outputs all particles with given ADD from MD3 files.

7u getScales.sh Outputs all particles with given scale from MD3 files.

8u sets.f90 Partitions a point set A into two subsets: the intersection of

volume set B with point set A (B∩A=ADD1) and the

complement of B with A (B\A=ADD2). Where volume set B

is defined as the union of spheres with radius, r, centered at

each positional element in point set C. Like adding a radial

fuzziness to set C.

9u closeTo.f90 prints lines who's value in Column is within a ±Tolerance of a

given Value

10u getRelaxData.f90 prints a number of lines, n, that precede a change in value in

the specified column, c.

202

11u compress.sh compresses directory DIR into a gzipped tar archive

12u uncompress.sh uncompresses a gzipped tar archive, e.g. archive.tar.gz

13u matmath.f90 averages every element in the file matrix among several

different files, essentially averaging different files together

1. Make XYZ files from CONFIG, MD, MD3 files: mkxyz.exe

 This program is used to convert GP Model.MD files that contain imaginary

particles and Link cells as well as MD2 and MD3 files, that are output from the Multi-

Input GP code, as well as CONFIG or REVCON files from DL_POLY into the xyz

format to be visualized with VMD.

 The xyz format has the element symbol in the first column followed by the xyz

coordinates. Each element takes one line. The very first line of the file is the number of

elements in the file followed by an empty line. Since it takes element symbols and the GP

configuration files use integers, specifically the element atomic number, rather than the

symbol, this code has a few programed symbols on lines 72-77 for the elements: Al, Fe,

O, Cu, H. The usage for this program is as follows, the file to be translated is fed to the

program as standard input. The converted file is outputted on standard output. Depending

on the format of the input depends on what “option" is needed; if converting a Model.MD

file the “-i" switch is used, if it’s an MD2 or MD3 file then “-m" is used followed by the

number of atoms and particles, NTotal, since it’s not inside the file like it is for MD files.

If converting a DLPOLY CONFIG or REVCON file the “-c" switch is used with the total

number of atoms afterward, see the usage below.

Usage: mkxyz.exe [OPTION] <inputFile >outputFile.xyz

Options:

 -i input file is a GP MD file with imaginary particles and link cells

 -m NTotal input file is an MD2 or MD3 file, output of Multi-Input GP code

 -c NTotal input file is a CONFIG file of DL_POLY, or like format.

The result can be viewed with VMD such as:

203

 $ vmd outputFile.xyz

2. Make Model.MD file from MD3 or Revive.MD file: mkMD.sh

 Sometimes it is required to run a simulation based on a configuration of a

previous simulation. Sometimes it is easiest to make one of the previous MD3 files into a

Revive.MD file and “revive” the new simulation. This will work well if immediately

beginning loading but if there should be another equilibration it can be cumbersome and

the first thing thought of is to just make it a Model.MD file for the new simulation. In this

case, this script, “mkMD.sh” can turn an MD3 file or a Revive.MD file into a new

Model.MD file for immediate simulation. An example usage can be seen on the last few

lines of the script, reproduced below. When executed it will automatically produce the

Model.MD file with the name “Model.MD_inputFileName” where the inputFileName is

the name of the file that is being converted.

#!/bin/bash

MD3 to Model.MD ###

function MD3_MD () {

grep ". -. " $file >Ideal # extract imaginary from MD3

grep ". . " $file >Real

NReal=`wc -l Real | cut -d " " -f1`

NIdeal=`wc -l Ideal | cut -d " " -f1`

echo "NTotal $((NReal+NIdeal)) NIdeal $NIdeal"

echo " `sort -r -k 4 -g $file | head -n1 | awk '{print $4}'` $((NReal+NIdeal))

$NReal" \ >Model.MD_${file}

echo " F `head -n 1 $file`" >>Model.MD_${file}

cat Real>>Model.MD_${file}

awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' Ideal \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> Model.MD_${file}

rm Ideal Real

}

Revive.MD to Model.MD ###

does not maintain NLCs

function rev_MD () {

boxX="`head -n 1 $file | awk '{print $4}'`"

boxY="`head -n 1 $file | awk '{print $5}'`"

boxZ="`head -n 1 $file | awk '{print $6}'`"

204

extract imaginary from MD3 and normalize it

echo "$boxX $boxY $boxZ" >ideal

grep ". -. " $file >>ideal

domainMove.exe -0.5 -0.5 -0.5 <ideal | domainScale.exe $boxX $boxY $boxZ |tail

-n +2 >Ideal

extract real from MD3 and normalize it

echo "$boxX $boxY $boxZ" >real

grep ". . " $file >>real

domainMove.exe -0.5 -0.5 -0.5 <real | domainScale.exe $boxX $boxY $boxZ |tail -

n +2 >Real

rm real ideal

NReal=`wc -l Real | cut -d " " -f1`

NIdeal=`wc -l Ideal | cut -d " " -f1`

echo "NTotal $((NReal+NIdeal)) NIdeal $NIdeal"

echo " `sort -r -k 4 -g Real | head -n1 | awk '{print $4}'` $((NReal+NIdeal))

$NReal" \ >Model.MD_${file}

echo " F $boxX $boxY $boxZ" >>Model.MD_${file}

cat Real>>Model.MD_${file}

awk '{print $1" "$2" "$3" "($4<0?-$4:$4)" -"$5}' Ideal \

| sed -e 's/$/\n0\ 0\.000\ 0\.000\ 0\.000/' >> Model.MD_${file}

rm Ideal Real

}

if [$# -eq "2"]; then # if two parameters given

 echo "Converting Revive.MD to MD"

 file="$2"

 rev_MD $file

elif [$# -eq "1"]; then # no option, assume MD3

 echo "Converting MD3 to MD"

 file="$1"

 MD3_MD $file

else # no options

 echo "Convert MD3 or Revive.MD files to Model.MD format"

 echo " will produce output file Model.MD_FILE"

 echo "Usage: mkMD.sh FILE.MD3 "

 echo “ will produce: Model.MD_FILE.MD3”

 echo "Usage: mkMD.sh -r Revive.MD "

 echo “ will produce: Model.MD_Revive.MD”

fi

205

3. Extract a specific scale or local domain from MD3 files: getScale.sh

getADD.sh

 Sometimes it is convenient to do analysis or visualization on a particular

subdomain one at a time. To do this two simple shell scripts were developed to extract a

particular scale or local domain from an MD3 file. They take two arguments: the scale or

local domain number to extract and the file to extract it from. For example:

 $./getScale.sh 1 Equilib.MD3 >Equilib.S1.MD3

 $./getADD.sh 1 Equilib.MD3 >Equilib.d01.MD3

The “getScale” script is very short (4 lines) and simple, it is shown below. The number of

spaces in quotes is very important.

 #!/bin/bash

 head -n1 ${2}

 grep ". ${1} " ${2}

 grep ". -${1} " ${2}

The “getADD” script is even shorter (3 lines) and shown below:

 #!/bin/bash

 head -n1 ${2}

 grep "\ \ ..${1}[0-9][0-9]\ " ${2}

4. Domain utilities

 When dealing with complicated models or to make a complicated model it

becomes necessary to manipulate certain geometric domains. To do this there are some

programs that were developed to do such things as move domains, extract, transform the

coordinates, fit data into a box, or determine if a point is inside of a domain.

206

a. domainMove and domainScale

 These read a stream of coordinates from an MD3 formatted file into standard

input and outputs the file with translated or scaled coordinates, respectively, according to

a translation-vector, delta x, delta y, and delta z or Scaling factors, A, B, and C. This will

move or scale the inputted domain according to these components, for example:

$./domainMove.exe -20.0 3.629 20.0 <domain0 >domain.moved

$./domainScale.exe 2.0 3.0 2.0 <domain0 >domain.scaled

 The first example moves 'domain0' -20 units in the x direction and 3.629 in the y

and 20 in z. The second example multiplies the domain coordinates by 2 in the X and Z

directions and 3 in the Y. These two programs can be used together to convert normalized

coordinates into real coordinates, such is needed for transforming a Revive.MD file into

an MD file, as discussed in Appendix E.2 with the command:

$ domainMove.exe -0.5 -0.5 -0.5 <real | domainScale.exe $boxX $boxY

$boxZ |tail -n +2 >Real

If a Model.MD file is needed to be moved or scaled, these programs just need to read

four command line options, the fourth option can be anything, for example:

$./domainMove.exe -20.0 3.629 20.0 MD <domain0 >domain.moved

The will be able to transform Model.MD formatted files and keep them in the same

format.

b. domainExtract

 This is a very simple program that reads a stream of coordinates from standard

input and outputs the lines that are within a specified domain. Its parameters are the

domain values following those used for the GP simulation code. (note: the version before

this this one could only use rectangular domains)

$ domainExtract2.exe rec T -40. -20. 0. 0. -20. 20. <0210000.MD >210k.domain

207

 The “<” will stream its file: “0210000.MD” as input to the program, and the

program's output will be streamed into the “210k.domain” file. The domain shown

includes particles between x=-40. and x=-20. Every particle along the y direction and all

particles between z=-20 and z=20. This program is extremely useful, as any

transformation or operation performed, must be performed on an extracted domain,

separate from the entire model. The output from this program can be piped into another

program for transformation or filtering or addition, et cetera.

c. inDomain

 This program demonstrates the routines used to determine what points are inside

of a specified domain. These routines are used in the domainExtract code in Appendix

E.4.b. The routines used are: readDomain, writeDomain, s_word_count, s_get_word,

left_of, inDomain, DomainVolume, DomainCenter, DomainResize. This program is used

to test these domain routines. There are two parameters set inside of the program on lines

508 and 509 to specify a data point and the boxsize. It takes an input file that has the

number of domains to test followed by the domains. An example input file is shown

below:

5 ! number of domains

rec T -10. 10. -10. 10. -10. 10 !rectangular, inside domain, xmin xmax, ymin

ymax, zmin zmax

per T -10. 10. -10. 10. -10. 10 2.0 !perimeter, inside domain, xmin xmax,

ymin ymax, zmin ! zmax, only go inside

domain this much

sph T 0.0 0.0 0.0 2.0 !sphere, inside, x y z, radius

ell T 2 0.0 0.0 2.0 1.7 !ellipse, inside, axial direction i.e.

2=Y, x z, a b

tub T 2 0.0 0.0 2.0 1.7 1.5 1.2 !tube, inside, axial direction, 2 of x

y or z, outer ! a b, inner a b

 The program will read each domain with “readDomain”, calculate its volume with

“DomainVolume” and its center with “DomainCenter”, then it will say whether the point

is inside of the domain or not with “inDomain” and will write out the domain to confirm

with “writeDomain”. Lastly it will output the total volume for all of the domains and their

208

inverted volume. The output for this input file is shown below when the point is: 0.0, 0.0,

0.0 and boxsize: 519.1552, 519.1552, 519.1552.

 point: 0.0000000 0.0000000 0.0000000

 Domain Volume: 8000.0000

 Domain Center: 0.0000000 0.0000000 0.0000000

 in domain:

rec T -10.000 10.000 -10.000 10.000 -10.000 10.000

 Domain Double:

rec T -20.000 20.000 -20.000 20.000 -20.000 20.000

 Domain Volume: 3904.0000

 Domain Center: 0.0000000 0.0000000 0.0000000

 NOT in domain:

per T -10.000 10.000 -10.000 10.000 -10.000 10.000 2.000

 Domain Double:

per T -20.000 20.000 -20.000 20.000 -20.000 20.000 2.000

 Domain Volume: 33.510323

 Domain Center: 0.0000000 0.0000000 0.0000000

 in domain:

sph T 0.000 0.000 0.000 2.000

 Domain Double:

sph T 0.000 0.000 0.000 4.000

 Domain Volume: 5545.3125

 Domain Center: 0.0000000 0.0000000 0.0000000

 in domain:

ell T 2 0.000 0.000 2.000 1.700

 Domain Double:

ell T 2 0.000 0.000 4.000 3.400

 Domain Volume: 2609.5588

 Domain Center: 0.0000000 0.0000000 0.0000000

 NOT in domain:

tub T 2 0.000 0.000 2.000 1.700 1.500 1.200

 Domain Double:

tub T 2 0.000 0.000 4.000 3.400 3.000 2.400

 Total volume of all domains: 20092.383 1.43595152E-02 %

 inverse volume: 1.39903728E+08 99.985641 %

209

d. domainCoordTrans

 This program was never fully tested and never used but is included here for

completeness. Its purpose is to transform an MD2 file from rectangular coordinates to

either cylindrical or spherical and vice versa. Its usage is described below.

Usage: $./domainCoordTrans.exe Coord1 Coord2 < FILE >newFILE

It transforms all domain positions from Coord1 to Coord2. Coordinates must be the first

three columns, x y z. Parameters may be the following strings:

 rec Rectangular or Cartesian Coordinates, x y z

 cyl Cylindrical Coordinates, r theta z. theta: angle on plane perpendicular to Z-axis

 sph Spherical Coordinates, r theta phi. theta: angle from Z-axis. phi: angle on plane

perpendicular to Z-axis

e. domainFind-rec

 This program will fit all input data into a rectangular domain oriented to the axial

planes. Even though this program is not very flexible, it can give a general idea of where

a domain is located and its dimensions. For example, if there was evaporation in a

simulation, this program would show that the domain has significantly increased its

dimensions. It also can give an initial guess for scale/domain extraction. It takes one

argument, the scale to fit. Its usage is shown below.

