Bounding the tripartite-circle crossing number of complete tripartite graphs

dc.contributor.authorMatson, Elizabeth
dc.contributor.authorCamacho, Charles
dc.contributor.authorFernandez-Merchant, Silvia
dc.contributor.authorJelic Milutinovic, Marija
dc.contributor.authorKirsch, Rachel
dc.contributor.authorKleist, Linda
dc.contributor.authorWhite, Jennifer
dc.date.accessioned2022-07-29T15:27:04Z
dc.date.available2022-07-29T15:27:04Z
dc.date.issued2021-10
dc.descriptionThis article is published open access in the Journal of Graph Theory, also available at https://doi.org/10.1002/jgt.22763. Made available under the CC BY-NC-ND 4.0 license.en_US
dc.description.abstractA tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. We present upper and lower bounds on the minimum number of crossings in tripartite-circle drawings of Km,n,p and the exact value for K2,2,n. In contrast to 1- and 2-circle drawings, which may attain the Harary–Hill bound, our results imply that balanced restricted 3-circle drawings of the complete graph are not optimal.en_US
dc.identifier.citationCamacho, C., Fernandez-Merchant, S., Jelic Milutinovic, M., Kirsch, R., Kleist, L., Matson, E. B., and White, J., Bounding the tripartite-circle crossing number of complete tripartite graphs, J. Graph Theory. 2022; 100: 5– 27. https://doi.org/10.1002/jgt.22763en_US
dc.identifier.urihttp://hdl.handle.net/10829/24835
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.urihttps://doi.org/10.1002/jgt.22763en_US
dc.rights.urihttps://libraries.alfred.edu/AURA/termsofuseen_US
dc.titleBounding the tripartite-circle crossing number of complete tripartite graphsen_US
dc.typeJournal Articleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Matson_2021_JGT.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description: