Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics

Date

1986

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Thermal treatment of a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramic series (where x = 0.08 and MO = Y2O3 or CeO2) was conducted in order to synthesize yttrium (Y3+) and cerium (Ce3+) crystalline species that may act as radical oxygen specie (ROS) scavengers. The prominent phase for the Control is a sodium-strontium-silicate while the experimental glass-ceramics (HY, YCe, and HCe) present sodium-Y/Ce-silicate and oxide phases. Disk shrinkage during thermal processing ranges from 1–7% for Control, HY, YCe, and HCe in both diameter and thickness. Solubility studies determined that the release of Si4+ and Na+ are greatest from the Control disks which peaks at 1550 µg/mL. Release from the Y3+ and Ce3+ glass-ceramics reached 320 µg/mL for Si4+ and 630 µg/mL for Na+. The range of antioxidant capacity (ABTS assay) for all samples was 0.31–3.9 mMTE. No significant reduction in MC 3T3 Osteoblast cell viability was observed for any composition tested.

Description

This is the Accepted Manuscript of the following article: Placek LM, Keenan TJ, coughlan A, Wren AW. Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics. Journal of Biomaterials Applications. 2022;37(1):102-117, which has been published in final form at https://doi.org/10.1177/08853282221078448. The article is protected by copyright and reuse is restricted to non-commercial and no derivative uses.

Keywords

Citation

Placek LM, Keenan TJ, coughlan A, Wren AW. Synthesis, Processing and the Effect of Thermal Treatment on the Solubility, Antioxidant Potential and Cytocompatibility of Y2O3 and CeO2 doped SiO2-SrO-Na2O Glass-Ceramics. Journal of Biomaterials Applications. 2022;37(1):102-117. doi:10.1177/08853282221078448

DOI