$./domainFind-rec.exe 2 <Equilib.MD3

 It will output the six rectangular parameters which correspond to the minimum

and maximum particle position for all three directions.

5. Plot stress contour from FEA: meshplot.exe

 The FEA subroutines output node displacements and stresses every time the GP

code outputs a configuration MD3 file. The FEA output files are named: FEA14.out0022

where the ‘14‘ denotes the FEA version number and the ‘0022‘ is the calculation number.

210

The corresponding GP output file would be 0053000.MD3 if there was a 30000 step

equilibration and if the FEA calculations were every 1000. This is because the FEA step

0 is completed at 31000 steps.

 This program will plot the mesh of the FEA part of the multiscale model and

color the element boundaries according to the Von Mises stress of the integration points.

It begins by reading the FEA input file, assuming that its name matches the first 6 letters

of the FEA output file and ending with “inp”. It reads this file to find the initial node

positions. It then reads the FEA file that records the equilibrated WG and WF node

positions; the file ending in “init” This file is written after the FEA step 0. It reads this to

update these positions. Then it reads the node displacements and element VM Stresses

from the FEA output file provided. It uses this data to write a data file with the new node

positions and VM Stress in GPa for each element's node. This data file is named:

“0022.meshdat” numbered for the FEA calculation step. It also writes a GnuPlot script to

plot this data file called: “0022.gnu”, it makes a picture named: “0022.png” the gnu script

file can be modified to plot the data however the user wishes. An example output picture

is shown in Figure 62, this has a single FEA domain around a central GP model.

211

Figure 62. FEA-GP Cu model at 13% strain and 384 ps, colored for element VM

Stress.

To use this program an example command would look like:

$./meshplot.exe FEA14.out0022 0053000.MD3

6. Plot FEA output and plotfiles: plot.sh

 This script averages the FEA VM stress, X stress, Y stress, X displacement, and Y

displacement for each FEA calculation and puts this data into the file named: “plot”. This

is so that these quantities can be plotted through time or strain. Even though it's a global

FEA average it can show possible trends, for the distribution of stresses the

“meshplot.exe” program is better. Below is the script.

#!/bin/bash

212

j=0

#find length of plot files

len=`wc -l FEA*.plot0001 | cut -d " " -f 1`

for file in `ls -1tr FEA*.plot*`; do

 j=`expr $j + 1`

calculation step, avg VM stress, avg X stress, avg Y Stress

 echo $j `awk -v ln="${len}" '{ SUM += $1}{ SUMb += $2}{ SUMc += $3} END {

print SUM / ln \

 " " SUMb / ln " " SUMc / ln }' $file` >>tmp1

done

j=0

#find the number of nodes from the input file

NN=`sed -n '4p' FEA*.inp | cut -d " " -f 1`

for file in `ls -1tr FEA*.out*`; do

 j=`expr $j + 1`

average X displacement

 tail -n +4 $file | head -n ${NN} | awk -v nn="${NN}" '{ SUM += $2} END { print

SUM / nn }'\

 >>tmp2

average Y displacement

 tail -n +4 $file | head -n ${NN} | awk -v nn="${NN}" '{ SUM += $3} END { print

SUM / nn }'\

 >>tmp3

done

paste tmp1 tmp2 tmp3 >plot #puts files together as columns

rm tmp1 tmp2 tmp3

7. Plot local ADDomains: plotLS.sh

 Sometimes it is useful to plot the local stresses and compare them to one another.

This script takes a parameter from the local stress data files “d**stresst.out” and puts

them all together so it can be easily plotted and compared. It takes one optional

parameter, the column in the local stress file to plot, if neglected it will plot the local

energy, column 3. The usage is:

$./plotLS.sh 6

213

 This will compare all the local stress domains' Y stress component by making a

GnuPlot script file called: “temp.gnu” which will plot all of the local domains. Below is

the “plotLS.sh” script.

#!/bin/bash

if [-z $1]; then

 col=3

elif [$1 = "--help"]; then

 echo "run with no parameters will graph all local domain's energy"

 echo "options are the column to graph in the files"

else

 col=$1

fi

echo "set xlabel 'time (ps)'" >temp.gnu

echo "set ylabel 'Average atomic energy (eV)'" >>temp.gnu

#echo "set output 'dEnergy.png'" >>temp.gnu

#echo "set term png" >>temp.gnu

cnt=1

echo -e "p 'd01stresst.out' u (\$1/1000):$col t \"ADD $cnt\" w l\c" >>temp.gnu

for file in $(ls -1 d*stresst.out)

do

 if [$file = "d01stresst.out"]; then

 continue

 fi

 echo ', \' >> temp.gnu

 cnt=$((cnt+1))

 echo -e " '"$file"' u (\$1/1000):$col t \"ADD $cnt\" w l\c" >>temp.gnu

done

echo "" >>temp.gnu

echo "pause -1" >>temp.gnu

gnuplot temp.gnu

#rm temp.gnu

8. Movie Generation

214

 To make a movie there must be a series of pictures that can be used as each frame in the

animation. These pictures should all be the same size and minimize the white space around the

image; VMD
130

 usually has a lot of white space around the model. It is also helpful to label each

frame to denote the change in time or strain or whatever variable is being animated across.

 There are two ways to make movies from a series of pictures, each have their pros

and cons. The easiest way is to make an animated GIF image. This format is good if there

are only a small number of frames, if image quality is required to be high, and portability

and ease of use is needed. It’s not so good if there are a lot of frames since it will make

the GIF file very large and may not load very well. The other way is to transcode the

frames into a video format like FLV or MPEG. These formats are good if there are a lot

of frames since they use compression algorithms to keep the file size down. The

disadvantage is that FLV compresses the information in the same way that JPEG images

do, so there is a loss of data, this means that FLV videos are blurrier and lack the crisp

detail that a GIF image has.

 To prepare the pictures to be used as frames for animation the ImageMagick

Suite
144

 of tools is used to modify the pictures in batch for consistency, specifically the

command “convert”. Below is the script used to perform these operations. The

uncommented lines are for a GIF image, to make an FLV some of the lines should be

uncommented:

#!/bin/bash

i=0 # initialize counter

process every PNG picture in the current directory

for line in `ls *.png`; do

#increment counter

 i=`expr $i + 1`

#crop the original image to get rid of white space and rotate counterclockwise

90 degrees

#convert -crop 460x445\!\+160\+5 -rotate \-90 ${line} ${line}t.png

convert -crop 822x652\!\+100\+90 ${line} ${line}t.png

The first two numbers specify the wanted image size, the last two numbers is

the

215

coordinate of the wanted top left corner. the new cropped image is named the

same

but has t.png at the end

#annotation to add the strain value to each frame

#must convert to jpg for the conversion into a movie

#convert -quality 100 -pointsize 20 -annotate +5+25 "$(((i-1)/2)).$(((i-

1)%2*5))%" \

${line}t.png `printf %02d ${i%} ${i##*}`.jpg

convert -quality 100 -pointsize 20 -annotate +5+25 "$(((i-1)/2)).$(((i-

1)%2*5))%" \

 ${line}t.png `printf %02d ${i%} ${i##*}`g.png

Pointsize is the font size of the annotation text. The annotate option sets

the

coordinate to place th text, remember: image coordinates begin from the top

left, X goes

from left to right and Y goes from top to bottom. The text to be annotated

is in

quotation marks, here two integer calculations are made for the whole number

and decimal

according to the frame/image number counter variable: $i. The resulting

frame is named

according to the frame number with lading zeros, this is important for the

creation of

an FLV file.

remove temporary file

rm ${line}t.png

done # end loop

echo "processed $i files"

#Make the animated GIF file, pausing 0.25 seconds between frames, and set the

animation to

loop forever. The resulting file is “test.gif"

convert -delay 25 -loop 1 *g.png test.gif

#rm *g.png

#combine all of the jpg files together at a frame rate of 5 per second and

bitrate of 1800

#ffmpeg -r 5 -b 1800 -i %02d.jpg test.flv

216

#play the resultant movie with mplayer

#mplayer test.flv

mplayer test.gif

217

F. ANALYSIS

This section is about the analysis of the data from the GP simulations after any

processing of Appendix E. This includes void detection, dislocation identification, and

local structure analysis.

1. Void detection: matterInvert.exe

 The Matter Inverse method creates an empty grid over the entire model domain;

this grid should have units larger than the nearest neighbor distance. The grids are

populated by values that correspond to the number of atoms/particles within them. All of

the grids that have nothing in them are output to a file containing the grid locations, see

Fig. 63. In essence providing a map of the void or vacancy locations. This is helpful in

many ways. First, voids are usually less numerous than material models, this greatly

reduces the amount of data to analyze. Second, the grid locations are perfectly spaced so

perfect structural values can be obtained. This output is designed to be fed into the NNg

algorithm of the CNeval program described in Appendix F.2, and will be able to

determine the surface of the inverted voids. Since the grid is perfectly structured, the

CMcutoff and CNradius can be confidently defined. Below is an example command to invert

the model.

Figure 63. The relationship between real matter and inverted mater models.

218

$ matterInvert.exe -g 2.8 <ModelPore.MD3 >ModelPore.inv.MD3

 The output is on standard output and in an MD3 format so that the mkxyz.exe

program can easily be used to make it viewable in VMD. The model to be inverted is fed

to the program on standard input. Certain information is output on standard error such as

the percent of the model volume that is vacant and the plane area that is vacant. There are

three command line options:

 -g [grid] grid spacing (default=1.0) units in Ang

 -h [frame] history file frame number

 -b [domain(6)] override boxsize with this domain

With the “-h” option HISTORY files from DLPOLY
106,107

 can be inverted, the option

requires the frame number in the file. The “-b” option allows a rectangular domain to be

inverted instead of the entire model's boxsize. The grid spacing specified with the “-g”

option should increase with the GP scale being analyzed. An example of the output on

standard error is shown below from the command:

$matterInvert.exe -g 3.2 -b -186.918 186.918 -186.918 186.918 -20.0 10.0

<0102500.MD3 >inverted.MD3

 Using unit size: 3.2000000

 Using Box Domain: -186.91800 186.91800 -186.91800 186.91800

-20.000000 10.0000000

 Using grid size: 116 116 9

 Using new grid unit: 3.2227242 3.2227242 3.3333333

 358613 counted

 Void Fraction 0.19024970

 Plane Void Fraction 0.53160918 0.95881224 0.48625147

Tip: Sometimes the domain that is to be analyzed is not a convenient shape, there are

three ways to deal with this, 1) under-sample the domain, by reducing the Inverse-domain

size to fit inside of the domain to be analyzed. 2) Over-sample the domain, this required

the grid size to be larger which reduces the resolution of the inverted result but is

necessary since the domain will include, most likely, a higher scale. 3) Over-sample with

post-cut, the same as making the domain larger, but keeping the grid size at a high

resolution, the results will have “false vacancies” which should be neglected, the result

219

can then go through the domainExtract program (See Appendix E.4.b) to cut the results

to a desired shape domain. The disadvantage of this is clear; that it requires much more

analysis to properly operate.

2. Structure analysis: CNeval.exe

 This is the most advanced program for GP configuration analysis. For analyzing

MD, MD2, and DLPOLY HISTORY files for each particle's Coordination Number (CN),

Coordination Vector (CV), Common Neighbor Analysis (CNA) and near-neighbor

grouping (NNg). The “CNeval.f90” code can be used. There are actually three different

versions to this code; the most current is “CNeval3.f90”. The computer cluster uses a link

to the most recent version so that the user can ignore the version number and just use

“CNeval.exe”. The program takes sixteen optional arguments and one mandatory; the

mandatory argument is the file name of the configuration, such as “0007500.MD3”. It

reads by default MD2 and MD3 files.

 The program outputs to four different file descriptors, Standard Error (stderr),

Standard Output (stdout), filename.CNdens, and filename.densV. It is customary to

redirect the stderr and stdout to files with the extensions “.CNdat” and “xyz”,

respectively.

 Examples of usage can be seen below, followed by program options. The third

example is rather specific; it reads and analyzes the file “0550000.MD2” and redirects the

CN summary into “550000.CNdat” then pipes the stdout into egrep which is a special

kind of grep that can search more than one thing at a time, in this case it filters out only

the particles with CN greater than 12, or having element type, “Al” or “Si”, then it puts

this data into “550000gt12.xyz” to be viewed with VMD.

Usage: CNeval.exe [Options] [inputfile]

 example: CNeval.exe ' 550000.MD2' > 550000.xyz

 example: CNeval.exe ' 550000.MD2' 2> 550000.CNdat > 550000.xyz

 example: CNeval.exe " 550000.MD2" 2> 550000.CNdat | egrep "Al|Si" >

550000gt12.xyz

 example: CNeval.exe -d 3 '55000.MD2' > 55000.xyz

 example: CNeval.exe -n 453 '55000.MD2'

 example: CNeval.exe -d 2 -h 21 -a 2.87 'HISTORY' > hist.xyz

220

 example: CNeval.exe -d 2 -a 3.09 -g 0.2 '55000.MD2' 2> 55000.MD2.CNdat >

55000.MD2.xyz

 example: CNeval.exe -a 3.09 -g 0.16 -r 1.26 0055000.MD2 2> 55000.MD2.CNdat >

55000.MD2.xyz

 Options:

 -d dim The “-d” switch is used to specify which direction to integrate across when

doing the CN density and CV summation. The values acceptable for dim

are from 1 to 3 as integers representing the X Y and Z directions. The

default value is 1 for the X direction.

 -l len The “-l” switch sets the thickness or resolution of the directional analyses, for

use with CN densities and CV densities. By default it is 1Å. This is

generally the smallest value necessary.

 -p PBC The “-p” switch is used when the model has some kind of periodic boundary

condition. The parameter it takes is a string of three letters, they are

boolean, so they can be either true or false. Each letter's position

corresponds to each of the three dimensions, for example, having periodic

boundaries in the X and Z direction would have a parameter of: TFT; “T”

for true and “F” for false.

 -L param The “-L” switch tells the program that the input MD file contains Link-cells.

Usually the only file that contains Link-cells are the initial GP

configuration file. If the parameter is True, it will output the imaginary

particles along with the real ones. All imaginary particles are represented

by Hydrogen, to easily identify them from the other particles in the “xyz”

file.

 -i param The “-i” switch is used to output imaginary particles from the input file, its

parameter must be True (I.e. “-i T”). As for the “-L T” option the

imaginary particles will be seen as Hydrogen in the “xyz” file.

 -n atom The “-n” switch will dump the positions and ID of atom's nearest neighbors

and give the atoms's CN, CV and CM, as well as output a simple RDF to

the file called “RDFatom.dat” where atom is the atom number in the

configuration, or more specifically the atom number according to the

sequential list in the input file.

221

 -a CNcutoff The “-a” switch specifies the lattice constant to use for analysis. The units

are in Ångström. The default is 3.629 Å used for copper.

 -h frame The “-h” switch specifies that the input file is a DLPOLY HISTORY file

and its argument, frame is the frame number in the HISTORY file to use

for the configuration. When using this switch the output files are called

explicitly, “histframe.CNdens” and “histframe.densV”. When using a

DLPOLY HISTORY file, the “-h” switch must be used, otherwise the

program will read the input file incorrectly and it will not run.

 -g CMcutoff The “-g” switch will perform Nearest-Neighbor grouping (NNg), with

CMcutoff to filter out the low CM particles so NNg will only be done on

the high CM particles. The individual particle results from the NNg

analysis is output to another separate file ending in “NNg.xyz”. See

Appendix F.2.d.

 -c specie The “-c” switch performs the CNA analysis and NNg to group 'specie'. The

specie by default is “Cu”. The NNg is only used to group those particles

that are found to be in the local structure identified by specie. The NNg

results are outputted to a file ending with “NNgCNA.xyz”. See Appendix

F.2.a.

 -r atomr The “-r” switch will redefine the atomic radius from a0/2.25 to atomr for use

with NNg surface area calculation based on the CM. See Appendix F.2.d.

 -b box(6) The “-b” switch identifies a local domain of the model to analyze.

 -k scale The “-k” switch defines the scale ratio, k. The default is k=2

 -o NN The “-o” switch specifies the Nearest neighbor distance used for an

experimental local distortion vector. The default is 2.566Å. And the

vector is defined as:
   





N

j= i

N

j=

i
CNdist

Rij

NN

Rij
=os

11

 This vector is listed

at the end of the lines in the output xyz file.

 -t types The “-t” switch filters for elements included in the analysis, i.e. atoms i

 example: '-t Al,Fe,O,' for HISTORY or '-t 13,26,8,' for

MD3. This can be helpful for very complicated models with many

different types of elements.

222

 -N scale The “-N” switch makes the program use Verlet Neighbor Lists for the

neighbor analysis. This is very efficient if the model involves a very large

DOF.

a. Common Neighbour Analysis (CNA)

 The Common Neighbor Analysis technique identifies individual atoms’ local

structure by comparing the atoms’ nearest and next-nearest neighbors. This method yields

highly detailed results uniquely identifying specific atomic structures. This section

discusses how to implement this method to identify atoms in FCC, HCP and tentatively

BCC orientations.

i. Method

 The Common Neighbor Analysis (CNA) is not a new concept.
145

 However, it

wasn’t until Honeycutt and Andersen
133

 that the possible local structures were given

quantifiable values and clearly explained. In their words: “...pairs of atoms are classified

by (i) whether or not they are near-neighbors, (ii) the number of near-neighbors they

have in common, and (iii) the near-neighbor relationships among the shared neighbors.

Two atoms are said to be near-neighbors if they are within a specified cutoff distance of

each other. We typically used a cutoff distance of 1.4σ in our analysis, which is roughly

the distance to the minimum in the pair correlation function of a solid-like cluster.” Their

“near-neighbor” cutoff distance is the same that is used for finding Coordination Number

(CN).

 The real analysis and key to this method is the description of the common near-

neighbors. These are the atoms that are near-neighbors of both the i
th

 and j
th

 atoms. The

configuration of these common atoms define the structure as it relates to the i − j atom

pair.

(a)CNA Values

 There are two types of i − j pairs. The first (I) is when i and j are near-neighbors

and the second (II) is when they are next-near-neighbors. Examples of these two types

can be seen in Fig. 64 where the open or unfilled circles represent i and j and the black

filled circles represent the atoms they have in common, excluding j. Near-neighbors are

223

represented with a black line between them or “bond”. For convenience, the i − j pair will

no longer be included in the diagrams as they are implied.

Figure 64. Examples of the two types of pair relationships, I, when the pair are near-

neighbors, and II, when next-near-neighbors.

 There are many different configurations that the common atoms may have. A few,

most frequent configurations are shown in Fig. 65 along with their CNA value. Each i − j

pair yields a four digit number, which will be called, CNA value. The first digit is either 1

or 2 indicating the diagram “Type” explained in Fig. 64. The second digit represents the

number of near neighbors shared by the i − j pair, or number of common atoms. The third

digit represents the number of bonds among the shared neighbors, or how many common

atom pairs are near-neighbors.

Figure 65. Examples of common atom configurations, omitting atoms i and j.

224

 These three numbers are not sufficient to characterize a diagram uniquely, so a

fourth integer, whose value is arbitrary as long as it is consistently used,
133

 is added to

provide a unique correspondence between numbers and diagrams. Most users of the

CNA
146

 arbitrarily keep Honeycutt’s fourth digit scheme. However there is another

quantity that could be used as the fourth digit that would also preserve the uniqueness.

The range of the number of bonds per common neighbor can be used as the fourth digit,

these CNA values are in blue, below the first set in Fig. 65. Looking at the diagram for

the CNA value 1421 (1420) one can see that each common atom has only one bond, so

the range is 0. Looking at the diagram for the CNA value 1321 (1321) one can see that

two atoms have one bond and one atom has two, so the range is 1, being the difference in

bond numbers, 2 − 1 = 1. Lastly, looking at the diagram for the CNA value 1422 (1422)

one can see that there is a lonely atom with no bonds, two atoms with one bond, and one

atom with two bonds, so the range is 2; 2 − 0 = 2. This method of numbering the last digit

is useful in the program implementation discussed in section 5.2.

(b)Characterization

 Honeycutt and others have researched structures that form in small atomic

clusters
133,145

 from their findings they could identify atoms in FCC and HCP local

structures, along with multilayer icosahedral clusters. All twelve of the nearest neighbors

in the FCC structure yield a CNA value of 1421 (1420). For the twelve nearest neighbors

in the HCP structure only six have CNA values of 1421 (1420), the remaining six are

1422 (1422). Tsuzuki et al.
147

 used a combination of CN, CNA, Centrosymmetry

Parameter (CSP) and their own Common Neighborhood Parameter (CNP) to analyze

crystal deformation and structural transformation. They illustrated the actual CNA values

of the BCC structure which are 1441 and 1661 in an unexplained ratio.

ii. Code Specifics

 The code that was written for the structure analysis is simply a slight modification

to the CNeval.f90 program – hence making version 2 i.e. CNeval2.f90, the inclusion of

Verlet Neighbor lists makes version 3, CNeval3.f90 -- that has been used successfully to

analyze the CN of different scales of GP models. The modified code for the CNA is

located in: /shared/DATA/Multi_GP_Cu/NPT/CNeval3.f90 The main modification is the

225

addition of an array called “SO” that contains the CNA of each nearest neighbor pair.

This means that it only finds Type I pairs, those that are near-neighbors. This is sufficient

to distinguish between FCC, HCP, and BCC structures. Line 624 is where the second

digit is calculated for the i − j pair; the number of mutual neighbors. Line 631

accumulates the number of mutual bonds or bonds of the common neighbors and it is

added to “SO” on line 635. Lastly, line 637 adds the difference of mutual bond numbers,

the range used as the fourth digit. This entire “SO” array is written in the produced xyz

file along with the other CN data.

 In order to determine what structure atom i is in, all of the CNA values from all of

i’s near-neighbors must be analyzed somehow. In the code, they are all summed together,

so an atom in an FCC structure will have a value of 12 × 1420 = 17040 (line 643) and

HCP is 6 × 1420 + 6 × 1422 = 17052 (line 644).

Table IX. Element Types Used in CNA Visualization

 Condition Element

 CN=12 Mg

 CN>12 Al

 CN<12 Na

 FCC Cu

 HCP B

 BCC Fe

 A potential problem occurs when thinking about BCC, certainly we know what

CNA values it should be, but in a mixed element model, the cutoff radius is different for

different materials. For example, Aluminum has a lattice constant of 4.0559Ang and has

an FCC structure, this means that the distance to the first minimum of the pair

distribution function is about 3.46Ang, For Iron, which has a BCC structure and lattice

constant of 2.92Ang, the CNcutoff radius is 2.72Ang. What results is that Al with the

larger cutoff radius is used in the model, which makes the regular Iron atom have a CN of

14 which happens because the CNcutoff is large enough to count both nearest and next

nearest neighbors. In the code it is assumed that a BCC structure will have a CN of 14,

226

and that six of its i − j pairs will have a CNA value of 1440 and eight with 1660 yielding

6 × 1440 + 8 × 1660 = 21920. In order to visualize this data, the structures were assigned

element names that correspond to the CNA structure types, this allows the model to be

viewed with VMD easily, see table 1 for the specifics.

b. Coordination Number (CN)

 The Coordination Number (CN) as defined for crystal structures is the number of

atoms that are touching the atom of interest. For bulk BCC metals this number is four and

twelve for FCC metals. Another way of thinking about CN is by considering the number

of nearest neighbors. Due to temperature and other effects, the position of the nearest

neighbors may vary. To ensure that they are counted, a radius larger than the ideal nearest

neighbor distance is used to “collect” these atoms. Traditionally, the radius used is the

distance of the first minimum in the radial distribution function (RDF) or pair correlation

function g(r).
142

 This distance represents the least probable radius to find occupied,

located between the nearest and next-nearest neighbors. In an FCC metal this distance is

between 2/20a and a0, where a0 is the lattice constant. Finding the RDF is usually

performed over an entire simulation collecting data all the while, to more adequately

supply its function with a statistic distribution.

 The xyz output file appends the CN, CM, and CV after each line, see Table X for

a sample of this file. For VMD to show different CNs from the “xyz” file, each value of

CN is assigned to an element, for example if a particle has a CN equal to 1, it would be

represented by Hydrogen, and if it had a CN of 13 it would be shown as Aluminum.

 There is a CN summary output to stderr, an example of which is shown in Table

XI and two density files are created with extensions "CNdens" and "densV" the former is

the CN density across a given dimension, this dimension can be specified with the “-d”

switch on the command line, an example of this output can be seen in Table XII, and the

latter, the average CV across the same given dimension. This can be used to search for

structural irregularities such as voids and pores. A sample output file is listed in Table

XIII. All output files can be used with “gnuplot”.

227

Table X. Sample “xyz” File

The first number is the number of particles. The columns are: (1) The elemental

representation of the particle's CN. (2-4) the position. (5) particle scale. (6) Particle's

atomic number, its real element type. (7) CN. (8) CM. (9-11) CV.

---------------0005000.MD2.xyz--------------------------

 9600

 C -19.740402 -19.944939 -24.442770 1 13 6 0.358683 0.000014 -0.000043 -0.358683

 Be -18.985060 -21.253231 -25.818981 1 8 4 0.391581 -0.195795 0.339117 -0.000011

 Be -18.985058 -18.636736 -25.818981 1 8 4 0.391511 -0.195797 -0.339035 -0.000011

 C -19.740402 -19.944939 -17.707396 1 13 6 0.358684 0.000014 -0.000043 -0.358684

 C -19.740402 -19.944939 -10.972019 1 13 6 0.358683 0.000014 -0.000043 -0.358683

 C -19.740402 -19.944939 -20.459738 1 13 6 0.358662 0.000124 -0.000042 0.358662

 Be -18.229767 -19.944939 -19.083609 1 8 4 0.391529 -0.391529 -0.000017 0.000078

 Be -18.985060 -21.253231 -12.348231 1 8 4 0.391581 -0.195795 0.339117 0.000061

Table XI. CN Summary Output on Stderr

There are four sets of columns, the first is the total model statistics, the last three are

statistics about each scale from the atomic, S1, to S3. The last two groups show a “0” and

“NaN” because this example model has only scale-1 particles.

 Each column group lists the CN frequency or actual number of particles with that

CN, and its percentage. The very first column is the CN corresponding to the second

column which shows the element type that is given for that CN. A careful look at these

numbers can determine whether the model is amorphous or crystalline.

-------------0005000.MD2.CNdat-------------------

 Using total options:

 number of particles per scale: 6911 0 0

 total: 6911

 number of particles per scale: 6911 0 0

 total real particles: 6911

 CN elem freq % S1 freq S2 freq S3 freq

 Rcut= 3.4733405 6.9466810 13.893362

 1 H 0 0.000000 0 0.000000 0 NaN 0 NaN

 2 He 0 0.000000 0 0.000000 0 NaN 0 NaN

228

 3 Li 3 0.043409 3 0.043409 0 NaN 0 NaN

 4 Be 1 0.014470 1 0.014470 0 NaN 0 NaN

 5 B 89 1.287802 89 1.287802 0 NaN 0 NaN

 6 C 37 0.535378 37 0.535378 0 NaN 0 NaN

 7 N 6 0.086818 6 0.086818 0 NaN 0 NaN

 8 O 1301 18.825062 1301 18.825062 0 NaN 0 NaN

 9 F 148 2.141514 148 2.141514 0 NaN 0 NaN

 10 Ne 3 0.043409 3 0.043409 0 NaN 0 NaN

 11 Na 12 0.173636 12 0.173636 0 NaN 0 NaN

 12 Mg 5208 75.358124 5208 75.358124 0 NaN 0 NaN

 13 Al 102 1.475908 102 1.475908 0 NaN 0 NaN

 14 Si 1 0.014470 1 0.014470 0 NaN 0 NaN

Table XII. CN Density Across the Model

The first column is position; the remaining columns are the percentage of each CN.

Column 2 is for CN=1, column 3 for CN=2, etc.

---------------0005000.MD2.CNdens------------------------

 # Pos(,i) CN=1 CN=2 CN=3 ... CN=20 CN=0&CN>20

 -19.88149 0.00000 0.00000 0.00180 0.00180 0.04317 0.02878

0.00719 0.41727 0.07374 0.00180 0.00000 0.41547 0.00899

0.00000 ...

 -18.86193 0.00000 0.00000 0.00000 0.00000 0.00000 0.05000

0.05000 0.40000 0.15000 0.05000 0.00000 0.30000 0.00000

0.00000 ...

 -17.84237 0.00000 0.00000 0.00000 0.00000 0.00694 0.00000

0.00000 0.09722 0.05556 0.00000 0.00000 0.73264 0.10764

0.00000 ...

 -15.80324 0.00000 0.00000 0.00000 0.00000 0.00347 0.00347

0.00000 0.13542 0.01736 0.00000 0.00000 0.82639 0.01389

0.00000 ...

 -13.76411 0.00000 0.00000 0.00000 0.00000 0.00347 0.00347

0.00000 0.13889 0.01389 0.00000 0.00000 0.82986 0.01042

0.00000 ...

 -11.72498 0.00000 0.00000 0.00000 0.00000 0.00694 0.00000

0.00000 0.14931 0.00347 0.00000 0.00000 0.83681 0.00347

0.00000 ...

 -10.70542 0.00000 0.00000 0.00000 0.00000 0.00347 0.00347

0.00000 0.14583 0.00694 0.00000 0.00000 0.83681 0.00347

0.00000 ...

 -8.66629 0.00000 0.00000 0.00000 0.00000 0.00347 0.00347

0.00000 0.13889 0.01389 0.00000 0.00000 0.82986 0.01042

0.00000 ...

229

 -6.62716 0.00000 0.00000 0.00000 0.00000 0.00694 0.00000

0.00000 0.14236 0.01042 0.00000 0.00000 0.82986 0.01042

0.00000 ...

Table XIII. Coordination Vector Across the Model

The first column is the position; the last three are the Coordination Vector (CV).

---------------0005000.MD2.densV-----------------------

 # Pos(,i) average Coordination Vector (X,Y,Z)

 -19.88149 2128.21167 -1.04622 -11.24967

 -18.86193 3.91419 -1.46443 7.96096

 -17.84237 -117.07870 0.58429 1.35901

 -15.80324 -3.73650 0.53191 1.16895

 -13.76411 -4.46231 0.88720 0.42965

 -11.72498 -3.34580 0.01192 0.52085

 -10.70542 -2.39000 -0.00161 -0.74924

 -8.66629 0.15434 0.53781 0.56996

 -6.62716 -0.41944 0.78974 -0.40410

c. Coordination Vector (CV)

 CN is a useful quantity for identifying many attributes about a system. For

example, it can identify surfaces and edges of a model, vacancies, voids, dislocations and

other structural deviations. Some limitations come to mind when thinking about the CN

as a measure of local density. For example, CNs are scalar and integers; there exists a

vector quantity that shall be termed the Coordination Vector (CV). This vector is defined

by the sum of all the atomic distances of the neighbors that were counted to equal the CN.

230

Figure 66. CV concept for atom i with a vacancy.

 The Coordination Vector, CV , for atom i, is related to its coordination number

(CN) within its NN radius, rnn. It is defined as a non-dimensional vector by an average

covering all its NN atoms (i.e., j=1, 2…CN). The s'CV geometric and vector expressions

of atom i are shown in Fig. 66 in terms of the position of the vacancy, neighbor atom j,

and rnn. Its mathematical definition is given as follows:

  
CN

=j

ij

nn

)rr(
CNr

CV
1.

1
 (59)

It is easy to see the following properties of the Coordination Vector, CV :

I If there is no vacancy, 0=CV

II CV points in the direction of the largest density of NN atoms (or particles) and

thus quantifies the asymmetry of the NN atom distribution around atom i.

III An atom with a larger CV value indicates more vacancies on its one side, thus it

may have a greater probability to be close to a pore or be a site for tiny pore

nucleation.

d. Near-Neighbor Grouping (NNg)

 Identifying atoms that might be at the surface of a void or vacancy is very useful,

however rather difficult to use in a meaningful way. What would be desirable would be to

filter out all of the atoms that have large CMs and group them according to the void they

are affected by. The question then becomes how to group them? Or what criteria to use

231

that would specify whether an atom belongs to one group over another? If the large CM

is not just a single phenomenon, there should be others beside it. In the case of a surface,

all of the surface atoms could be nearest neighbors of each other, and if connected would

create a sheet. In this manner groups represent continuous surfaces of a model.

Discontinuities may be caused by an atom having unusual geometric symmetry near the

surface.

 The method used to group points together, if the points are close enough, is called

a connectivity-based single-link agglomerating cluster algorithm.
148

 These methods are

used when the clusters are based on connectivity and distance.
134

 In this case the distance

is the same as used for determining CN, i.e. the distance to the first minimum of the

radial distribution function, or about half way between the nearest and next-nearest

neighbors. The agglomerative type of algorithm starts by assigning every atom to its own

cluster and gathers all of the atoms that are connected to it. It does this by using a nearest-

neighbor list and reassigning its neighbors and every atom in its neighbor’s cluster to its

own cluster. In this way a Nearest-Neighbor grouping (NNg) algorithm is employed.

Many times, there will be numerous remaining clusters that contain only one or two

atoms, these clusters are neglected for most of the further analysis. Since a single vacancy

ideally has about twelve surface atoms, all clusters containing twelve atoms or more are

filtered for further analysis. Figure 67 shows steps on how this is accomplished.

Figure 67. Five step process of grouping particles by a single-link method.

 Not all of the atoms with large CM values will be part of a vacancy or void

surface, but some may be the surface of a dense object, such as a particulate or surface of

232

a larger massive object. The quantitative difference lies in the direction of the CVs in the

cluster or group. A method was developed to compare each group member's CV in

relation to the geometric center of the group. The CV was projected onto the difference

vector from the center to the group member; these projections are all averaged together

from each group member. Theoretically, if this value is negative then the density is

located outside of the group (fig. 68b), which represents the group as a void surface, and

if it's positive, the density is inside of the group (fig. 68a), representing a dense volume or

possible particulate. These two types of groups are filtered and assigned element types to

be viewed in VMD, all other atoms are assigned the element type: “Na”, giving rise to

only three different colors for identifying types of groups or clusters.

Figure 68. Two types of clusters, (a) a dense group or (b) a Void group.

233

	INTRODUCTION
	A. Motivation
	B. Classification of Multiscale methods
	1. Hierarchical
	2. Concurrent

	C. Atomistic-based multiscale analysis, Class-I
	D. Inadequacies and Existing Needs

	METHODOLOGY OF THE ATOMISTIC-BASED MULTISCALE ANALYSIS
	A. The Generalized Particle (GP) Method
	1. Material property scale independence
	2. Scale interfaces
	3. Surface corrections
	4. Scale duality
	a. Decomposition
	b. Dislocation propagation beyond scale boundary
	c. Automatic Decomposition

	B. Linking GP with FEA
	1. Advantages of the GP-FEA Methodology
	2. Model Structure and Design of Coupling subsystems
	3. The “Bottom-Up” and “Top-Down” iteration bridging scheme
	4. Numerical Algorithms

	C. Shortcomings
	D. Summary

	ACCURACY VERIFICATIONS OF ATOMISTICALLY-BASED MULTISCALE ANALYSIS WITH CONTINUUM SOLUTIONS BY THE GP-FEA METHODS
	A. Introduction
	B. Model Development
	1. GP Hole Model development
	2. GP--FEA interface design
	3. FEA Mesh generation

	C. Verification of the GP and GP-FEA multiscale methods with Elasticity Solutions for a plate with a central hole under tensile loading
	1. The scheme for the comparison of atomistically- based simulation with a continuum solution
	2. Result comparison for pure GP and GP-FEA model

	D. Summary and Conclusions

	ACCURACY VALIDATION WITH LEFM SOLUTION AT CRACK-TIPS: CONCEPT OF CRITICAL MODEL SIZE
	A. Introduction
	B. GP-FEA Model Design
	C. Comparison between LEFM solutions and GP-FEA simulation results for the crack-tip displacement
	1. LEFM singularity solution and two-term solutions of crack-tip displacement field
	2. Comparison between atomistically-based multiscale simulation with both LEFM singularity and two-term solutions
	3. Model size effects on numerical results of displacement distribution near crack-tip in comparison with LEFM two-term solutions

	D. Summary and discussions

	APPLICATION IN CRACK PROPAGATION
	A. Introduction
	B. Simulation Model and Methods
	C. Crack Propagation Results via GP-FEA
	1. Fracture Energy
	2. Crack-Tip Phase Transformation

	D. Conclusion

	APPLICATIONS IN IMPACT
	A. Introduction
	B. GP Model for Wave Propagation
	C. MD Results for Wave Propagation
	D. Scale-2 Results for Wave Propagation
	E. Auto-Duality Results for Wave Propagation
	F. Summary and Recommendations

	PARTICLE-BASED MULTISCALE ANALYSIS PROGRAM (PMAP) STRUCTURE
	A. Introduction
	B. Functionality, constitution and flow charts of three basic processes of PMAP
	1. Initialization Process
	2. Equilibration Process
	3. Loading Process

	C. Constructions and Executions
	1. Post-processing

	D. Summary

	CONCLUSIONS AND RECOMMENDATIONS
	A. Conclusions
	B. Recommendations for Future Work

	References
	APPENDICES
	A. Usual Molecular Dynamic Features
	1. Reading EAM Tables
	2. Damped Shifted Coulomb Potential (DSC)
	a. Implementation

	3. Simulation Revival
	4. Periodic Boundary Conditions (PBC) using Verlet Neighbor Lists
	5. Barostat (NPT)
	a. Berendsen Barostat
	b. Anisotropic barostat

	B. GP Features
	1. Automatic Duality Domains (ADD) with stress and energy (internal duality)
	a. Preparation
	i. Special List
	ii. NLC Linking
	iii. NLC Breakage

	b. Detector and Process
	i. Detector
	ii. Process

	2. Link GP with FEA
	a. FEA-GP connexion

	3. Using local/scale BoxSizes for Verlet neighbor Lists to save memory in large models

	C. MODEL DEVELOPMENT
	1. GP model development program
	a. Auto-Scale Interface Creation

	2. Nano-structure generation
	3. External Decomposition (blind) versions: 2W 3, 5, 6one
	a. decomp2W.f90
	b. decomp3.f90
	c. decomp5.f90
	d. decomp6one.f90

	4. Delete duplicate positions within a cutoff: delMDdup & delMD3dup
	5. Considerations when designing very large micron scale models
	6. FE Mesh input file for the GP-FEA simulation.

	D. THE PARTICLE-BASED MULTISCALE ANALYSIS PROGRAM (PMAP)
	1. PMAP Structure: Subroutines and functions
	a. Compiling and running

	2. PMAP Input file
	a. Examples

	E. DATA PROCESSING
	1. Make XYZ files from CONFIG, MD, MD3 files: mkxyz.exe
	2. Make Model.MD file from MD3 or Revive.MD file: mkMD.sh
	3. Extract a specific scale or local domain from MD3 files: getScale.sh getADD.sh
	4. Domain utilities
	a. domainMove and domainScale
	b. domainExtract
	c. inDomain
	d. domainCoordTrans
	e. domainFind-rec

	5. Plot stress contour from FEA: meshplot.exe
	6. Plot FEA output and plotfiles: plot.sh
	7. Plot local ADDomains: plotLS.sh
	8. Movie Generation

	F. ANALYSIS
	1. Void detection: matterInvert.exe
	2. Structure analysis: CNeval.exe
	a. Common Neighbour Analysis (CNA)
	i. Method
	(a) CNA Values
	(b) Characterization

	ii. Code Specifics

	b. Coordination Number (CN)
	c. Coordination Vector (CV)
	d. Near-Neighbor Grouping (NNg)

